City of Meridian Wastewater Resource Recovery Facility Plan

Prepared for City of Meridian Meridian, Idaho December 19, 2018

1445 North Orchard • Boise, Idaho 83706 • (208) 373-0550 www.deq.idaho.gov

January 7, 2019

C,L, "Butch" Otter, Governor John H. Tippets, Director

Mr. Clint Dolsby, P.E. Assistant City Engineer 33 E. Broadway Ave. Suite 200 Meridian Idaho 83642

RE: City of Meridian (Ada County)

Wastewater Resource Recovery Facility - Facility Plan Update

Dear Mr. Dolsby:

The referenced project appears to meet State of Idaho standards and is approved based on the conditions listed below.

<u>PROJECT SPECIFIC CONDITIONS:</u>

A. This approval is for the referenced Facility Plan (FP) only. DEQ understands that this update was submitted in compliance with Task No. 2 of Table 7 in Section I.C of National Pollutant Discharge Elimination System (NPDES) Permit Number ID0020192. When designing any facility upgrades associated with this FP, please submit a Preliminary Engineering Report (PER) for the improvements to the Idaho Department of Environmental Quality (DEQ) for review and approval prior to preparing and submitting detailed plans and specifications. Detailed plans and specifications cannot be reviewed until the PER is approved. Furthermore, no construction can begin until the detailed plans and specifications have been reviewed and approved by DEQ.

Please feel free to call me with any questions at (208) 373-0281, or contact me via e-mail at Dan.M.Smith@deq.idaho.gov.

Sincerely,

Dan Smith, P.E. Staff Engineer

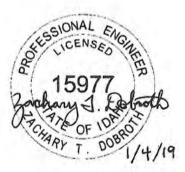
Enclosure: Approved and Stamped Facility Plan Cover Page

ec: Rick Kelly, P.E., Brown and Caldwell (w/ enclosure)

Todd Crutcher, P.E., Boise Regional Office

2019AGD38

City of Meridian Wastewater Resource Recovery Facility Plan


Prepared for City of Meridian December 19, 2018

APPROVED

IDAHO DEQ Boise Regional Office

Date:

1361397 JUNAL ENGLAND JIL

950 West Bannock Street, Suite 350 Boise, ID 83702 Phone: 208.389.7700 Fax: 208.389.7750

Table of Contents

List	of Figu	ıres		V		
List	of Tab	les		vi		
List	of Abb	reviation	ns	ix		
1.	1. Introduction/Purpose					
2.						
	2.1	City Pla	nning Area	2-1		
	2.2	Descrip	tion of Existing Treatment Facilities	2-1		
		2.2.1	Liquid Stream Process	2-1		
		2.2.2	Solids Handling	2-3		
	2.3	Current	Facility Upgrades for Headworks and Liquid Stream Improvements	2-6		
		2.3.1	Headworks Capacity Expansion	2-8		
		2.3.2	Primary Treatment Expansion	2-9		
		2.3.3	Secondary Treatment Expansion	2-10		
	2.4	NPDES	Permit Conditions	2-11		
	2.5	Existing	WRRF Equipment Conditions and Maintenance Issues	2-13		
	2.6 Existing Water Reuse Practices					
	2.7	Historic	al Influent Flow and Load, and Population Projections	2-16		
		2.7.1	Influent Flows	2-16		
		2.7.2	Influent Loading	2-16		
		2.7.3	Population and Projections	2-17		
	2.8	Planned	flow Reduction Measures	2-17		
		2.8.1	Inflow and Infiltration Reduction	2-17		
		2.8.2	Water Conservation	2-17		
	2.9	Existing	Environmental Conditions	2-18		
		2.9.1	Physiography, Topography, Geology, and Soils	2-18		
		2.9.2	Surface and Ground Water Hydrology	2-18		
		2.9.3	Fauna, Flora, and Natural Communities	2-19		
		2.9.4	Housing, Industrial, and Commercial Development	2-19		
		2.9.5	Cultural Resources	2-19		
		2.9.6	Utility Use	2-19		
		2.9.7	Floodplains and/or Wetlands	2-20		
		2.9.8	Wild, Scenic, and Recreational Rivers	2-20		
		2.9.9	Public Health and Water Quality Considerations	2-21		
		2.9.10	Important Farmlands Protection	2-21		
		2.9.11	Proximity to Sole Source Aquifer or Stream Flow Source Area	2-21		
		2.9.12	Land Use and Development	2-21		

		2.9.13	Precipitation, Temperature, and Prevailing Winds	2-21		
		2.9.14	Air Quality and Noise	2-21		
		2.9.15	Energy Production and Consumption	2-22		
		2.9.16	Socioeconomic Profile of Affected Community	2-22		
	2.10	Water (Quality Planning Information	2-22		
		2.10.1	State Water Quality Requirements	2-22		
		2.10.2	Water Quality and Technology-based Effluent Limitations	2-23		
		2.10.3	Designated Uses	2-23		
		2.10.4	Current TMDL Developments Impacting Future NPDES Permits	2-23		
3.	Planr	ning Crite	eria	3-1		
	3.1	Introdu	ction	3-1		
	3.2	Popula	tion and Employment Projections	3-1		
	3.3	Historio	cal Flows and Loads	3-3		
		3.3.1	Peaking Factors	3-4		
		3.3.2	Approach to Unit Flows and Loads	3-4		
	3.4	Flow ar	nd Load Projections	3-5		
		3.4.1	Flow Projections	3-5		
		3.4.2	Load Projections	3-6		
	3.5	Solids I	Projections	3-6		
4.	Expansion Alternatives					
	4.1	Liquid-	Stream Treatment Analysis	4-1		
		4.1.1	Design Flows and Loadings Used for Analysis	4-1		
		4.1.2	Headworks Process Alternative Evaluation	4-1		
		4.1.3	Primary Process Alternative Evaluation	4-1		
		4.1.4	Secondary Treatment Process Alternative Evaluation	4-2		
		4.1.5	Add-On Process Evaluations	4-6		
		4.1.6	Final Alternatives Evaluation			
		4.1.7	Tertiary Filtration Alternative Assessment	4-10		
		4.1.8	Disinfection System Evaluation			
		4.1.9	Liquid Process Recommendations	4-17		
	4.2	Solids 9	Stream Treatment Analysis	4-17		
		4.2.1	Process Technology Screening Workshop	4-17		
		4.2.2	Development of Solids Process Technology Alternatives	4-20		
		4.2.3	Capital Costs	4-38		
		4.2.4	Solids Process Recommendations	4-40		
	4.3	Sidestr	eam Treatment Technology Alternatives	4-41		
		4.3.1	Nitrogen Sidestream Treatment Evaluation	4-41		
		4.3.2	Phosphorus Sidestream Treatment Evaluation	4-41		
5.	Reso	urce Red	covery	5-1		
	5.1	Potenti	al Digester Gas Beneficial Uses	5-1		

5.1.1 Heating 5-5-6 5.1.2 Electricity Generation 5-6 5.1.3 Biomethane 5-4 5.2 Potential Biosolids Beneficial Uses 5-4 5.2.1 Class B Land Application 5-6 5.2.2 Class A Compost 5-10 5.2.3 Class A Soil Amendment 5-1 5.2.4 Thermal Treatment 5-1 5.2.5 Thermal decomposition 5-1 5.3 Sidestream Nitrogen Recovery 5-1 5.3.1 Nitrogen Sidestream Treatment Evaluation 5-1 5.3.2 Non-Biological Nitrogen Removal Sidestream Processes 5-1 5.4 Sidestream Phosphorous Recovery 5-1 5.5 Water Reuse 5-1 5.6 Sludge Fermentation 5-1 5.7 Selected Resource Recovery Approach 5-1 6 Capital Improvements Plan 6- 6.1 Objective 6- 6.2 Schedule and Sequence 6- 6.3 Site Layout and CIP Outline 6- 7.2 Funding Analysis 7- <th></th> <th></th> <th></th> <th></th> <th></th>						
5.1.3 Biomethane 5-4 5.2 Potential Biosolids Beneficial Uses 5-4 5.2.1 Class B Land Application 5-4 5.2.2 Class A Compost 5-10 5.2.3 Class A Soil Amendment 5-1 5.2.4 Thermal Treatment 5-1 5.2.5 Thermal decomposition 5-1 5.3 Sidestream Nitrogen Recovery 5-1 5.3.1 Nitrogen Sidestream Treatment Evaluation 5-1 5.3.2 Non-Biological Nitrogen Removal Sidestream Processes 5-1 5.4 Sidestream Phosphorous Recovery 5-1 5.5 Water Reuse 5-1 5.6 Sludge Fermentation 5-1 5.7 Selected Resource Recovery Approach 5-1 6 Capital Improvements Plan 6- 6.1 Objective 6- 6.2 Schedule and Sequence 6- 6.3 Site Layout and CIP Outline 6- 7.1 Introduction 7- 7.2 Funding Analysis 7- 7.3 Staffing Analysis 7- <t< td=""><td></td><td></td><td>5.1.1</td><td>Heating</td><td> 5-3</td></t<>			5.1.1	Heating	5-3	
5.2 Potential Biosolids Beneficial Uses 5-4 5.2.1 Class B Land Application 5-4 5.2.2 Class A Compost 5-1 5.2.3 Class A Soil Amendment 5-1 5.2.4 Thermal Treatment 5-1 5.2.5 Thermal decomposition 5-1 5.3 Sidestream Nitrogen Recovery 5-1 5.3.1 Nitrogen Sidestream Treatment Evaluation 5-1 5.3.2 Non-Biological Nitrogen Removal Sidestream Processes 5-1 5.4 Sidestream Phosphorous Recovery 5-1 5.5 Water Reuse 5-1 5.6 Sludge Fermentation 5-1 5.7 Selected Resource Recovery Approach 5-1 6 Capital Improvements Plan 6- 6.1 Objective 6- 6.2 Schedule and Sequence 6- 6.3 Site Layout and CIP Outline 6- 7. Financial Information 7- 7.1 Introduction 7- 7.2 Funding Analysis 7- 7.3 Staffing Analysis 7-			5.1.2	Electricity Generation	5-5	
5.2.1 Class B Land Application 5-6 5.2.2 Class A Compost 5-10 5.2.3 Class A Soil Amendment 5-11 5.2.4 Thermal Treatment 5-12 5.2.5 Thermal decomposition 5-13 5.2.5 Thermal decomposition 5-13 5.3 Sidestream Nitrogen Recovery 5-14 5.3.1 Nitrogen Sidestream Treatment Evaluation 5-15 5.3.2 Non-Biological Nitrogen Removal Sidestream Processes 5-14 5.4 Sidestream Phosphorous Recovery 5-1 5.5 Water Reuse 5-15 5.6 Sludge Fermentation 5-15 5.7 Selected Resource Recovery Approach 5-15 6. Capital Improvements Plan 6-6 6.1 Objective 6-6 6.2 Schedule and Sequence 6-6 6.3 Site Layout and CIP Outline 7-7 7.1 Introduction 7-7 7.2 Funding Analysis 7-7 7.3 Staffing Analysis 7-7 7.4 Summary 7-7 <			5.1.3	Biomethane	5-6	
5.2.2 Class A Compost 5-10 5.2.3 Class A Soil Amendment 5-11 5.2.4 Thermal Treatment 5-11 5.2.5 Thermal decomposition 5-12 5.3 Sidestream Nitrogen Recovery 5-13 5.3.1 Nitrogen Sidestream Treatment Evaluation 5-12 5.3.2 Non-Biological Nitrogen Removal Sidestream Processes 5-14 5.4 Sidestream Phosphorous Recovery 5-14 5.5 Water Reuse 5-15 5.6 Sludge Fermentation 5-15 5.7 Selected Resource Recovery Approach 5-15 6. Capital Improvements Plan 6-6 6.1 Objective 6-6 6.2 Schedule and Sequence 6-6 6.3 Site Layout and CIP Outline 6-6 7. Financial Information 7-7 7.1 Introduction 7-7 7.2 Funding Analysis 7-7 7.3 Staffing Analysis 7-7 7.4 Summary 7-7 8. References 8-8 Appendix A: EID from 2007 Facility Plan - Carollo Engineers (2007) A-2 USDA Soil Survey Map A-2 Archaeological and Historical Studies A-2 Average Precipitation and Temperatur		5.2	Potentia	al Biosolids Beneficial Uses	5-8	
5.2.3 Class A Soil Amendment 5-1: 5.2.4 Thermal Treatment 5-1: 5.2.5 Thermal decomposition 5-1: 5.3 Sidestream Nitrogen Recovery 5-1: 5.3.1 Nitrogen Sidestream Treatment Evaluation 5-1: 5.3.2 Non-Biological Nitrogen Removal Sidestream Processes 5-1: 5.4 Sidestream Phosphorous Recovery 5-1: 5.5 Water Reuse 5-1: 5.6 Sludge Fermentation 5-1: 5.7 Selected Resource Recovery Approach 5-1: 6 Capital Improvements Plan 6-1 6.1 Objective 6-1 6.2 Schedule and Sequence 6-1 6.3 Site Layout and CIP Outline 6-1 7. Financial Information 7-1 7.1 Introduction 7-2 7.2 Funding Analysis 7-7 7.3 Staffing Analysis 7-7 7.4 Summary 7-2 8. References 8-3 Appendix A; EID from 2007 Facility Plan - Carollo Engineers (2007) A-2 <td></td> <td></td> <td>5.2.1</td> <td>Class B Land Application</td> <td> 5-9</td>			5.2.1	Class B Land Application	5-9	
5.2.4 Thermal Treatment 5-1: 5.2.5 Thermal decomposition 5-1: 5.3 Sidestream Nitrogen Recovery 5-1: 5.3.1 Nitrogen Sidestream Treatment Evaluation 5-1: 5.3.2 Non-Biological Nitrogen Removal Sidestream Processes 5-1: 5.4 Sidestream Phosphorous Recovery 5-1: 5.5 Water Reuse 5-1: 5.6 Sludge Fermentation 5-1: 5.7 Selected Resource Recovery Approach 5-1: 6. Capital Improvements Plan 6- 6.1 Objective 6- 6.2 Schedule and Sequence 6- 6.3 Site Layout and CIP Outline 6- 7. Introduction 7- 7.1 Introduction 7- 7.2 Funding Analysis 7- 7.3 Staffing Analysis 7- 7.4 Summary 7- 8. References 8- Appendix A: EID from 2007 Facility Plan – Carollo Engineers (2007) A- USDA Soil Survey Map A- Archaeological and His			5.2.2	Class A Compost	5-10	
5.2.5 Thermal decomposition 5-1: 5.3 Sidestream Nitrogen Recovery 5-1: 5.3.1 Nitrogen Sidestream Treatment Evaluation 5-1: 5.3.2 Non-Biological Nitrogen Removal Sidestream Processes 5-1: 5.4 Sidestream Phosphorous Recovery 5-1: 5.5 Water Reuse 5-1: 5.6 Sludge Fermentation 5-1: 5.7 Selected Resource Recovery Approach 5-1: 6. Capital Improvements Plan 6-1 6.1 Objective 6-6 6.2 Schedule and Sequence 6-1 6.3 Site Layout and CIP Outline 7-7 7. Financial Information 7-7 7.1 Introduction 7-7 7.2 Funding Analysis 7-7 7.3 Staffing Analysis 7-7 7.4 Summary 7-2 8. References 8-3 Appendix A: EID from 2007 Facility Plan - Carollo Engineers (2007) A-1 USDA Soil Survey Map A-2 Archaeological and Historical Studies A-3 Ave			5.2.3	Class A Soil Amendment	5-11	
5.3 Sidestream Nitrogen Recovery 5-1: 5.3.1 Nitrogen Sidestream Treatment Evaluation 5-1: 5.3.2 Non-Biological Nitrogen Removal Sidestream Processes 5-1: 5.4 Sidestream Phosphorous Recovery 5-1: 5.5 Water Reuse 5-1: 5.6 Sludge Fermentation 5-1: 5.7 Selected Resource Recovery Approach 5-1: 6. Capital Improvements Plan 6- 6.1 Objective 6- 6.2 Schedule and Sequence 6- 6.3 Site Layout and CIP Outline 6- 7. Financial Information 7- 7.1 Introduction 7- 7.2 Funding Analysis 7- 7.3 Staffing Analysis 7- 7.4 Summary 7- 8. References 8- Appendix A: EID from 2007 Facility Plan - Carollo Engineers (2007) A- USDA Soil Survey Map A- Archaeological and Historical Studies A- Average Precipitation and Temperature A- Appendix B: Meridian WR			5.2.4	Thermal Treatment	5-11	
5.3.1 Nitrogen Sidestream Treatment Evaluation 5-1: 5.3.2 Non-Biological Nitrogen Removal Sidestream Processes 5-1: 5.4 Sidestream Phosphorous Recovery 5-1: 5.5 Water Reuse 5-1: 5.6 Sludge Fermentation 5-1: 5.7 Selected Resource Recovery Approach 5-1: 6. Capital Improvements Plan 6-6 6.1 Objective 6-6 6.2 Schedule and Sequence 6-6 6.3 Site Layout and CIP Outline 6-7 7. Financial Information 7-7 7.1 Introduction 7-7 7.2 Funding Analysis 7-7 7.3 Staffing Analysis 7-7 7.4 Summary 7-7 8. References 8-7 Appendix A: EID from 2007 Facility Plan – Carollo Engineers (2007) A-7 APUSDA Soil Survey Map A-7 Archaeological and Historical Studies A-7 Average Precipitation and Temperature A-7 Appendix B: Meridian WRRF Flow and Load Projections TM B-7 J			5.2.5	Thermal decomposition	5-13	
5.3.2 Non-Biological Nitrogen Removal Sidestream Processes 5-14 5.4 Sidestream Phosphorous Recovery 5-14 5.5 Water Reuse 5-15 5.6 Sludge Fermentation 5-15 5.7 Selected Resource Recovery Approach 5-15 6. Capital Improvements Plan 6-1 6.1 Objective 6-1 6.2 Schedule and Sequence 6-1 6.3 Site Layout and CIP Outline 7-1 7.1 Introduction 7-1 7.2 Funding Analysis 7-2 7.3 Staffing Analysis 7-2 7.4 Summary 7-2 8. References 8-2 Appendix A: EID from 2007 Facility Plan - Carollo Engineers (2007) A-2 USDA Soil Survey Map A-2 Archaeological and Historical Studies A-2 Average Precipitation and Temperature A-2 Appendix B: Meridian WRRF Flow and Load Projections TM B-3 JUB developed flow and load projections TM B-3 Appendix C: Secondary Treatment Alternatives Evaluation Report C-2		5.3	Sidestr	eam Nitrogen Recovery	5-13	
5.4 Sidestream Phosphorous Recovery. 5-14 5.5 Water Reuse. 5-15 5.6 Sludge Fermentation. 5-15 5.7 Selected Resource Recovery Approach. 5-15 6. Capital Improvements Plan. 6-10 6.1 Objective. 6-10 6.2 Schedule and Sequence. 6-10 6.3 Site Layout and CIP Outline. 6-10 7. Financial Information. 7-17 7.1 Introduction. 7-17 7.2 Funding Analysis. 7-17 7.3 Staffing Analysis. 7-17 7.4 Summary. 7-17 8. References. 8-18 Appendix A: EID from 2007 Facility Plan - Carollo Engineers (2007). A-18 USDA Soil Survey Map. A-19 Archaeological and Historical Studies. A-19 Average Precipitation and Temperature. A-19 Appendix B: Meridian WRRF Flow and Load Projections TM. B-19 Appendix C: Secondary Treatment Alternatives Evaluation Report. C-29 Appendix C: Side Stream P Removal Report. E-20			5.3.1	Nitrogen Sidestream Treatment Evaluation	5-13	
5.5 Water Reuse 5-1! 5.6 Sludge Fermentation 5-1! 5.7 Selected Resource Recovery Approach 5-1! 6. Capital Improvements Plan 6-6 6.1 Objective 6-6 6.2 Schedule and Sequence 6-6 6.3 Site Layout and CIP Outline 7-7 7.1 Introduction 7-7 7.2 Funding Analysis 7-7 7.3 Staffing Analysis 7-7 7.4 Summary 7-7 8. References 8-7 Appendix A: EID from 2007 Facility Plan - Carollo Engineers (2007) A-7 USDA Soil Survey Map A-7 Archaeological and Historical Studies A-7 Average Precipitation and Temperature A-7 Appendix B: Meridian WRRF Flow and Load Projections TM B-7 JUB developed flow and load projections TM B-7 Appendix C: Secondary Treatment Alternatives Evaluation Report C-7 Appendix E: Side Stream P Removal Report E-7			5.3.2	Non-Biological Nitrogen Removal Sidestream Processes	5-14	
5.6 Sludge Fermentation		5.4	Sidestr	eam Phosphorous Recovery	5-14	
5.7 Selected Resource Recovery Approach		5.5	Water F	Reuse	5-15	
6. Capital Improvements Plan 6-6.1 Objective 6-1 Objective 6-2 Schedule and Sequence 6-6.2 Schedule and Sequence 6-6.3 Site Layout and CIP Outline 7-7. Financial Information 7-7.1 Introduction 7-7.1 Introduction 7-7.2 Funding Analysis 7-7.3 Staffing Analysis 7-7.3 Staffing Analysis 7-7.4 Summary 7-7.4 Summary 7-7.8 References 8-7.4 Summary 7-7.5 References 8-7.4 Summary 8-7.5 References 8-7.4 Summary 8-7.5 References 8-7.5 Appendix A: EID from 2007 Facility Plan - Carollo Engineers (2007) 8-7.5 Average Precipitation and Temperature 8-7.5 Average Precipitation and Temperature 8-7.5 Appendix B: Meridian WRRF Flow and Load Projections TM 8-7.5 JUB developed flow and load projections TM 8-7.5 Appendix C: Secondary Treatment Alternatives Evaluation Report 8-7. Appendix D: Sidestream Nitrogen Removal Report 8-7. Appendix E: Side Stream P Removal Report 8-7.		5.6	Sludge	Fermentation	5-15	
6.1 Objective		5.7	Selecte	d Resource Recovery Approach	5-15	
6.2 Schedule and Sequence 6-6.3 Site Layout and CIP Outline 6-7. Financial Information 7-7-7.1 Introduction 7-7-7.1 Introduction 7-7-7.2 Funding Analysis 7-7-7.3 Staffing Analysis 7-7-7.4 Summary 7-7-8. References 8-8-8. References 8-8-8. References 8-8-8. Appendix A: EID from 2007 Facility Plan - Carollo Engineers (2007) 8-8-8. Archaeological and Historical Studies 8-8-8. Average Precipitation and Temperature 8-8. Average Precipitation and Temperature 8-8. Appendix B: Meridian WRRF Flow and Load Projections TM 8-9. JUB developed flow and load projections TM 8-9. Appendix C: Secondary Treatment Alternatives Evaluation Report 9-9. Appendix D: Sidestream Nitrogen Removal Report 9-9. Appendix E: Side Stream P Removal Report 9-9.	6.	Capit	al Impro	vements Plan	6-1	
6.3 Site Layout and CIP Outline		6.1	Objectiv	6-1		
7. Financial Information		6.2	Schedule and Sequence			
7.1 Introduction		6.3	Site Lay	out and CIP Outline	6-1	
7.2 Funding Analysis	7.	Finan	icial Info	rmation	7-1	
7.3 Staffing Analysis		7.1	Introdu	ction	7-1	
7.4 Summary 7-2 8. References 8-2 Appendix A: EID from 2007 Facility Plan – Carollo Engineers (2007) A-2 USDA Soil Survey Map A-3 Archaeological and Historical Studies A-4 Average Precipitation and Temperature A-2 Appendix B: Meridian WRRF Flow and Load Projections TM B-3 JUB developed flow and load projections TM B-4 Appendix C: Secondary Treatment Alternatives Evaluation Report C-4 Appendix D: Sidestream Nitrogen Removal Report D-4 Appendix E: Side Stream P Removal Report E-4		7.2	Funding	g Analysis	7-1	
8. References		7.3	Staffing	g Analysis	7-2	
Appendix A: EID from 2007 Facility Plan – Carollo Engineers (2007)		7.4	Summa	ary	7-2	
USDA Soil Survey Map	8.	Refer	ences		8-1	
Archaeological and Historical Studies	Арр	endix	A: EID fro	om 2007 Facility Plan – Carollo Engineers (2007)	A-1	
Average Precipitation and Temperature		USDA	Soil Sur	vey Map	A-1	
Appendix B: Meridian WRRF Flow and Load Projections TM		Archa	eologica	al and Historical Studies	A-1	
JUB developed flow and load projections TM		Avera	ge Preci	pitation and Temperature	A-1	
JUB developed flow and load projections TM	qqA	endix	B: Merid	ian WRRF Flow and Load Projections TM	B-1	
Appendix C: Secondary Treatment Alternatives Evaluation Report				-		
Appendix D: Sidestream Nitrogen Removal Report	App		•			
Appendix E: Side Stream P Removal Report				•		

List of Figures

Figure 2-1. Meridian WRRF liquids process flow diagram	2-2
Figure 2-2. Meridian WRRF solids process flow diagram	2-3
Figure 2-3. Facilities currently under construction at the Meridian WRRF	2-7
Figure 3-1. TAZ demographic areas	3-2
Figure 3-2. Meridian WRRF site layout and current upgrades	3-10
Figure 4-1. Process flow schematic for Main Process Alternative 1: 5-stage Bardenpho pro	cess 4-3
Figure 4-2. Process flow schematic for Main Process Alternative 1: A20 process	4-3
Figure 4-3. Process flow schematic for Main Process Alternative 2: 4-stage Bardenpho pro	cess 4-4
Figure 4-4. Cloth disk filter schematic	4-11
Figure 4-5. Upflow Granular Media Filter schematic	4-13
Figure 4-6. Compressible media filter schematic	4-14
Figure 4-7. Blue PRO filter schematic	4-14
Figure 4-8. Photograph of ultrafiltration membrane skids	4-15
Figure 4-9. Current FPS thickening process schematic	4-21
Figure 4-10. Covered gravity thickener	4-22
Figure 4-11. DAFT installation	4-24
Figure 4-12. RDT	4-25
Figure 4-13. Centrifuge equipment	4-27
Figure 4-14. Typical CMAD process flow diagram	4-30
Figure 4-15. Process schematic of SMAD	4-32
Figure 4-16. Process schematic of acid-gas phase digestion	4-34
Figure 4-17. Dewatering centrifuge	4-37
Figure 5-1. Common digester gas end uses	5-2
Figure 5-2. Projected 2040 total digester gas production rate distribution	5-3
Figure 5-3. 2016–2017 boiler heat output distribution (using digester gas only)	5-4
Figure 5-4. Summary of potential biosolids products and processes	5-9
Figure 6-1 Meridian facility plan layout	6-2

List of Tables

Table 2-1. Major Processes and Equipment Design Data	2-4
Table 2-2. Liquid Stream Capacity Raw Influent Flow and Load Design Criteria	2-7
Table 2-3. Influent Flow Design Criteria	2-8
Table 2-4. New Influent Pump Station and Headworks Process Design Criteria	2-8
Table 2-5. Fivemile Creek Outfall NPDES Permit Interim Requirements (until June 30, 2027)	2-11
Table 2-6. Fivemile Creek Outfall NPDES Permit Final Requirements (Beginning June 30, 2027)).2-12
Table 2-7. Existing Facilities/Equipment Flagged for Potential Repair or Replacement	2-14
Table 2-8. Summary of Reuse Permit No. M-215-03 Limits and Conditions	2-15
Table 2-9. Summary of Historical Influent Flows (2011–2016)	2-16
Table 2-10. Flow Peaking Factors (2011–2016)	2-16
Table 2-11. Average Annual Historical Influent Loadings (2011–2016)	2-16
Table 2-12. COMPASS Population and Employment Statistics	2-17
Table 3-1. COMPASS Population and Employment Statistics	3-3
Table 3-2. Sewered Population and Employment Projections	3-3
Table 3-3. Historical Flow and Loads (Average Annual)	3-4
Table 3-4. Recommended Peaking Factors	3-4
Table 3-5. Assumed Non-Residential Unit Loads	3-5
Table 3-6. Existing Flow and Loads (Winter Lows)	3-5
Table 3-7. Flow Projections	3-6
Table 3-8. Load Projections	3-6
Table 3-9. Summary of Solids Flows and Loads for 2020	3-8
Table 3-10. Summary of Solids Flows and Loads for 2040	3-9
Table 4-1. Target Effluent Concentrations for Main Process Alternative 1 (mg/L)	4-2
Table 4-2. Target Effluent Concentrations for Main Process Alternative 2 (mg/L)	4-4
Table 4-3. Summary of Sizing and Operating Requirements for Main Process Alternatives	4-5
Table 4-4. Planning-Level Comparative Capital Costs for Main Process Alternatives	4-5
Table 4-5. Maximum Month Operating Costs for Main Process Alternatives	4-6
Table 4-6. Cost Comparison of Add-On Alternatives	4-8
Table 4-7. Capital Construction Cost for Final Alternatives	4-9
(all based on the 5-stage Bardenpho process, 2015 dollars) ^a	4-9
Table 4-8. 2030 Average Monthly Operating Costs for Final Alternatives	4-9
(all based on 5-stage Bardenpho process, 2015 dollars)	4-9

Table 4-9. 20-Year Costs for Final Alternatives (all based on 5-stage Bardenpho process, 2015 dollars)	4-10
Table 4-10. Filtration Alternatives Comparison	. 4-16
Table 4-11. Tertiary Membrane System Design Data a	. 4-16
Table 4-12. Summary of Thickening Technologies Evaluation During the Workshop	. 4-18
Table 4-13. Summary of Stabilization Technologies Evaluation During the Workshop	. 4-19
Table 4-14. Summary of Dewatering Technologies Evaluation During the Workshop	. 4-20
Table 4-15. Fermenter Major Equipment List a	. 4-21
Table 4-16. Gravity Thickener Sizing Summary a, b	. 4-23
Table 4-17. Gravity Thickener Performance Summary	. 4-23
Table 4-18. Gravity Thickener Major Equipment List a	. 4-23
Table 4-19. DAFT Sizing Summary a, b	. 4-24
Table 4-20. DAFT Performance Summary	. 4-25
Table 4-21. DAFT Major Equipment List ^a	. 4-25
Table 4-22. RDT Sizing Summary ^{a, b}	. 4-26
Table 4-23. RDT Performance Summary	. 4-26
Table 4-24. RDT Major Equipment List a	. 4-27
Table 4-25. Thickening Centrifuge Sizing Summary a, b	. 4-27
Table 4-26. Thickening Centrifuge Performance Summary	4-28
Table 4-27. Centrifuge Major Equipment List a	4-28
Table 4-28. Assumptions for Digestion Gas Calculations	4-29
Table 4-29. Conventional Mesophilic Digestion Design Criteria	. 4-30
Table 4-30. Digester Sizing Summary for CMAD a	4-30
Table 4-31. Summary of Projected Digester Gas Flows for CMAD (scfm) a, b	4-31
Table 4-32. CMAD Major Equipment List a	4-31
Table 4-33. Staged Digestion Design Criteria	. 4-32
Table 4-34. Digester Sizing Summary for SMAD a	. 4-33
Table 4-35. Summary of Projected Digester Gas Flows for SMAD (scfm) a, b	4-33
Table 4-36. SMAD Major Equipment List ^a	4-34
Table 4-37. AGAD Digestion Design Criteria	. 4-35
Table 4-38. Digester Sizing Summary for AGAD a	4-35
Table 4-39. Summary of Projected Digester Gas Flows for AGAD (scfm) a, b	4-36
Table 4-40. AGAD Major Equipment List a	4-36
Table 4-41. Centrifuge Dewatering Sizing and Performance Summary a, b	4-38

Table 4-42. Summary of Centrifuge Dewatering Performance	4-38
Table 4-43. Dewatering Major Equipment List ^a	4-38
Table 4-44. Fermenter Capital Project Cost Estimates	4-39
Table 4-45. Solids Thickening Alternatives Capital Project Cost Estimates	4-39
Table 4-46. Digestion Alternatives Capital Project Cost Estimates	4-39
Table 4-47. Solids Dewatering Alternatives Capital Project Cost Estimates	4-40
Table 6-1. NPDES Permit Schedule of Compliance Deadlines	6-1
Table 6-2. Meridian WRRF Capital Improvement Plan	6-3
Table 6-3. CIP Estimates of Total Cost	6-9

List of Abbreviations

°F	degree(s) Fahrenheit	lb	pound(s)
A20	anaerobic-anoxic-oxic	MBR	membrane bioreactor
AGAD	acid-gas anaerobic digestion	mg	milligram(s)
ВС	Brown and Caldwell	mgd	million gallon(s) per day
BNR	biological nutrient removal	mg/L	milligrams per liter
BOD	biochemical oxygen demand	mL	milliliters
CIP	capital improvements plan	MLR	mixed liquor recycle
City	City of Meridian	N	nitrogen
CMAD	conventional mesophilic anaerobic	NH ₄ -N	ammonia-nitrogen
	digestion	NO ₂ -N	nitrite-nitrogen
CNG	compressed natural gas	NO ₃ -N	nitrate-nitrogen
COMPA	SS Community Planning Association	NO _x -N	nitrate+nitrite-nitrogen
d	day(s)	NPDES	National Pollutant Discharge Elimination
DAFT	dissolved air flotation thickener		System
DO	dissolved oxygen	NPW	non-potable water
EQ	equalization	NRCS	Natural Resource Conservation Service
EPA	United States Environmental Protection	NTU	Nephelometric Turbidity Units
	Agency	0&M	operations and maintenance
FPS	fermented primary sludge	OLR	organic loading rate
ft ²	square foot/feet	Р	phosphorus
ft ³	cubic foot/feet	PFRP	process to further reduce pathogens
gal	gallon(s)	Plan	Meridian WRRF Facility Plan
gpcpd	gallons per capita per day	PO ₄ -P	Phosphate-phosphorus
gpd	gallon(s) per day	PRV	pressure relief valve
gpm	gallon(s) per minute	PS	primary sludge
GT	gravity thickening	RAS	return activated sludge
H ₂ S	hydrogen sulfide	RDT	rotary-drum thickener
HFO	hydrous ferric oxide	RIN	renewable identification number
HLR	hydraulic loading rate	scf	standard cubic foot/feet
HRT	hydraulic retention time	scfm	standard cubic foot/feet per minute
hr	hour(s)	SE	secondary effluent
IDAPA	Idaho Administrative Procedures Act	SLR	solids loading rate
IDEQ	Idaho Department of Environmental Quality	SMAD	staged mesophilic anaerobic digestion
IPDES	Idaho Pollutant Discharge Elimination	SMP	Sewer Master Plan
	System	SND	simultaneous nitrification and denitrification
J-U-B	J-U-B Engineers, Inc.	SOR	surface overflow rate
kW	kilowatt	SRT	solids retention time
L	liter(s)	J	

TAD thermophilic anaerobic digestion

TAZ traffic analysis zones

TBEL technology-based effluent limitations

THP thermal hydrolysis process
TKN total Kjeldahl nitrogen

TMDL total maximum daily loads

TN total nitrogen
TP total phosphorus

TS total solids

TSS total suspended solids

TWAS thickened waste activated sludge

UV ultraviolet

VFA volatile fatty acid
VS volatile solids

VSR volatile solids reduction WAS waste activated sludge

WGB waste gas burner

WRRF water resource recovery facility

Section 1

Introduction/Purpose

The City of Meridian (City) is faced with the significant decision of how to best manage its wastewater in light of increasingly strict regulatory requirements and a fast-growing service population. Each of these factors will place increasing demands on the Meridian Wastewater Resource Recovery Facility (WRRF) and will require investments in the WRRF to maintain the City's desired level of service expectations. Acknowledging the importance and magnitude of this investment, the City retained Brown and Caldwell (BC) to develop a long-term framework for investments in the Meridian WRRF that cost-effectively enables the City's strategic priorities while limiting future risk. This framework is commonly referred to as a Facility Plan. The purpose of the Meridian WRRF Facility Plan (Plan) is to describe this long-term vision and bring increased clarity to nearer-term investments and to meet a required compliance activity as directed by the City's NPDES permit.

The Idaho Administrative Code establishes the requirements of the facility planning process (Idaho Administrative Procedures Act [IDAPA] 58.01.16) that all facility plans must address the hydraulic and treatment capacity of future wastewater treatment system upgrades. In addition, all plans must address project financing as well as maintenance and operation considerations for the proposed modifications to meet the requirements to treat flows and loads from the current and often potential future service areas covered by the treatment facility. This Plan must be submitted to the Idaho Department of Environmental Quality (IDEQ) for approval prior to any design documents for any specific project related to the Plan.

As the City of Meridian provides wastewater treatment services to the residents and businesses within the Meridian service area, this plan describes the existing and future treatment requirements to continue to meet the demands of their customers. As such, the primary purpose of this document is to prepare and evaluate treatment system expansion alternatives and recommended options and planning level costs to guide the City in future capital improvements planning. The secondary purpose of the document is to prepare the documentation necessary for the City to present for regulatory authority approval.

The City needs to complete this project to determine wastewater expansion requirements that respond to unprecedented growth in the planning area in a cost-effective manner while also complying with challenging current and future regulatory requirements for phosphorus and ammonia.

Section 2

Existing Conditions

2.1 City Planning Area

The City is located in southwest Idaho, approximately 32 miles east of Oregon and approximately 110 miles north of Nevada. The City is located in Ada County and is central to the Boise Metropolitan Area. The City covers an area of approximately 27 square miles. While the largest customer class is residential, City government encourages economic growth and is home to a variety of business types, including high-tech companies and local artisan shops. The current collections system planning boundary area is approximately 70 square miles as detailed in the 2015 Collection System Flow Monitoring Program for the City of Meridian (Murray, Smith, and Associates, Inc. 2016). The City operates a gravity collection system of approximately 410 miles in length with pipe diameter sizes ranging between 4- to 42-inches.

The City's area of impact is the future planning area that describes anticipated future annexation and development areas. The 2012 Wastewater Facility Plan (CH2M Hill and HDR, Inc., 2012) considered the future service area equivalent to the area of impact; this approach is still considered applicable for the WRRF Facility Plan Update. Historically, the City's area of impact was comprised of mostly agricultural land. In recent decades, residential and commercial uses have grown significantly and now represent the majority of the area of impact. The Meridian WRRF will continue to be a singular treatment approach serving the City through the planning period.

2.2 Description of Existing Treatment Facilities

The Meridian WRRF is a secondary treatment facility that uses conventional aerated activated sludge units for biological oxidation of the wastewater. The secondary treatment system was designed to be capable of biological nutrient removal (BNR) operation for removal of both nitrogen (N) and phosphorus (P). Per the City's current design documentation, the existing total rated hydraulic (peak hour) and process (peak month, 12-degree Celsius [°C] bioreactor temperature) capacity is 15.8 million gallons per day (mgd) and 10.2 mgd, respectively.

2.2.1 Liquid Stream Process

Figures 2-1 and 2-2 show the overall process flow schematic for the existing treatment facility, while design data for the major unit processes are given in Table 2-1. For Figure 2-2, solids streams are shown as green dashed lines while liquid streams are shown as solid blue lines. Raw wastewater enters the WRRF headworks by gravity and flows through the screens. The screens remove large objects and floating material that could damage downstream processes. The influent then is lifted by the existing headworks screw lift pumps to the vortex grit removal tanks. The screened and degritted wastewater flow is then split between the two primary sedimentation tanks for primary treatment. Collected screenings and grit are hauled to landfill. Primary effluent then is gravity fed to the secondary pump station, which lifts the flow into Aeration Basins 1 through 4. Primary clarifier sludge is pumped to the fermenter and scum is pumped to the digesters.

The secondary treatment system currently consists of four aeration basins designed to operate in an anaerobic-anoxic-oxic (A2O) process configuration. This configuration is capable of nitrification, denitrification, and biological phosphorus removal. The existing aeration basins are split into zones

by concrete baffle walls to facilitate the A20 process for N and P removal. Mixing in anaerobic/anoxic/swing selector cells is provided by submerged medium-speed mixers, while aeration and mixing in the aerobic zones and swing zones is provided by centrifugal blowers and fine-pore disc diffusers. Return Activated Sludge (RAS) from Secondary Clarifiers 4 and 5 flows by gravity to the RAS denitrification basin, where it is pumped back to the head of the aeration basins. RAS from Secondary Clarifier 3 is pumped to the RAS denitrification basin. Mixed liquor exits the aeration tanks and flows via gravity to the secondary clarifier splitter box, which splits the flow into Secondary Clarifiers 3 through 5 for solids separation.

The secondary effluent from the plant is sent to tertiary filters for filtration of additional solids. Filtration is achieved via cloth disc filters (Filters 1, 2, 3, and 4). This is done for production of reclaimed water for use around the City. From tertiary filtration, the effluent then flows to post-aeration basins to increase the dissolved oxygen (DO) concentration prior to discharge. The aerated effluent is then directed to disinfection channels, where in-channel ultraviolet (UV) lamps are used for disinfection prior to discharge to Fivemile Creek or the reclaimed water pump station. The City is also authorized to discharge to the Boise River through a secondary outfall, though this outfall has not been used in recent years and would require significant upgrades before use.

Liquid Processes

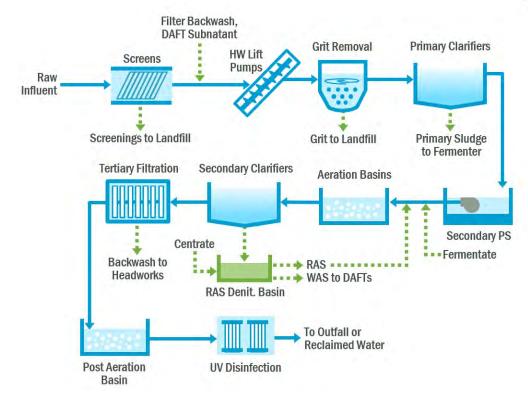


Figure 2-1. Meridian WRRF liquids process flow diagram

Solids Processes

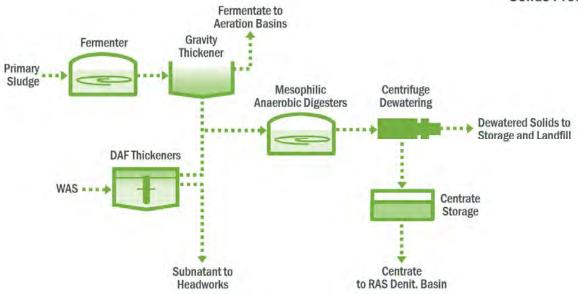


Figure 2-2. Meridian WRRF solids process flow diagram

2.2.2 Solids Handling

Primary sludge is pumped to a fermenter, where the solids are fermented to produce volatile fatty acids (VFAs) to facilitate the BNR processes. The fermented solids are then thickened, with the thickened primary sludge then pumped to anaerobic mesophilic digestion while carbon-rich fermentate is directed to the aeration basins. Waste activated sludge (WAS) is pumped to the dissolved air flotation thickeners (DAFTs) for thickening before digestion. The DAFT uses an air pressurization system to inject pressurized, aerated water into the bottom of a circular tank. The dissolved air promotes WAS solids to float to the surface of the tank and thicken in the float layer. which is then skimmed off into a collection pit. DAFT subnatant is returned to the influent screen channels through the plant drain pump station. The thickened waste activated sludge (TWAS) exits the DAFTs and is combined with thickened primary sludge and added to two mesophilic digesters operating in parallel. Stabilized biosolids from the two mesophilic digesters are stored in an unheated solids holding tank prior to dewatering. The stabilized biosolids are then dewatered by centrifuges, and the centrate is equalized in the centrate storage tanks prior to being returned to the RAS denitrification basin. The centrate stream can contain high concentrations of ammonia and phosphorus that will increase the nutrient load to the biological secondary treatment system. Dewatered biosolids from the centrifuges are stored onsite in asphalt drying beds prior to landfill disposal.

The Meridian WRRF uses chemicals to minimize formation of struvite in the dewatering centrifuges. The City achieves some struvite control through addition of ferric chloride upstream of the centrifuge, while ferric is also added upstream of digestion for hydrogen sulfide control. The struvite control facility includes a small chemical feed building and a 6,600-gallon chemical storage tank; a chemical feed line transports chemical to both the digester feed and centrifuge feed lines.

A summary of the major unit processes and equipment at the Meridian WRRF are listed in Table 2-1.

	rocesses and Equipment D	
Process Element	Number of Units	Design Data
Fine screen	3	
Size	2	4 mm step screen
Capacity, each, mgd	4	11
Size	1	1 in. manual bar rack
Capacity, each, mgd		11
Headworks lift pumps	5	Archimedes vertical screw
Capacity, each, mgd		4.5
Grit removal		
Grit removal chamber 1	1	Vortex
Diameter, ft		7
Capacity, mgd		6
Grit removal chamber 2	1	Vortex
Diameter, ft		12
Capacity, mgd		12
Grit classifier	1	
Capacity, mgd of influent flow		18
Primary sedimentation	2	
Primary sedimentation tanks (hydraulic, peak hour)		15.1 mgd rated, each
Diameter, ft		80
Sidewater depth, ft		12
SOR @ 7.0 mgd (1 clarifier in service)		1,392 gpd/ft ²
SOR @ 15.8 mgd (1 clarifier in service)	2	3,143 gpd/ft ²
Raw sludge pumps	_	Recessed impeller
Capacity, each, gpm		250
Secondary pump station	4	Submerged centrifugal
Capacity, each, mgd	- T	8
Aeration basins		
Treatment trains	4	
Max month treatment capacity, each, mgd	т	2.52 (largest secondary clarifier offline)
Volume, total each, Mgal		0.63
Sidewater depth, ft		14
Aeration blowers	2	Variable-speed turbo air
Capacity, each, scfm	2	5,600
Aeration blowers	1	Multistage centrifugal
	1	
Capacity, each, scfm		3,600

-	Table 2-1. Major Processes and Equipment Design Data			
Process Element	Number of Units	Design Data		
Secondary clarifiers				
Clarifiers 4 and 5	2			
Diameter, ft		100		
Sidewater depth, ft		14.5		
Sludge removal mechanism type		Spiral blade rake, gravity RAS		
Peak hour SOR, gal/d/ft ²		1,200		
Solids loading rate, lb/d/ft ²		36.5		
Clarifier capacity, each (SOR), mgd		9.4		
Clarifier 3	1			
Diameter, ft		80		
Sidewater depth, ft		12		
Sludge removal mechanism type		Spiral blade rake, pumped RAS		
Peak hour SOR, gal/d/ft²		1,200		
Solids loading rate, lb/d/ft ²		36.5		
Clarifier capacity (based on SOR), mgd		6.0		
RAS pumps				
Clarifier 3 capacity, each, gpm	2	460		
RAS denitrification basin pumps	3	2,000		
WAS pumps		·		
Capacity, each, gpm	2	250		
Tertiary filtration	4			
Туре		Cloth media		
Filter 1, 2, and 4 capacity, peak, each, mgd		6.0		
Filter 3 capacity, peak, mgd		11		
UV disinfection				
Channels	4			
Peak Hour Capacity, total, mgd	·	30		
Peak Hour Capacity, firm, mgd		22.5		
UV lamps				
Lamps per bank, Channels 1 & 3/2 & 4	136/30			
Banks per channel, Channels 1 & 3/2 & 4	3/2			
Effluent flow measurement	0/ 2			
36-inch Parshall Flume	1			
Fivemile Creek outfall	1			
48-inch pipe	1			
Fermenter	±			
Volume, Mgal	1	0.129		
Gravity thickener	1	0.129		
Diameter, ft	1	40		
Sidewater depth, ft	1	40		
		10		

Table 2-1. Majo	or Processes and Equipment	Design Data
Process Element	Number of Units	Design Data
Dissolved air flotation thickener	2	
Diameter, ft		20
Sidewater depth, ft		8
Solids loading capacity, each, lb/d		15,700 (based on 50 lb/d/ft²)
TWAS pumps		Pump 1 = rotary lobe, pumps 2 and 3 = hose
Pump 1 capacity, gpm	1	90
Pumps 2 and 3 capacity, gpm	2	75
Mesophilic anaerobic digesters	2	Primary
Volume, each, Mgal		0.8
Solids storage anaerobic digester	1	Secondary/storage
Volume, Mgal		0.507
Centrifuges	2	
Flow capacity, each, gpm		120
Solids capacity, each, lb/hr		1,750
Centrate equalization tanks	2	
Normal operating volume, Mgal		0.107
Mixer type		Tank shark
Centrate pumps Pump capacity, each, gpm	3	Progressing cavity 125

2.3 Current Facility Upgrades for Headworks and Liquid Stream Improvements

The Meridian WRRF Headworks Capacity Expansion project will provide new preliminary treatment processes, including raw influent pumping, headworks screening, and grit removal, prior to primary, secondary, and tertiary treatment that will be installed as part of the Liquid Stream Expansion project. These new wastewater facilities will be located to the west and north of the existing plant facilities, as shown in Figure 2-3. The existing headworks contains influent pumps (Archimedes screw-type) that cannot easily be modified or retrofit to reach the new treatment processes that will be constructed as part of the Liquid Stream Expansion project. Additionally, the existing influent pumps, screening equipment, and grit removal do not have adequate hydraulic capacity to handle future inflows. These combined limitations to the existing headworks facilities drove the need for headworks capacity expansion.

The Preliminary Engineering Report for the Headworks Capacity Expansion project was completed in July 2016, with final design documents completed in January 2017. Construction began on the project in June 2017, and it is scheduled for completion in January 2019.



Figure 2-3. Facilities currently under construction at the Meridian WRRF

Driven by City population growth and new, stringent NPDES permit limitations on effluent ammonia and phosphorus, the Liquid Stream Capacity Expansion project will construct new primary and secondary treatment processes to integrate with the existing WRRF process. New tankage elements will include two primary clarifiers, four aeration basins, and two secondary clarifiers. New buildings include the Primary Sludge Pump Station, Aeration Blower Building 2, RAS Transfer Station, Chemical Feed Building 2, and RAS/WAS Station 2. The Preliminary Engineering Report for the project was completed in December 2015, with final design documents completed in August 2016. Project construction began in January 2017 and is scheduled for completion in July 2019.

The Liquid Stream Capacity Expansion is based on 15 mgd maximum month and 30.2 mgd peak hour flow rates, along with the interim NPDES permit requirements summarized in Section 2.4. The raw influent design criteria are summarized in Table 2-2.

Table 2-2. Liquid Stream Capacity Raw Influent Flow and Load Design Criteria				
Parameter	Units	Design Criteria		
	Inf	luent Flows		
Average annual	mgd	13.0		
Maximum month	mgd	15.0		
Peak hour	mgd	30.2		
Buildout peak hour	mgd	63.6		
Influent BOD Loadings				
Average annual	lb/day	28,600		
Maximum month	lb/day	36,900		

Brown AND Caldwell

Table 2-2. Liquid Stream Capacity Raw Influent Flow and Load Design Criteria			
Parameter	Units	Design Criteria	
	Influen	t TSS Loadings	
Average annual	lb/day	28,200	
Maximum month	lb/day	36,400	
	Influen	t TKN Loadings	
Average annual	lb/day	5,180	
Maximum month	lb/day	5,810	
Influent TP Loadings			
Average annual	lb/day	700	
Maximum month	lb/day	900	

The improvements associated with the Headworks and Liquid Stream Capacity Expansion projects are described in further detail below.

2.3.1 Headworks Capacity Expansion

The Headworks Capacity Expansion project will provide new influent pumping, screening, and grit removal capabilities needed to serve the new wastewater treatment facilities currently under construction and in the future. This new headworks facility will provide sufficient preliminary treatment of raw influent prior to primary, secondary, and tertiary treatment processes.

Influent flow design criteria are summarized in Table 2-3.

Table 2-3. Influent Flow Design Criteria			
Parameter Basis of Design			
Startup minimum hour	1.27 mgd		
Minimum hour	2.74 mgd		
Average annual	13.01 mgd		
Maximum month	15.0 mgd		
Peak day	20.16 mgd		
Peak hour	30.23 mgd		
Buildout peak hour	63.58 mgd		

The influent pump station will be located in the space north of existing Primary Clarifier 3. The headworks facility and biofilter will be located north and west of the existing WRRF. A summary of headworks upgrades design criteria is provided in Table 2-4.

Table 2-4. New Influent Pump Station and Headworks Process Design Criteria			
Facility/Unit Process	Capacity	Configuration	
Influent Pump Station	Firm peak hour: 30.2 mgd	Small pumps	
	Buildout peak hour: 63.6 mgd	2, 4-mgd capacity screw centrifugal (immersible) pump	
		2, 51-hp variable speed motors	
		• 28.5-ft TDH	
		Large pumps	
		4, 8-mgd capacity screw centrifugal (immersible) pumps	
		• 41-ft TDH	
		4, 107-hp variable speed motors	
		Prerostal wet well configuration with Hidrostal submersible pumps	
		Headworks Building: 68 ft x 29 ft	

Table 2-4. New Influent Pump Station and Headworks Process Design Criteria			
Facility/Unit Process	Capacity	Configuration	
Influent Forcemain	Design peak hour (1 forcemain line): 30.2 mgd Buildout peak hour (2 foremains):	1, 36-inch forcemain (and portion of second forcemain)	
	63.6 mgd		
Influent Screening	2 +1 standby current phase ^a	3, 21.2 mgd perforated plate screens	
	3 +1 future at buildout peak hour	6-mm plate perforation size	
	21.2 mgd capacity per perforated	3, variable speed 1.5-hp screen motors	
	plate/raked bar screen	3, constant speed 2-hp brush motors	
		2, 150 ft ³ /hr screenings washer/compacter with grinder	
		1, manually raked bar screen	
		1.0-inch bar spacing	
		Channel Dimensions (width x depth): 3.5 ft x 8 ft	
Grit Removal	Firm peak hour: 32 mgd	2, stacked tray settlers	
	Firm peak hour: 95 percent removal	12-ft diameter	
	of 125-µm and larger grit	3, 300-gpm recessed impeller grit pumps	
	Total peak hour: 95 percent removal of 75 µm and larger grit	2, 300-gpm vortex grit washers	
	or to pin and target gire	2, 2.0 cubic yard/hour grit dewaterers	
Primary Clarifier Splitter Box		Flow distribution control: 4 parallel cutthroat flumes (space for 8 total)	
		Flume size (throat width x length): 2 ft x 6 ft	
		Pipe size for Primary Clarifiers 3 and 4 (combined): 42-in	
		Pipe size for Primary Clarifiers 5 and 6 (each): 36-in	
Headworks Biofilter	Sized to treat all exhaust air from	2 headworks biofilter blowers	
	headworks building and covered equipment/channels	Blower 1 Capacity: 6,990 acfm	
	equipment/ channels	Blower 2 Capacity: 6,770 acfm	
		Motor size	
		Blower 1: 20 hp	
		Blower 2: 15 hp	
		2 headworks biofilters – engineered media	
		Media Volume, each: 4,800 ft3	
		Media Depth, each: 6 ft	
		Residence Time	
		Biofilter 1: 43 seconds	
		Biofilter 2: 41 seconds	

a. Current phase refers to construction at present.
 acfm = actual cubic feet per minute.

2.3.2 Primary Treatment Expansion

The primary treatment system is designed to remove readily settleable solids from the influent liquid stream. Concentrated solids that have settled out in this process are removed by the primary sludge pumps and conveyed to either the fermenters or to the digesters. Primary clarifier effluent is conveyed to the aeration basins by the secondary pump station, currently. Existing Primary Clarifiers 3 and 4 are 80-ft diameter circular primary clarifiers and are normally in operation. Primary Clarifier 1 has been repurposed for use as a gravity thickener at the fermentation facilities. Primary Clarifier 2 has been mothballed, with plans to possibly convert it to a gravity thickener in the future.

The current liquid stream expansion project includes primary treatment process expansion with two new 80-ft diameter primary clarifiers and associated primary sludge and scum collection and

pumping facilities. The two new primary treatment process units, Primary Clarifier 5 and 6, are being constructed in the northwest corner of the WRRF's expansion area and adjacent to the headworks expansion site. Space for future Primary Clarifiers 7 through 10 is planned to be adjacent to Primary Clarifiers 5 and 6. The clarified primary effluent will flow by gravity to the new mixed liquor distribution channel, where it will combine with RAS for even flow distribution to the new aeration basins.

The primary treatment process elements were reviewed through a series of workshops between the City and BC, during which appropriate equipment for each process element was selected. These components were designed according to requirements of IDAPA 58 Title 1 Section 16; IDAPA Wastewater Rules do not contain redundancy requirements for primary clarifiers. The number of units is instead based on average and peak hourly flow conditions with all units in service. The typical peak hour design surface overflow rate (SOR) of each primary clarifier is 3,000 gallons per day per square foot. Therefore, the peak capacity of each clarifier is 15.1 mgd, yielding a primary treatment capacity of 60.4 mgd with all four clarifiers in service.

The two new primary clarifiers will be supported by one primary sludge/scum pump station. The pump station will house three, 70-gpm primary sludge pumps and grinders for Primary Clarifiers 5 and 6, with space provided for two additional future primary sludge pumps associated with Primary Clarifiers 7 and 8, when needed. Positive displacement primary sludge pumps will function to convey primary sludge and, intermittently, primary scum to fermentation (primary sludge only) or digestion (primary scum and/or sludge).

2.3.3 Secondary Treatment Expansion

Existing secondary treatment facilities include a secondary pump station, four aeration basins, three secondary clarifiers, and associated RAS and scum pumping systems. The secondary treatment process removes total suspended solids (TSS), biochemical oxygen demand (BOD), ammonia, and nitrate/nitrite from the wastewater. When the system is operated in A20 (anaerobic/anoxic/oxic) configuration it can achieve enhanced biological phosphorus removal. Existing aeration basins are sized to 630,000 gallons each with maximum month capacity of 10.2 mgd.

Secondary treatment process expansion will consist of four new aeration basins, a secondary clarifier splitter box, two new secondary clarifiers, a new aeration blower building, a new RAS transfer station, and a new RAS/WAS return tank system. The new aeration basins were designed using the BioWin™ biological process simulator (EnviroSim Inc., Hamilton, Ontario) to establish tank volumes, oxygen demands, alkalinity and pH impacts, and chemical demands for supplemental carbon addition to meet future nutrient permit requirements. The BioWin model was calibrated per Water Environmental Research Foundation calibration protocols based on existing plant performance and an influent wastewater characterization study conducted in January 2015. Design flow and loadings from Table 2-2, Section 2.3, were used for modeling and sizing the new aeration basins. Future buildout of the aeration system is projected to include up to 16 basins in service.

To accommodate changing effluent regulations, the new aeration system configuration has some differences compared to the existing aeration system. First, the new aeration basin configuration will have a different number and type of aerated and unaerated zones compared to the current configuration. Each new aeration basin train will have three "swing zones" that can operate aerobically or anoxically, allowing for operation in an A/O, 5-Stage Bardenpho, or A2O configuration. This flexibility will allow the Meridian WRRF to adapt to changing and more stringent regulations that are anticipated to occur in the future. Secondly, the new aeration basin is deeper compared to the existing system (18 ft versus 14 ft) to provide the additional volume required to meet more stringent nutrient removal requirements and to facilitate improved oxygen transfer efficiency of the fine-pore aeration system. Third, the inclusion of an influent feed channel to the aeration basins will equally

distribute primary effluent and RAS amongst them rather than a separate piped RAS feed to the existing units; this change also allows for simpler future expansion of the system.

Mixing of aerated and swing zones (when air is on) to maintain sufficient solids suspension will be achieved through fine pore aeration. At the downstream side of the aeration basin mixing of the mixed liquor collection channel will be accomplished through coarse bubble diffusers and a spiral-roll mixing pattern. Mixing of the unaerated zones, swing zones (when air is off), and the mixed liquor influent/mixed liquor distribution channel will be accomplished through mechanical mixing. Internal mixed liquor recycle (MLR) is performed using axial-flow type pumps that can convey nitrate-rich wastewater from the aerated zones to anoxic zones. This process promotes denitrification and can be flexibly operated in either A20 or 5-stage Bardenpho configurations.

The IDAPA Wastewater Rules governing aeration basin redundancy and design were fundamental to the development of new aeration basin design. As such, the combined aeration basin system, including both the new and old aeration basins, is designed to maintain treatment at maximum month flows and loads with one basin train out of service (from either the new or old side, but not both).

2.4 NPDES Permit Conditions

The City's current NPDES permit was finalized by the United States Environmental Protection Agency (EPA) Region 10 with an effective date of August 1, 2017 (NPDES Permit No. ID-0020192). The City's previous NPDES permit expired in November 2004, but an extension was granted until the new permit was issued. The Meridian WRRF is authorized to discharge to Fivemile Creek and the Boise River, Outfalls 001 and 002, respectively. The facility is currently rated for 10.2 mgd maximum monthly flow, and the solids produced by the WRRF are authorized for land application. The Meridian WRRF operates in a nutrient removal mode to facilitate N and P removal and achieve compliance with water quality standards and effluent toxicity requirements. The City also possesses a reuse water permit which mandates a seasonal average of 15.5 milligrams per liter (mg/L) total nitrogen (TN) for reclaimed water discharge.

The current NPDES permit includes a 10-year compliance schedule for total phosphorus (TP), ammonia (NH4), copper, cyanide, zinc, and mercury at the primary outfall (Fivemile Creek); in this window, the City must meet interim permit requirements for the identified parameters, with more stringent final limits achieved by June 30, 2027. All other effluent limitations and monitoring requirements began on the effective permit date. Under the schedule of compliance, the City must also meet a series of deadlines primarily focused on construction of facilities that will enable the WRRF to achieve the final permit limitations. The current NPDES permit interim and final limits are summarized in Tables 2-5 and 2-6, respectively.

Table 2-5. Fivemile Creek Outfall NPDES Permit Interim Requirements (until June 30, 2027)				
		Effluent Limitations		
Parameter	Unit	Average Monthly	Average Weekly	Maximum Daily
BOD ₅	mg/L	20	30	-
	lb/d	1,701	2,552	-
	% removal (min)	85	_	-
TSS	mg/L	30	45	-
	mg/L 4-month rolling average: 17.5			nge: 17.5
	lb/da	2,550	3,820	-
	lb/d	4-m	nonth rolling avera	ge: 1,489

Table 2-5. Five	emile Creek Outfall N	PDES Permit Interim	Requirements (u	ıntil June 30, 2027)
		Effluent Limitations		
Parameter	Unit	Average Monthly	Average Weekly	Maximum Daily
	% removal (min)	85	_	-
Dissolved oxygen ^b	mg/L		6.0	
рН	S.U.		Between 6.5 and	19.0
Total nitrogen ^c	mg/L		15.5 seasonal av	erage
E. coli bacteria	Number of colonies/100 mL	126 (geometric mean)	-	576 (instantaneous max)
Ammonia-nitrogen	mg/L	12	-	20
	lb/d	1,021	_	1,701
Total Phosphorus	mg/L		2.5 annual aver	aged
	lb/d		213 annual aver	aged
	mg/L		1.0 annual aver	agee
	lb/d		85 annual avera	age ^e
Copperf	μg/L	13.3	-	18.5
	lb/day	1.13	_	1.57
Mercury ^f	μg/L	0.015	-	0.033
	lb/day	0.0013	_	0.0028
Cyanideg	μg/L	Report year-round		
Zinc ^f	μg/L	Report May-September		

a. Combined loading effluent limitations for Outfalls 001 and 002 (Outfall 002 not anticipated to be used).

g. Weak acid dissociable.

Table 2-6. Fivemile Creek Outfall NPDES Permit Final Requirements (Beginning June 30, 2027)					
			Effluent Limitations		
		Average	Average		
Parameter	Unit	Monthly	Weekly	Maximum Daily	
BOD ₅	mg/L	20	30	-	
	lb/d	1,701	2,552	-	
	% removal (min)	85	_	-	
TSS	mg/L	30	45	_	
	mg/L	4-month rolling average: 17.5			
	lb/da	2,550	3,820	_	
	lb/d	4-m	onth rolling average: 1	,489	
	% removal (min)	85	_	_	
Dissolved oxygenb	mg/L	6.0			
рН	s.u.	Between 6.5 and 9.0			
Total nitrogen ^c	mg/L		15.5 seasonal average		

b. DO saturation and concentration must exceed 6.0 mg/L.

c. For reuse water permit.

d. Until July 31, 2022.

e. From August 1, 2022, until June 30, 2027.

f. Total recoverable.

Table 2-6. Fivemile (Effluent Limitation	-
Parameter	Unit	Average Monthly	Average Weekly	Maximum Dail
E. coli bacteria	Number of colonies/100 mL	126 (geometric mean)	-	576 (instantaneous max)
Ammonia-nitrogen	mg/L	0.308	_	1.25
(October-April)	lb/d	26.2	-	106
Ammonia-nitrogen	mg/L	0.406	-	1.65
(May-September)	lb/d	34.5 -	140	
Total Phosphorus	µg/L	Report	Report	-
(October-April)	lb/day ^a	29.8	Report	_
Total Phosphorus	µg/L	Report	Report	_
(May-September)	lb/day ^a	8.5	Report	-
Copperd	μg/L	11.9	-	18.5
(October-April)	lb/day	1.01	-	1.57
Copperd	μg/L	8.22	-	12.8
(May-September)	lb/day	0.699	-	1.09
Mercury ^d	μg/L	0.010	-	0.022
(October-April)	lb/day	0.00085	-	0.00019
Mercury ^d (May-September)	μg/L	Report	-	Report
Cyanidee	µg/L	3.23	-	9.62
(October-April)	lb/day	0.275	-	0.818
Cyanidee	µg/L	4.95	_	14.8
(May-September)	lb/day	0.421	_	1.26
Zinc ^d (October–April)	μg/L	Report	-	Report
Zinc ^d	µg/L	60.4	_	70.9
(May-September)	lb/day	5.14	_	6.03

a. Combined loading effluent limitations for Outfalls 001 and 002 (Outfall 002 not anticipated to be used).

- c. For reuse water permit.
- d. Total recoverable.
- e. Weak acid dissociable.

The Boise River outfall (NPDES permit Outfall 002) has not been used in years and would require significant upgrades before being put into service. A portion of the outfall pipe currently is used to convey reclaimed water to Heroes Park. The pipe and pumps to the outfall also lack the capacity to convey design flow rates that will be seen in the facility planning window, necessitating the replacement of the pumps and approximately 5 miles of pipe before use.

2.5 Existing WRRF Equipment Conditions and Maintenance Issues

At a workshop in January 2017, City of Meridian operations and maintenance staff identified existing equipment and facilities that may require replacement within the facility planning window. Staff based their assessment on condition (equipment age versus expected life and level of visual degradation) and performance (how well equipment functions and the amount of maintenance required). As a general rule, if repair costs are frequent and have reached 75 percent or more of the

Brown AND Caldwell

b. DO saturation and concentration must exceed 6.0 mg/L.

equipment cost, the item was considered likely to be replaced in the planning window. To assist with planning and budgeting, a list of the items flagged for potential replacement or repair is provided in Table 2-7.

Table 2-7. Existing Facilities/Equipment Flagged for Potential Repair or Replacement			
Facility/Equipment	Maintenance/Replacement Note		
Primary Clarifiers 3 and 4 Mechanisms Penn Valley Primary Sludge Pumps PC #3 concrete surface MCC 6	May require replacement (end of expected life) Replacement (high repair costs, confined space safety issue) Repair cracks Replacement (end of expected life, only MCC still outside)		
Secondary Pump Station Secondary Pumps and VFDs	May require replacement (end of expected life)		
Aeration Basins 1-4 Basins 1 and 2 surface/baffle walls IMLR pump VFDs	Repair cracks Replacement (end of expected life)		
Blower Building No. 1 K-Turbo blowers Spencer blowers	Replace facility (space required, electrical old and maxed out, HVAC issues) Likely replacement (reliability issues, availability of parts a concern) May require replacement (end of useful life)		
Secondary Clarifiers 3-5 SC #4 and 5 scum pumps	May require replacement (process/design limitations)		
Mechanical Building Electrical system	Replacement (service, breakers, MCC)		
UV Building Channels 1 and 3 UV banks	Likely replacement (end of expected life)		
Digesters Digester #3 mixing pump Digested sludge pumps	Likely replacement (end of expected life) May require replacement (shafts wearing quickly)		
Dewatering Building Centrifuge bowl overhaul HVAC system	May be required in planning window (estimated \$150,000 per bowl) Likely replacement (functional issues)		
Ferric Chloride System	Likely replacement (new building, piping, and electrical/PLC)		
Fire alarms, power, and phase monitoring	May be upgraded to be on same system as new facilities		
Lab HVAC system	Need to add redundant system		

Some equipment in need of repair or replacement was omitted from the list above because its associated facility is scheduled to be replaced in the near future (including the headworks and tertiary filtration facilities).

2.6 Existing Water Reuse Practices

The City treats a portion of its flow to meet municipal reuse water requirements for Class A discharge. Since 2009, the City has been providing Class A reuse water for beneficial reuse to a variety of projects, including application as turf irrigation for Heroes Park. As described in the City of Meridian Recycled Water Master Plan (HDR Engineering, Inc. 2012), additional water reuse projects were installed in 2011, including irrigation for landscaping at the Ten Mile Interchange and at a commercial gas station. A car wash also began using reuse water. Irrigation reuse represents the largest designated use in the near future.

The City's reuse permit (No. M-215-03) has been effective since November 21, 2017, and will expire on November 21, 2027. This permit replaced the previous reuse permit (No. LA-00215-02) that had been in place since April 19, 2010. The reuse permit is typically renewed for ten years.

Class A reuse water is authorized for many uses throughout the City, including dust suppression, toilet flushing, lined surface water features, sanitary sewer flushing, and fire suppression. Table 2-8 summarizes the main permit limits and conditions from the permit.

Table 2	2-8. Summary of Reuse Permit No. M-215-03 Limits and Conditions
Category	Permit Limits and Conditions
Type of recycled water	Class A municipal
Reporting year for annual loading rates	January 1 through December 31
Growing season	March 15 to October 31
Non-growing season	November 1 to March 14
Application season	Irrigation only allowed during growing season
	Other uses allowed year-round
Maximum acres allowed for irrigation	1,213
Growing season hydraulic loading limits	None
Constituent loading limits	Nitrogen (lb/acre): None
	Salt (non-volatile dissolved solids) (lb/acre): None
Allowable uses	 Uses allowed for Class A recycled water in Table 3 of the Recycled Water Rules, IDAPA 58.01.17.602.02, exclusive of ground water recharge
	 Commercial carwash facilities, with warning signs adequate to notify the public the water is recycled water and is not safe for drinking
	Uses may be further limited by the facility's Plan of Operation
Total nitrogen limit	Shall not exceed 15.5 mg/L at point of compliance, based on the mean of the growing season samples
BOD₅ limit	Monthly average shall not exceed 10.0 mg/L at point of compliance, as determined from weekly composite sampling
pH range in recycled water	6.0-9.0
Turbidity limits in treated	Instantaneous maximum shall not exceed 5 Nephelometric Turbidity Units (NTU)
effluent prior to disinfection	24-hour average shall not exceed 2 NTU
during periods of recycled water production	 When the continuous turbidity measurements are above the instantaneous limit of 5 NTU for more than five minutes, filtered effluent shall be automatically diverted until such time as the effluent is below the instantaneous limit
Disinfection limits in recycled water	 The median number of total coliform organisms shall not exceed 2.2 per 100 milliliters (mL), as determined from the results of the last 7 days for which analyses have been completed 24-hour average shall not exceed 2 NTU
	The number of total coliform shall not exceed 23 per 100 mL
Disinfection requirements	 A chlorine disinfection process that provides a concentration/contact time of 450 mg-min/L measured at the end of the contact time based on total chlorine residual and a modal contact time of not less than 90 minutes based on peak day dry weather flow OR
	 A disinfection process that, when combined with filtration, has been demonstrated to achieve 5-log inactivation of virus
Filter Loading Limit	Loading rate to the filter shall not exceed 6 gpm per square foot

Flow is diverted to the reuse water system after disinfection via in-channel UV lamps. The City uses sodium hypochlorite to meet the disinfection requirements of the reuse permit. Two bolted-steel reuse storage tanks (each 500,000 gallons) provide the chlorine contact time required. Three reuse pumps, each with a capacity of 3.3 mgd, are installed in the tanks. The reuse pump station routes Class A effluent to the reuse distribution system via three variable speed vertical turbine pumps. Two of the pumps have a maximum capacity of 800 gpm, while the third has a maximum capacity of 50 gpm.

Currently, the City has no plans for expansion of the water reuse system for the period associated with this facility plan. Therefore, no planned expansion will be provided as part of this document.

2.7 Historical Influent Flow and Load, and Population Projections

The following sections describe the historical influent flow, load, and population projection data used for developing future projections for the Meridian WRRF.

2.7.1 Influent Flows

Historical influent flows for the period 2011 through 2016 are summarized in Table 2-9.

	Table 2-9. Summary of Historical Influent Flows (2011–2016)				
Year	Annual Average (mgd)	Maximum Month (mgd)	Maximum Week (mgd)	Peak Day (mgd)	
2011	5.56	6.38	6.54	6.93	
2012	5.53	6.18	6.36	6.57	
2013	5.54	6.37	6.62	7.57	
2014	6.20	7.32	7.95	8.35	
2015	6.14	6.74	6.92	7.50	
2016	6.70	7.41	7.62	9.34	

Flow peaking factors were calculated using the 2011 through 2016 flow data. The flow peaking factors are provided in Table 2-10.

Table 2-10. Flow Peaking Factors (2011–2016)					
Year	Maximum Month: Average Annual	Peak Two-Week: Average Annual	Maximum Week: Average Annual	Peak Day: Average Annual	
2011	1.15	1.17	1.18	1.25	
2012	1.12	1.14	1.15	1.19	
2013	1.15	1.19	1.20	1.37	
2014	1.18	1.23	1.28	1.35	
2015	1.10	1.11	1.13	1.22	
2016	1.11	1.14	1.14	1.39	

2.7.2 Influent Loading

The City's historical loading data for the period 2011 through 2016 was used to calculate average annual influent loadings for BOD, TSS, and ammonia. These influent loadings are summarized in Table 2-11.

Table 2-11. Average Annual Historical Influent Loadings (2011–2016)						
Year	BOD (lb/day)	TSS (lb/day)	Ammonia (lb/day)			
2011	12,695	12,481	1,384			
2012	13,498	13,422	1,489			
2013	14,516	14,213	1,562			
2014	15,830	14,601	1,715			
2015	15,041	13,776	1,781			
2016	16,423	14,919	1,942			

2.7.3 Population and Projections

The projections for future population of the City were developed by the Community Planning Association (COMPASS). These projections were captured for 2016 and 2040. Traffic analysis zones (TAZ) representing the geographic areas of the City were used to divide population and employment statistics. These population and employment estimates from COMPASS for 2016 and 2040 are summarized in Table 2-12 (J-U-B Engineers, Inc. [J-U-B] 2017).

Table 2-12. COMPASS Population and Employment Statistics						
TAZ	2016 COMPASS		2040 COMPASS			
Demographic Areas	Population	Employment	Population	Employment		
North-Meridian	31,220	4,410	51,130	9,420		
Central-Meridian	46,500	29,080	67,720	48,550		
South-Meridian	21,440	10,120	42,750	16,330		
TOTAL	99,160	43,610	161,600	74,300		

2.8 Planned Flow Reduction Measures

2.8.1 Inflow and Infiltration Reduction

The City has implemented an inflow and infiltration program, saving between 300,000 to 500,000 gpd through improvements at leaky manholes. The Collections System Flow Monitoring Program (Murray, Smith, and Associates 2015) describes the current system layout, capacity, management, operations, and maintenance. Flow monitoring studies have been performed annually from 2009 through 2017, with most of the collection system evaluated for infiltration and inflow. The City has continued to use information gathered from the studies to inform operations and maintenance procedures and to prioritize capital and repair projects. Basins are prioritized based on the magnitude of infiltration per foot of collection system and infiltration per manhole in the basin. Basin rankings are updated year-to-year due to new flow meter locations and modifications to the collection system because of new diversions, new trunk lines, and elimination of lift stations. MSA recommended that the City focus system repair efforts based on the infiltration and inflow rankings provided. Repairs may include pipe lining, joint repair, pipe replacement, manhole lining/repair, sewer service lining, and sewer service replacement.

The 2015 Flow Monitoring Program concluded that inflow is spread throughout the entire collection system, rather than one basin generating most of the inflow. Specific monitoring for combined inflow and infiltration was recommended, but specific studies for inflow separate from infiltration was not recommended by the Program.

2.8.2 Water Conservation

The Meridian Water Master Plan (Murray, Smith, and Associates, Inc. 2012) shows a decline in per capita water usage, which will have a significant impact on the future water supply needs of the system. The master plan detailed a per capita water consumption rate of 112 gallons per capita per day (gpcpd). The master plan indicated that it is reasonable to assume that the City could maintain an overall value of 112 gpcpd over the next 20 years as more customers come online with separate irrigation systems and additional conservation measures are employed.

The City proactively works to secure adequate water rights for providing necessary water supply and simultaneously implements conservation measures. The City has completed a formal water conservation plan which describes impacts of conservation on demand projections, the impact of the City's reclaimed water program, how to manage non-revenue water, cost estimate of specific

conservation measures, and discussion of how the City will move forward on said measures (Murray, Smith, and Associates, Inc. 2012). The quantitative impact of the combined items is currently unknown.

The current conservation measures in place include the following:

- Meter water to customers and include a component of the bill for usage
- Reduce wasted water by tracking water used for flushing and hydrant flows
- Manage tight pressure zones to avoid high pressures and reduce leaks
- Enforce building codes for low flow toilets and shower heads
- Encourage the use of alternate water sources for irrigation, including both surface water and reclaimed water, to reduce potable water use for these activities.

These water conservation measures are expected to help reduce wastewater flows to the WRRF.

2.9 Existing Environmental Conditions

The following sections provide a high-level explanation of the existing environmental conditions for the Meridian WRRF planning area, referencing the 2007 Facility Plan Environmental Information Document (EID) (Carollo Engineers, 2007), provided in Appendix A. The 2007 Facility Plan EID listed three possible actions for each WRRF process alternative: Proposed Action, Alternative Actions, and No Action. The Proposed Action and Alternative Actions consisted of expansion and construction of new facilities to address future treatment requirements. The Proposed and Alternative Actions were developed for primary, secondary, tertiary, and biosolids treatment systems; biosolids reuse was also addressed. The potential environmental consequences associated with the three alternatives were documented (Section 3—Affected Environment/Environmental Consequences). The following sections are written based on the City's decision to pursue the Proposed Action to address future expansion and construction of new facilities. Any changes to these items since the 2007 Facility Plan EID are discussed herein.

2.9.1 Physiography, Topography, Geology, and Soils

The WRRF is located on the northwest side of the City on relatively flat, open land that has never been previously developed. The site is within the Ada County boundary and the City's area of impact. As described in the City's 2007 Facility Plan EID, the majority of topography is flat ground. A copy of the soil survey map, provided by the U.S. Department of Agriculture—Natural Resource Conservation Service (NRCS), within the immediate vicinity is provided in Appendix A. Soil units at the site are made up of Unit 1, Abo Silt Loam, Unit 5, Aeric Haplaquepts, and Unit 141, Purdam Silt Loam. To date, no faults or landslides have been identified at the site.

2.9.2 Surface and Ground Water Hydrology

The Meridian Water Master Plan details the water supply portfolio for the City. The potable water for the Meridian system is supplied with groundwater sources from 26 water wells situated throughout the City's service boundary. Well depths can range from 400 to 800 feet below ground surface. Total capacity of all wells in the Meridian water system is 35,900 gpm (51.7 mgd). For more information on the supply wells, refer to the City of Meridian Water Master Plan (Murray, Smith, & Associates, Inc. 2012).

The geotechnical report (Materials Testing & Inspection 2015) prepared for the Liquid Stream Expansion estimated groundwater depths ranging from 2 to 10 feet below ground surface. These groundwater levels are impacted by agricultural and commercial irrigation in the area, along with leakage from nearby canals and creeks. Groundwater is likely closest to the surface in the latter part

of the irrigation season (late summer). The report estimated hydraulic conductivity at the site to be between 3 and 300 feet per day.

2.9.3 Fauna, Flora, and Natural Communities

The 2007 Facility Plan noted that expansion of the Meridian WRRF would eliminate majority of the cultivated ground, previously used for alfalfa hay production, that is located within facility boundaries. Construction would be confined to within the site boundary. In a report from the Idaho Conservation Data Center dated August 4, 2006, no plant species of conservation need were identified. The Idaho Conservation Data Center noted singular occurrences of Merriam's shrew (State S2), peregrine falcon (United States Forest Service Sensitive), and Woodhouse's toad (Bureau of Land Management Type 3). These are the only fauna that have been noted within the area. To reference these surveys, refer to Appendix A.

2.9.4 Housing, Industrial, and Commercial Development

The majority of the City's customer base is residential. Non-residential use supports mostly commercial, governmental, and institutional uses similar to residential users. There is little heavy industry within the City. The City experienced atypical, rapid growth between 1990 and 2007. Between 2000 and 2007 the yearly growth rate ranged between 6.5 percent and 21.8 percent, with an overall yearly average of 12.3 percent. This period was followed by a dramatic decrease in population growth associated with the economic downturn beginning in 2008. The City expects significant growth in the service area over a 20-year planning horizon but at a lesser rate than was observed between 2000 and 2007. The 2010 U.S. Census population estimate is 75,092 people, 26,674 housing units, and an average population density of 2,803 per square mile.

The area of impact has a comprehensive plan and land use plan developed by the City Planning Department. Future land use mapping and planning extends to the edge of the area of impact to the northwest. The far southwest sections of the City's planning area are designated as unplanned area. Current and future land uses include low, medium, and high density residential, commercial, and several mixed-use areas. Further information on these areas can be found in the City's Comprehensive Plan.

2.9.5 Cultural Resources

A cultural resource survey was conducted in August 2006 to support the 2007 Facility Plan development. The survey was performed by an archaeological and historical resource consultant, Archaeological Survey of Idaho. During this study no cultural resources were found or documented. No impact to cultural resources is projected for future expansion at the Meridian WRRF. In addition, the National Register of Historic Places was used to list and review potential historic sites within the area. From this list there were no historical sites located within the Meridian WRRF site and, therefore, no historical site impacts have been identified. For more information on the archaeological and historical studies performed at the site, refer to Appendix A.

2.9.6 Utility Use

The City's potable water is provided by the City of Meridian Water Department (Water Department). Potable water is conveyed by a 6-inch pipeline located on the east side of the Meridian WRRF and measured by a master meter that is maintained by the Water Department. The potable water distribution system within the Meridian WRRF connects to various buildings and fixtures via an 8-inch loop. The treatment processes that use potable water include polymer feed system for biosolids dewatering, WAS pump seal water, polymer feed system WAS thickening, digested sludge pump seal water, digester hot water boilers makeup water, and heat exchangers on gas boosters. The seal

water pump station was relocated to the North Digester Control Building in 2017; this pump station serves a seal water demand of 20 gpm at 80 psi.

Non-potable water (NPW) service is used for process makeup water, wash-down, and foam suppression spray. The NPW system, which loops around the WRRF site, was constructed in 2002 and upgraded in 2017. The NPW service includes two vertical turbine pumps (each 100 HP and 2,300 gpm) and a submersible jockey pump (25 HP and 800 gpm), all located in the NPW/Reuse Pump Station downstream of the UV disinfection system. The upgraded system was designed to meet a NPW demand of 100 to 1,900 gpm at 70 psi. A recent analysis estimated the WRRF's maximum NPW usage to be 800 to 900 gpm, with an additional demand of 1,050 gpm to be added with the Liquid Stream Expansion (Mountain Waterworks, Inc. 2016).

The WRRF process drains system, built as part of the original WRRF in 1978, consists of an 8-inch diameter gravity sewer encompassing the plant site from headworks to the western edge of the sludge drying beds. Plant drainage flows have increased over time with the expansions of the dewatering building, the DAFT, and the centrate tank. In 2010, the installation of a plant drain pump station eliminated surcharging issues.

Natural gas is provided by Intermountain Gas Company via a 2-inch service line entering the north side of the Meridian WRRF.

Electrical supply and service is provided by Idaho Power Company via a 12.5-kilovolt distribution line. The City is currently in negotiations to purchase the distribution line within the WRRF fence line after the third power pole (Confirmed ownership transferred as of May 23, 2018). The electrical distribution system at the WRRF is served from an individual tap located on Ten Mile Road with primary metering. The facility is served by overhead radial taps. Idaho Power Company owns and operates a substation near the WRRF entrance on Ten Mile Road, just south of Fivemile Creek. The existing overhead distribution line is approximately 3.2 megawatts in capacity, for which the City has a current contract of 2.4 megawatts of demand from Idaho Power. The City has installed a backup power system with 3.2 megawatts/4.0 megavolt-amperes of capacity. Four parallel 800-kilowatt (kW) diesel engine generators, which are distributed via Idaho Power Company's distribution system back to the facility, operate at 480 V and step up to 12.5 kilovolts. There appears to be sufficient physical space for an additional engine generator located outside the building, if needed for redundancy.

2.9.7 Floodplains and/or Wetlands

The existing Meridian WRRF site is partially above and below the 100-year flood plain area that has been designated by the Federal Emergency Management Agency. As described in the 2007 Facility Plan, the facility expansion will occur entirely within an upland environment that is not subject to wetlands hydrology. No direct or indirect impacts to any existing wetlands are anticipated for current or future expansion at the site. For a map of the 100-year flood plain refer to Appendix A.

2.9.8 Wild, Scenic, and Recreational Rivers

The National Wild and Scenic Rivers System was enacted by the United States Congress in 1968 to preserve certain rivers with outstanding natural, cultural, and recreational values in a free-flowing condition for the continued use of present and future generations. Approximately 891 river miles in Idaho are designed as wild and scenic. River classifications include wild, scenic, or recreational. The Meridian WRRF discharges to Fivemile Creek and the Boise River, neither of which are classified as wild, scenic, or recreational.

2.9.9 Public Health and Water Quality Considerations

The intent of the Meridian WRRF expansion is to achieve water quality requirements contained in the NPDES permit at future flow and loading projections. NPDES permit limits are set in response to Environmental Protection Agency studies of total maximum daily loads (TMDLs) in a water body. Per the Clean Water Act, a TMDL is the maximum amount of pollutant a water body can receive and still meet water quality standards, which are set to protect the health of humans and aquatic life. Additional discussion of TMDLs impacting the Meridian WRRF follows in Section 2.10.4.

2.9.10 Important Farmlands Protection

The Meridian WRRF expansion will be contained within the facility boundary and will not involve conversion of prime farmland. Prime farmland, as defined by the NRCS, is "land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for those uses." As detailed in the 2007 Facility Plan EID, the conversion of farmland to other uses would be governed by land use policies that are independent of this project. The NRCS has identified 66 soil units within Ada County as prime farmland. None of the planning activities slated for the Meridian WRRF would alter any prime farmland to a different use.

2.9.11 Proximity to Sole Source Aquifer or Stream Flow Source Area

No impacts to sole source aquifers or stream flow source areas have been identified at this time.

2.9.12 Land Use and Development

As described in the 2007 Facility Plan EID, the site is bordered by agricultural land that will not be altered because of the site expansion. Access to these external areas will also remain unimpeded.

As the WRRF area grows, it will soon trigger a requirement for two site access points, per the local fire marshal. A second entrance could potentially be added from Ustick Road to the south side of the WRRF. This route will require further examination but could include a roadway through the reservoir site parcel owned by the City and on portions currently owned by private individuals and Nampa Meridian Irrigation District. This route would also require a bridge across Fivemile Creek.

2.9.13 Precipitation, Temperature, and Prevailing Winds

The climate which Meridian inhabits is typically characterized as moderate continental climate with hot, dry summers and cold, wet winters. Temperatures range between a normal mean low of approximately 22.6 degrees Fahrenheit in January and a normal mean high temperature of 90.6 degrees Fahrenheit in July. Average precipitation is 11.8 inches per year, with an average snowfall of 21.6 inches per year. For more information on this item refer to Appendix A.

2.9.14 Air Quality and Noise

Construction at the site will increase short-term vehicle and equipment emissions and noise. Dust control measures will be implemented during construction to limit dust formation. In addition, the Contractor will be required to meet specific emissions standards for all construction equipment.

The new Headworks facility will include a biofilter for odor control, which will likely reduce odors compared to the existing Headworks. The facility expansion will not introduce any new facilities that would contribute additional odor sources beyond existing facilities.

The facility also currently has an air permit for sulfide emissions from the anaerobic digester facilities. They currently treat these using ferric iron addition. New facilities are not anticipated to substantially increase the sulfide quantities beyond growth and the current iron addition system will be sufficient to maintain their permit compliance moving forward.

Noise levels will increase during the construction period. As discussed in the 2007 Facility Plan EID, the amount of construction noise may range between 68 and 96 decibels at a distance of 50 feet from certain construction equipment. Long-term background noise might slightly increase; however, this would involve installing noise-generating equipment similar to existing. If above-average noise-generating equipment is installed, the design and construction of said equipment would incorporate provisions for noise control.

2.9.15 Energy Production and Consumption

The facility expansion will involve the installation of energy-consumptive items such as pumps, process motors, blowers, and ultraviolet disinfection lamps. Energy efficiency standards were considered in the design phase and will be implemented during construction.

2.9.16 Socioeconomic Profile of Affected Community

The 2016 Idaho Department of Labor community profile for the City estimates a population of 93,225 with the labor force comprised of 45,943 people. Household median income in that year was \$65,528 with 55 percent of the households earning more than the national average per year.

Impacts to the existing socio-economic make-up of the area should be minimal given that the proposed expansion is the least costly alternative for upgrading the wastewater treatment capacity for the City. The construction at the Meridian WRRF is going to follow a phased approach that will spread construction costs over many years to reduce impacts to ratepayers.

2.10 Water Quality Planning Information

The Meridian WRRF planning process is guided by a number of water quality regulations. These water quality regulations include federal and state criteria, which were used to develop treatment alternatives throughout the facility planning process. The water quality planning efforts described in the 2012 Facility Plan (CH2M Hill and HDR, Inc.) are still applicable. These regulatory drivers are discussed in more detail in the following sections.

2.10.1 State Water Quality Requirements

The federal Water Pollution Control Act, from which the Clean Water Act originates, establishes federal regulations for pollutant discharge to navigable waters of the United States (water bodies such as streams, rivers, lakes, and reservoirs). The NPDES permit program is intended to meet the statutory requirements of the Clean Water Act to reduce pollutant discharges. An NPDES permit is mandatory for any point source to discharge effluent to waters of the United States. These permits provide specific limitations for pollutants to help ensure the discharge meets its designated beneficial use and does not harm human health. The City's current NPDES permit allows for the City to discharge treated effluent to Fivemile Creek (Outfall 001) and the Boise River (Outfall 002). Currently the EPA has primacy in administering the NPDES permit program in Idaho, but this is anticipated to change in the future. In 2014, the Idaho Legislature directed the IDEQ to seek EPA authorization to administer the NPDES permit program (i.e., transition primacy from EPA to IDEQ). This state program will be called the Idaho Pollutant Discharge Elimination System (IPDES) program and will regulate the discharge of pollutants into waters of the United States in Idaho. The IPDES program is still under approval by EPA, but primacy will revert to Idaho DEQ on July 1, 2018. It is currently estimated that EPA (or Idaho DEQ) approval will be given in 2018 and the IPDES permitting program will take approximately five years to be fully implemented in Idaho.

2.10.2 Water Quality and Technology-based Effluent Limitations

Water quality criteria and technology-based effluent limitations (TBELs) are considered for proposed surface water discharges. The Meridian WRRF treatment and performance by unit processes must achieve the water quality criteria and TBELs set by the EPA. Water quality standards include both narrative and numeric standards intended to achieve the water quality goals (i.e., designated uses) for a water body. Narrative standards are described in IDAPA 58.01.02.200 and apply to all Idaho surface water bodies. Numeric standards are set for Idaho water bodies and the subsequent NPDES permits for point sources are used to meet said standards.

TBELs are applied to secondary treatment processes and are enforced by the EPA. TBELs represent the minimum level of effluent quality achievable by a secondary treatment system. TBELs are typically expressed in terms of BOD and TSS removal. For these parameters, secondary treatment standards for publicly owned treatment works are usually 30 mg/L and 45 mg/L for 30-day average and 7-day averages, respectively, for both BOD and TSS. For both parameters, a 30-day average 85-percent removal requirement is enforced.

2.10.3 Designated Uses

As previously described in the City's 2012 Facility Plan, the State Water Quality Standards use a classification system for water bodies based on the expected beneficial uses of those water bodies. Fivemile Creek and the Boise River are the two permitted discharge locations for the Meridian WRRF. These water bodies are within the Lower Boise Sub-basin and are listed for specific beneficial use designations.

Fivemile Creek has cold water biota and secondary contact recreation as designated uses. The creek is listed as impaired for these uses, with the impairments believed to be caused by bacteria, sedimentation, and siltation.

The lower Boise River (Unit SW-5, river mile 50 to Indian Creek) has cold water biota, salmonid spawning, primary contact recreation, and agricultural water supply as designated uses.

2.10.4 Current TMDL Developments Impacting Future NPDES Permits

Fivemile Creek is a tributary to the lower Boise River because it discharges into Tenmile Creek, which ultimately discharges to the lower Boise River. There are TMDLs in effect for the lower Boise River for sediment, bacteria, and total phosphorus. The Meridian WRRF is therefore responsible for meeting the criteria of said TMDL regulations.

The Lower Boise River TMDL: 2015 Sediment and Bacteria Addendum (June 2015) established wasteload allocations for point sources, including the Meridian WRRF. E. coli wasteload allocations are based on a bacteria concentration of 126 colony-forming units per milliliter, collected as a 5-sample geometric mean over 30 days. Sediment wasteload allocations are expressed as 4-month averages and are based on 20 mg/L, less 2.5 mg/L for natural background. Fivemile Creek (assessment unit 010_03) has a wasteload allocation for these parameters that is enforced for the Meridian WRRF. The current wasteload allocations for sediment and bacteria at the Meridian WRRF are 1,489.4 lb/day (4-month average) and 49x(10^9) colony-forming units /day (30-day geometric mean), respectively, at the current design flow of 10.2 mgd. The City's NPDES permit currently reflects these requirements.

The Lower Boise River TMDL 2015 Addendum (IDEQ 2015) established the allowable loadings of TP to the lower Boise River. The City's average monthly wasteload allocation is 8.5 lb/day for May through September when discharging at a TP concentration of 0.1 mg/L. This wasteload allocation, in conjunction with the other imposed on other point sources in the watershed, is estimated to achieve the 0.07 mg/L TP target in the lower Boise River. The City's average monthly wasteload

allocation is 29.8 lb/day for October through April when discharging at a TP concentration of 0.35 mg/L. The City's NPDES permit currently reflects these TMDL requirements.

Fivemile Creek currently is not listed by IDEQ as impaired for temperature and, subsequently, the City's NPDES permit does not contain temperature limits. The NPDES permit does require collection of temperature data for monitoring, which will allow IDEQ to evaluate current background temperature conditions. If the temperature of Fivemile Creek were regulated in the future by IDEQ, the agency would develop a TMDL establishing the amount of thermal loading the water body could receive and still achieve its beneficial use. Other local municipalities, such as City of Nampa and City of Boise, have temperature regulations enforced within their wastewater discharge permits. Because no formal TMDL study has been completed to date, the City will not formally plan or develop cost estimates for temperature treatment technologies until further information is available.

While there are no current TMDL studies looking at compounds of emerging concern (pharmaceuticals, endocrine disrupting compounds, etc.), there is future potential for limits associated with these compounds. Research has shown that many of these compounds, but not all, can be removed using longer sludge age biological nutrient removal systems, like the Meridian WRRF. Of those that cannot, many have been found to be oxidized using ozonation. As there are no current or anticipated future limits at this time, no formal sizing or costing of this equipment is completed as part of this study. While there are no formal plans to evaluate, design, or install control mechanisms for compounds of emerging concern, the City is interested in preparing for possible future limits and ensuring there is sufficient space on the treatment plant site associated with installation of an ozonation system that can be installed if such future limits are required. A preliminary sizing of an ozonation system indicates that it would be roughly equivalent in size to Secondary Clarifier 3. Therefore, as the secondary clarifiers are expanded on the west side of the facility and Clarifier 3 is abandoned and demolished in the future, an ozone contact system can be installed, if needed, to aid in compliance with any future regulations associated with compounds of emerging concern.

Section 3

Planning Criteria

The following report summarizes the City WRRF planning criteria development.

3.1 Introduction

The City's planning criteria were prepared by J-U-B, as part of the Sewer Master Plan update and documented in technical memorandum *Meridian Wastewater Treatment Facility Flow and Load Projections* (J-U-B 2017) included in Appendix B. The intent of this Facility Plan chapter is to summarize the key information from the flow and loadings projections analysis performed by J-U-B. This will include reference to the approaches used to develop:

- Existing population, employment, flows and loads
- Unit flows, unit loads and peaking factors used in future projections
- Population and employment projections for the committed and buildout scenarios
- Flow and load projections for the committed and buildout scenarios

The population and employment projections from the current Sewer Master Plan (SMP) update were evaluated alongside flow and load data.

3.2 Population and Employment Projections

The projections for future population of the City were developed by the COMPASS. These projections were captured for 2016 and 2040. TAZ representing the geographic areas of the City were used to divide population and employment statistics. Figure 3-1, from the J-U-B flow and loads analysis, illustrates the TAZ used.

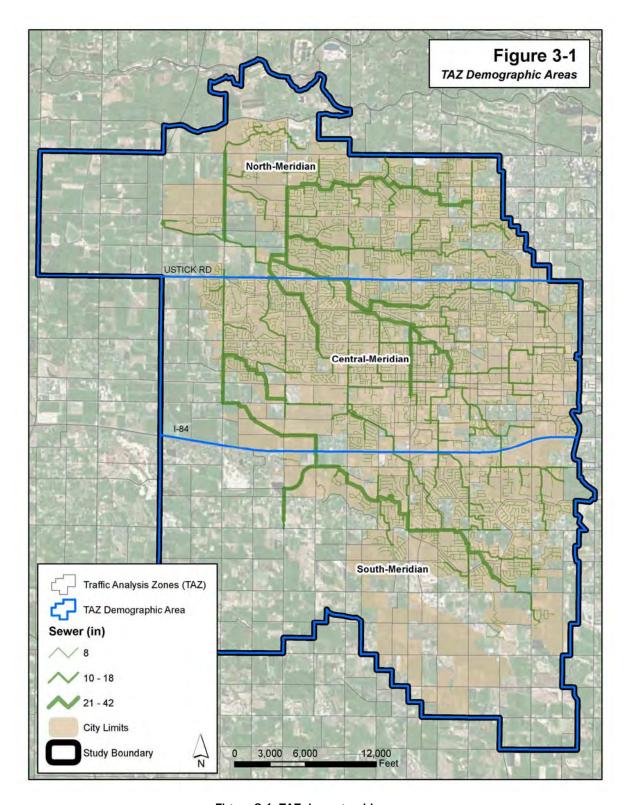


Figure 3-1. TAZ demographic areas

These population and employment estimates from COMPASS for 2016 and 2040 are summarized in Table 3-1.

Table 3-1. COMPASS Population and Employment Statistics						
TAZ Demographic Areas	2016 COMPASS		2040 C	OMPASS		
	Population	Employment	Population	Employment		
North-Meridian	31,220	4,410	51,130	9,420		
Central-Meridian	46,500	29,080	67,720	48,550		
South-Meridian	21,440	10,120	42,750	16,330		
TOTAL	99,160	43,610	161,600	74,300		

The SMP update focuses on the collection system only and occurred simultaneously with the development of flow and loadings projections. Three modeling scenarios (existing, committed, and buildout) were evaluated to develop a summary of demographics. Table 3-2 is adapted from the SMP update and details the population and employment projections associated with each TAZ demographic area and modeling scenario.

	Table 3-2. Sewered Population and Employment Projections						
TAZ	Exis	ting	Committed (appr	oximately 2040)	Buil	Buildout	
Demographic Areas	Population	Employment	Population	Employment	Population	Employment	
North-Meridian	31,700	3,980	46,230	8,520	96,770	17,830	
Central-Meridian	49,670	28,230	65,530	46,980	85,900	61,580	
South-Meridian	19,710	9,010	49,150	18,790	133,710	51,080	
TOTAL	101,080	41,220	160,910	74,290	316,380	130,490	

The City's committed service area is represented in the committed model scenario, including annexed areas. The committed model scenario represents allocated capacity for the Meridian WRRF. The SMP and the 2016 COMPASS estimates have slight differences most likely attributed to differing methodologies. While the projections for each demographic area do not match exactly with those for the 2040 COMPASS projections, the overall population for the City between the "committed" projections and the 2040 COMPASS estimates are within 0.5 percent of each other. Therefore, it can be assumed that the "committed" population scenario corresponds with a 2040 design year. These projections demonstrate a 2 percent average annual growth rate. The full buildout of the SMP study boundary is modeled by the buildout scenario. The buildout scenario population is estimated to be reached in 2074 using the continued 2 percent average annual growth rate.

3.3 Historical Flows and Loads

The City's historical average annual flow and load data, as provided in the J-U-B analysis, is summarized in Table 3-3. At the time of the analysis, data between November 2015 and October 2016 were used to represent 2016 annual average data, since November and December 2016 were not yet available.

	Table 3-3. Historical Flow and Loads (Average Annual)							
Year	Flow ^a (mgd)	BOD (lb/day)	TSS (lb/day)	NH3 (lb/day)	TKN (lb/day)	TP (lb/day)		
2011	5.6	12,700	12,480	1,380	2,200	300		
2012	5.5	13,500	13,420	1,490	2,290	300		
2013	5.5	14,520	14,210	1,560	2,400	320		
2014	6.2	15,830	14,600	1,720	2,560	330		
2015	6.1	15,040	13,780	1,780	2,590	340		
2016	6.6	16,340	14,790	1,930	2,910	350		

^aEffluent flow data used. Influent flow data not available.

3.3.1 Peaking Factors

The flow data was analyzed to determine peaking factors for average annual, peak month, peak week, and peak day for each year of data provided. J-U-B cited a decrease in peaking factor values attributed to the significant increase in population growth. The most representative peaking factors for current flow and load characteristics were those calculated from year 2016. The 2016 peaking factors were compared to the 6-year average peaking factors; if the 2016 peaking factors were lower than the 6-year average, the 6-year average was used. The resulting recommended peaking factors are summarized in Table 3-4.

	Table 3-4. Recommended Peaking Factors						
Description	Flow	BOD	TSS	NH3	TKN	TP	
Average annual	1.00	1.00	1.00	1.00	1.00	1.00	
Peak month	1.14	1.13	1.11	1.10	1.06	1.10	
Peak week	1.18	1.27	1.23	1.23	1.17	1.25	
Peak day	1.42	1.60	1.88	1.32	1.42	1.33	
Peak houra	1.78	_	_	_	_	_	

^aEffluent peak hour flow data includes occasional recirculation flows that artificially increase the peak hour flow, resulting in a peak hour peaking factor greater than 2.6. This is not representative of typical influent peak hour flows. The peaking factor listed above was determined by using the maximum effluent peak hour flow averaged over each week, rather than maximum effluent peak hour flow from each day

3.3.2 Approach to Unit Flows and Loads

Existing water usage data was analyzed within the SMP update to establish unit flows to develop future flow projections. The average residential single family unit flow was calculated at 153 gpd.

The total wastewater loading was broken down into components, including sanitary loads (residential and non-residential), contracted loads from other utilities, and loads from permitted significant industrial users. The only loading component applicable to the City is sanitary loads. The unit loads for each constituent were developed through analyses of the existing sanitary loading data. The SMP update included development of sanitary flows for each land parcel connected to the sewer system based on winter water usage data between December 2015 and February 2016. Each land parcel was assigned a land use designation. Non-residential sanitary loads were estimated based on this SMP approach. The assumed non-residential sanitary unit loads are provided in Table 3-5. For additional information on the components of the loading data analyzed, refer to Appendix B.

	Table 3-5. Assumed Non-Residential Unit Loads					
Land Use	BOD (mg/L)	TSS (mg/L)	NH3 (mg/L)	TKN (mg/L) ^a	TP (mg/L)	Source
Car wash	315	62	3	5	6	B&V ^b
Church, school	222	106	72	109	11	CT & Yelmc,d
Commercial	442	157	51	77	7	СТ
Entertainment, parks/golf	77	166	27	41	6	Yelm
Hospital	350	156	82	124	12	Fairfax ^e
Hotel	195	171	52	79	9	СТ
Office, industrial, public	195	63	112	170	12	СТ
Restaurant	781	193	36	55	11	CT & Yelm

^aAssumed TKN unit loads based on current ratio of TKN/NH₃ at WRRF.

The non-residential land use type and associated average daily flow and assumed unit loads were combined to estimate the average daily load for each load constituent. A mass balance approach was used to calculate the total residential sanitary loads. The total residential sanitary loads are summarized in Table 3-6. For information on infiltration and inflow analysis, refer to the SMP update.

	Table 3-6. Existing Flow and Loads (Winter Lows)						
Description	Flow ^a (mgd)	BOD (lb/day)	TSS (lb/day)	NH3 (lb/day)	TKN (lb/day)	TP (lb/day)	
Non-residential	1.0	3,290	1,150	540	810	80	
Residential	4.9	12,230	12,510	1,290	1,950	240	
Totalb	5.9	15,520	13,660	1,830	2,760	320	

 $^{^{\}mathrm{a}}\mathrm{Does}$ not include seasonal infiltration. The SMP estimates existing seasonal infiltration up to 1.42 mgd.

3.4 Flow and Load Projections

The following sections summarize the approach used by J-U-B to establish future flow and loading projections for the City's WRRF.

3.4.1 Flow Projections

As described in the *Meridian WWTF Flow and Load Projections*, the future land use assumptions from the SMP update were used to develop future average flows for the committed and buildout scenarios. These scenarios do not include allocations for industry or redevelopment and it is assumed new industrial dischargers will not be added to the City system. Flow projections are based on the future flows within the SMP and the peaking factors described in Table 3-4. Flow projections are summarized in Table 3-7.

^bB&V Study (Water Effluent and Solid Waste Characteristics in the Professional Car Wash Industry, International Carwash Association).

[°]CT Study (State of Connecticut, 2006 Design Manual, Water Regulations and Discharges).

dYelm Study (City of Yelm General Sewer Plan).

eFairfax Study (Commonwealth of Virginia, State Board of Health and Disposal, Sewage Health and Disposal Regulations, 2000).

^bBased on wintertime data (December 2015–February 2016), not annual averages.

Table 3-7. Flow Projections						
Description (mgd)	Existing	Committed (2040)	Buildout (2074)			
Average annual	6.6	12.5	23.6			
Peak month	7.5	14.2	26.8			
Peak week	7.8	14.8	27.9			
Peak day	9.3	17.7	33.4			
Peak hour	11.7	22.3	42.0			

3.4.2 Load Projections

Load projections were developed based on the unit loads and future land use information. The base committed and buildout scenarios from the SMP do not consider redevelopment. Future large-scale industries are also not considered in the load projections. Table 3-8 details the calculated existing, committed and buildout loads for each loading constituent.

	Table 3-8. Load Projections					
Constituent	Load Description	Existing	Committed (2040)	Buildout (2074)		
BOD (lb/day)	Average annual	16,340	27,960	50,790		
	Peak month	18,240	31,520	57,260		
	Peak week	20,760	35,520	64,520		
	Peak Day	26,080	44,630	81,060		
TSS (lb/day)	Average annual	14,790	24,230	46,140		
	Peak month	16,390	26,840	51,100		
	Peak week	18,160	29,740	56,620		
	Peak day	27,760	45,470	86,580		
NH3 (lb/day)	Average annual	1,930	3,730	6,830		
	Peak month	2,120	4,090	7,500		
	Peak week	2,380	4,590	8,400		
	Peak day	2,550	4,920	9,000		
TKN (lb/day)	Average annual	2,910	5,620	10,300		
	Peak month	3,090	5,960	10,920		
	Peak week	3,410	6,590	12,060		
	Peak day	4,130	7,970	14,580		
TP (lb/day)	Average annual	350	630	1,150		
	Peak month	390	690	1,260		
	Peak week	440	780	1,430		
	Peak day	470	840	1,530		

3.5 Solids Projections

This section documents the solids flows and loads data used in sizing relevant equipment associated with Meridian WRRF improvements for a 20-year planning period, from 2020 to 2040.

Historical data from 2011 to 2016 were used to develop current solids flows and loads. Sludge production fluctuates throughout the year as the plant influent flow and characteristics change. The solids handling facilities and associated equipment must be sized properly to be able to handle solids production at peak events. Therefore, several peaking factors are needed, including maximum day, maximum week, maximum 2-week, and maximum month to design the solids system.

However, sometimes there is not enough data available to determine all peaking factors to this level of precision. In those cases, assumptions were made based on BC's engineering judgment and experience.

Future plant influent and solids production projections were developed in two previous projects, including the Wastewater Facility Plan (CH2M Hill and HDR, Inc. 2012), Headworks Capacity Expansion (CH2M Hill 2015), Side Stream Nitrogen Evaluation (BC 2015), Secondary Treatment Alternatives Evaluation (BC, 2016), and Flow and Load Projections (J-U-B 2017). BC developed future solids productions and peaking factors after reviewing previous solids projections, historical data, and proposed changes in the liquid treatment system.

The following key assumptions were used to develop current and future solids flow and load projections for this evaluation:

- Current primary sludge (PS) production rates under average conditions are based on data from 2014 and 2016. No data was reported for other years.
- Total solids (TS) and volatile solids (VS) concentrations for PS are based on the average value of historical data.
- Current PS flows are calculated based on existing PS production rates and TS concentrations.
- Peaking factors for current PS production are assumed to remain constant for future conditions.
- Current WAS flows and loads are based on historical data from 2011 to 2016.
- VS concentration of WAS at current conditions are assumed to be the same as those of projected future conditions.
- Peaking factors for current WAS flows and loads are calculated by averaging the peaking factors
 of historical data.
- Future PS production rate projections are based on plant influent data in the *Headworks Capacity Expansion TM* (CH2M Hill 2015) and the primary clarifier models developed for the *Side Stream Nitrogen Evaluation TM* (BC 2015).
- Current TS and VS concentrations for primary sludge are assumed to remain constant for future conditions.
- Future WAS production estimates were developed based on plant influent data and BioWin modeling in the Secondary Treatment Alternatives Evaluations (BC 2016).
- Future TS and VS concentration for WAS are based on BioWin modeling results from the Secondary Treatment Alternatives Evaluations, (BC 2016).
- Combined sludge production at maximum month and maximum 2-week conditions are
 calculated assuming peak sludge production for both PS and WAS occur simultaneously. This is
 a conservative assumption and provides a worst-case scenario for solids treatment system
 loadings.
- Combined sludge production for the maximum day condition is calculated assuming maximum
 day condition occurs concurrently with one sludge stream and maximum month condition with
 another sludge stream.

Solids flows and loads for current conditions are summarized in Table 3-9.

Table 3-9. Summary of Solids Flows and Loads for 2020					
Parameter	Unit	Average Annual	Maximum Month	Maximum 2- Week	Maximum Day
Primary Sludge a,b,c,d					
Sludge flow	gpd	31,600	42,100	45,300	56,000
Total solids	lb/d	9,300	12,500	13,400	16,600
Volatile solids	lb/d	8,300	11,100	11,900	14,700
Percent solids	Percent	3.54	3.54	3.54	3.54
Percent volatile solids	Percent of TS	89	89	89	89
WAS e,f,g					
Sludge flow	gpd	124,200	147,300	156,500	174,800
Total solids	lb/d	7,200	8,500	9,100	10,500
Volatile solids	lb/d	5,300	6,000	6,600	7,800
Percent solids	Percent	0.70	0.86	0.80	0.71
Percent volatile solids	Percent of TS	72	70	72	74
Sludge flow	gpd				
Combined Primary Sludg	e and WAS h,i				
Sludge flow	gpd	155,800	189,400	201,800	216,900
Total solids	lb/d	16,500	21,000	22,500	25,100
Volatile solids	lb/d	13,600	17,100	18,500	20,700
Percent solids	Percent	1.27	1.32	1.33	1.38
Percent volatile solids	Percent of TS	82	82	82	83

^a Average PS production on 2014 and 2016. No data was reported for other years.

Solids flow and load projections for future conditions are summarized in Table 3-10.

^b TS and VS concentrations for PS are based on average value of historical data.

 $^{^{\}circ}\,\text{PS}$ flow are calculated based on production and TS concentration.

 $^{^{\}rm d}$ PS peaking factors are assumed to be the same as those of projected future conditions.

^e WAS flows and loads are based on historical data from 2011 to 2016.

^f VS of WAS are assumed to be the same as those of projected future conditions.

[§] Peaking factors for WAS flows and loads are calculated by averaging the peaking factors of historical data.

^h Combined sludge production at maximum month and maximum 2-week conditions are calculated assuming peak sludge production for both PS and WAS occur simultaneously.

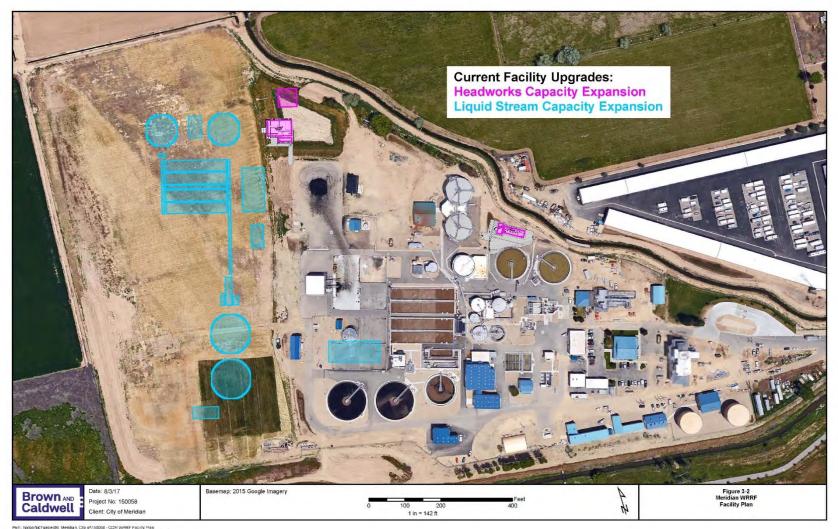
¹ Combined sludge production for the maximum day condition is calculated assuming maximum day condition occurs at the maximum day condition of one sludge stream and the maximum month condition of another sludge stream.

	Table 3	-10. Summary of Solid	s Flows and Loads	for 2040		
Parameter	Unit	Average Annual	Maximum Month	Maximum 2- Week	Maximum Day	
Primary Sludge a,b						
Sludge flow	gpd	66,200	88,400	95,100	117,500	
Total solids	lb/d	19,600	26,100	28,100	34,700	
Volatile solids	lb/d	17,400	23,300	25,000	30,900	
Percent solids	Percent	3.54	3.54	3.54	3.54	
Percent volatile solids	Percent of TS	89	89	89	89	
WAS c,d						
Sludge flow	gpd	204,600	183,900	225,500	263,900	
Total solids	lb/d	13,000	13,300	15,100	15,700	
Volatile solids	lb/d	9,400	9,400	10,900	11,600	
Percent solids	Percent	0.76	0.86	0.80	0.71	
Percent volatile solids	Percent of TS	72	70	72	74	
Sludge flow	gpd					
Combined Primary S	ludge and WAS e,f					
Sludge flow	gpd	270,700	272,300	320,500	352,200	
Total solids	lb/d	32,500	39,400	43,100	48,000	
Volatile solids	lb/d	26,800	32,600	35,900	40,200	
Percent solids	Percent	1.44	1.73	1.61	1.63	
Percent volatile solids	Percent of TS	82	83	83	84	

^a PS production based on plant influent data in the 2015 Basis of Design TM by CH2M Hill and the primary clarifier models developed for the Sidestream Nitrogen Removal TM.

Combined sludge flows and loads were used to size process equipment that treats combined sludge, such as combined thickening, digestion, and dewatering. Separate PS and WAS flows and loads were used to size process equipment that treat the two sludge streams separately, such as separate thickening and associated pumps and piping.

In general, peak solids production for combined solids are lower than the sum of peak PS and WAS production because the peak events for separate sludge streams typically do not occur simultaneously. Peak day solids flow and load for combined solids were assumed to occur at the peak day condition of one sludge stream and the maximum month condition of another sludge stream for this evaluation. BC considers this approach to be conservative for process sizing and avoids over-sizing equipment.


^b Total solids concentration and volatile solids concentration for primary sludge based on historical average data from 2011 to 2016.

c WAS productions were developed based on plant influent data and BioWin modeling in the 2015 Basis of Design TM by CH2M Hill.

^d Total solids concentration and volatile solids concentration for WAS were based on BioWin modeling results.

[•] Combined sludge production at maximum month and maximum 2-week conditions are calculated assuming peak sludge production for both PS and WAS occur simultaneously.

f Combined sludge production for the maximum day condition is calculated assuming maximum day condition occurs at the maximum day condition of one sludge stream and the maximum month condition of another sludge stream.

Update_WorkinglChapter 3 - Planning Criteria\Figure 3-2_LS and HW Layout.pdf

Figure 3-2. Meridian WRRF site layout and current upgrades

Section 4

Expansion Alternatives

This section of the report outlines the liquids and solids alternatives for expanding treatment capacity of the Meridian WRRF to meet future growth and permit conditions outlined in Section 3.

4.1 Liquid-Stream Treatment Analysis

To meet the anticipated stringent NPDES permit requirements for ammonia-nitrogen (NH₄-N), TP, and other constituents, a series of investigations were conducted in 2015 to evaluate alternatives for expanding the secondary treatment system and add-on processes to supplement the main stream processes. This section summarizes the alternatives evaluated and recommendations made in those investigations, and provides an assessment of tertiary filtration alternatives.

4.1.1 Design Flows and Loadings Used for Analysis

Unless otherwise noted, all alternatives discussed in the following sections were evaluated based on projected 2030 flows and loadings provided in the *Wastewater Facilities Plan* (CH2M Hill and HDR 2012). Projected 2040 flows and loadings are summarized in Section 3. Comparing the two sets of flows and loadings, the design flows are similar except for peak hour flow. The projected 2030 peak hour flow is 28 mgd based on the *Wastewater Facilities Plan*, while the recent projected 2040 peak hour flow is 22.3 mgd (CH2M Hill and HDR 2012). The design 2040 BOD, TSS, and phosphorus (P) loadings as described in Section 3 are lower than the previous 2030 projections, while the design ammonia and total Kjeldahl nitrogen (TKN) loadings are higher. However, when the 2040 ammonia and TKN loadings are extrapolated back to 2030 conditions, the corresponding 2030 loadings estimated for the Sewer Master Plan projections are comparable with the previous projected loadings. The previous analyses based on the projected 2030 values developed in the *Wastewater Facilities Plan* are thus considered conservative and acceptable for alternatives comparison. Updating the analyses to the current flow and loading projections is not expected to change the results.

4.1.2 Headworks Process Alternative Evaluation

The City is currently in the process of constructing a new headworks system consisting of a new influent wet well and pump station, 3 new screens, two new grit tanks, and flow measurement and splitting capabilities for the new and existing primary clarifiers, as well as space for future flow split to any new primary clarifiers. The upgrade is anticipated to be online in 2018 and has sufficient hydraulic and treatment capacity to meet the anticipated peak 2040 design year. The grit system was sized to meet buildout flows for the facility, there is space for a new screen to meet buildout flow and load conditions, and the influent pumps can be replaced with larger pumps as needed for increased flows beyond design year 2040. No expansion of this new headworks system is anticipated during the design period covered by this report.

4.1.3 Primary Process Alternative Evaluation

The City currently has two primary clarifiers with two additional primary clarifiers in construction as part of the liquid treatment expansion project. The capacity of these four primary clarifiers is sufficient to meet anticipated 2040 flows. Therefore, no new primary clarifiers are anticipated for the

duration of the design period covered by this report. To meet buildout flows and loads, there is sufficient space to accommodate up to 4 additional primary clarifiers of the same size.

4.1.4 Secondary Treatment Process Alternative Evaluation

Alternatives for expanding the secondary treatment process were evaluated to meet the anticipated NDPES requirements while accommodating future flows and loadings. Detailed descriptions of the alternatives, process modeling setup and results, and cost estimates are provided in the BC report Secondary Treatment Alternatives Evaluation dated September 24, 2015, included in Appendix C (BC 2015b). Three alternatives were developed in conjunction with the City, as follows:

- Expansion of the existing system using a 5-stage Bardenpho process (convertible to A20) to meet current and future NPDES requirements for discharge to Boise River/Five Mile Creek
- Expansion of the existing system by conversion to a 4-stage Bardenpho process for nitrogen (N) removal only, then discharging to groundwater to eliminate the need for biological or downstream chemical P removal
- Expansion of the existing system by conversion to a simultaneous nitrification and denitrification (SND) system with chemical P removal (as an alternative to the more conventional 5-stage Bardenpho process)

The following sections provide a summary of the analysis and the recommended alternative.

4.1.4.1 Alternative 1: Expansion of Existing A20/5-Stage Bardenpho System

This was considered as the base case alternative for expanding the existing system to provide both biological P and N removal, with tertiary chemical P removal as required for polishing to meet the permit requirements. The target effluent concentrations are summarized in Table 4-1.

Table 4-1. Target Effluent Concentrations for Main Process Alternative 1 (mg/L)						
Parameter	Monthly Average	Weekly Maximum	Daily Maximum			
BOD	20	30	-			
TSS	20	30	-			
TP	0.5	-	-			
P0 ₄ -P	0.1	-	-			
NH ₄ -N	0.307	-	1.25			
NOx-N	8	_	_			
TN	10	_	_			

Figure 4-1 presents a process flow schematic for the system that can operate in either 5-stage Bardenpho or A20 configuration.

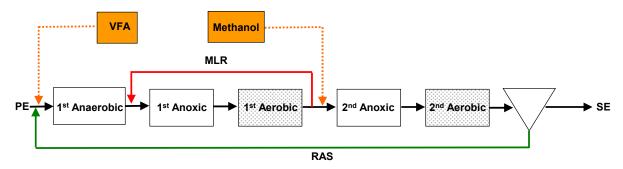


Figure 4-1. Process flow schematic for Main Process Alternative 1: 5-stage Bardenpho process

When operating in the 5-stage Bardenpho configuration, primary effluent enters the anaerobic zone, where supplementary carbon in the form of VFAs is added. Flow then moves to the first anoxic zone, where the initial stage of denitrification occurs. Flow then enters the first aerobic zone for nitrification. The MLR returns nitrate-rich mixed liquor from the end of the first aerobic zone to the first anoxic zone for denitrification. Flow passes to the second anoxic zone, where supplementary carbon is added in the form of methanol to ensure that additional denitrification occurs. Finally, flow enters the second aerobic zone to polish and strip any N gas in the solution before clarification.

The system can be converted to the simpler A20 process by operating the second anoxic cell as an aerated cell, and routing MLR from the end of the larger aeration cell to the anoxic cell, as illustrated in Figure 4-2.

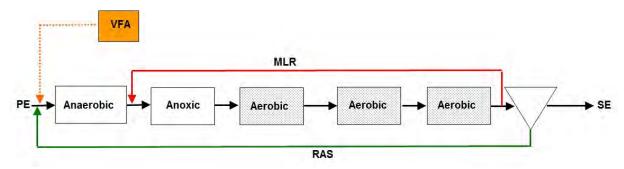


Figure 4-2. Process flow schematic for Main Process Alternative 1: A20 process

4.1.4.2 Alternative 2: Expansion for Nitrogen Removal Only (Groundwater Infiltration)

This is based on an alternative discharge to groundwater, which would require N removal only. The current outfall discharge points to both Five Mile Creek and Boise River would be eliminated. Because phosphorus is not a regulated constituent in groundwater per the Idaho Ground Water Quality Rule (IDAPA 58, Title 01, Chapter 11), biological P removal is not necessary for this alternative. Nitrate-nitrogen (NO₃-N) and nitrite-nitrogen (NO₂-N) are the primary constituents of concern for groundwater discharge. Target effluent concentrations for this alternative are given in Table 4-2.

Table 4-2. Target Effluent Concentrations for Main Process Alternative 2 (mg/L)				
Parameter Daily Maximum				
NO ₃ -N	10			
NO ₂ -N	1			
NOx-N	10			

Figure 4-3 presents the process flow schematic for the secondary system. The expanded system would consist of a 4-stage Bardenpho process that includes a first anoxic zone for initial denitrification, a first aerobic zone for nitrification, a second anoxic zone for further denitrification, and a final aerobic zone for air stripping N gas and polishing the mixed liquor prior to clarification. Methanol is added to the second anoxic zone while MLR returns nitrate-rich mixed liquor to the first anoxic zone for denitrification.

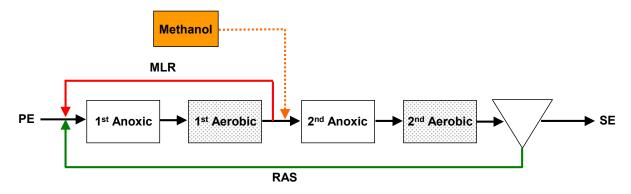


Figure 4-3. Process flow schematic for Main Process Alternative 2: 4-stage Bardenpho process

4.1.4.3 Alternative 3: Simultaneous Nitrification/Denitrification with Chemical Phosphorus Removal

This alternative maintains plant discharge to Five Mile Creek. N removal is achieved in an activated sludge process with SND to reduce the size of the basins, as well as soluble carbon requirements to drive the denitrification processes. SND requires strict control of DO in the aeration basin to force nitrification and denitrification to occur simultaneously. The low DO concentration results in less aerobically oxidized influent carbon, which allows for better denitrification at low DO. Chemical P removal is used to remove excess phosphorus in the effluent. Target final effluent concentrations are the same as those for Alternative 1 (shown in Table 4-1).

4.1.4.4 Sizing Requirements and Preliminary Capital and Operating Cost Estimates

The three main liquid process alternatives were simulated using the calibrated BioWin model from the Capacity Assessment project to determine basin sizing, sludge production rates, airflow requirements, and chemical requirements (for both chemicals added to the biological process and to any tertiary process for P removal, if required). The modeling results, based on 2030 design maximum month flow and loading conditions, are summarized in Table 4-3.

Table 4-3. Su	Table 4-3. Summary of Sizing and Operating Requirements for Main Process Alternatives				
Parameter	Unit	Alternative 1: 5-stage Bardenpho	Alternative 2: 4-stage Bardenpho (N removal only)	Alternative 3: SND and chemical P removal	
Required SRT for year-round nitrification	d	12	14	13	
Activated sludge basin volume, total	million gallons	7.25	5.75	5.0	
MLR rate, percent of PE flow	Percent	200	400	300	
WAS production	lb/d	23,250	11,350	10,772	
Airflow requirement	scfm	20,510	17,780	11,516	
Acetate use	lb/d	9,230	-	-	
Methanol use	gpd	615	310	-	
Chemical sludge from P removal to 0.07 mg/L	lb/d	1,900	-	40,500	
Alum requirement for chemical P removal	gpd	800	-	11,340	
Caustic soda requirement	lb/d	_	-	8,500	
for pH control because of alum addition (50% solution)	gpd	-	-	1,340	

Alternative 3 has the smallest basin volume requirement and lowest aeration requirements, but it has significant chemical requirements for tertiary P removal. Alternative 1 has the largest basin volume requirement, providing both N and P removal in the secondary system.

Planning-level capital costs for the three alternatives are summarized in Table 4-4. Note that all cost estimates presented here reflect preliminary estimates for evaluation purposes only. Final estimates of the recommended alternatives are presented in Section 6 of this report.

Alternative 2 has the highest capital cost, mainly because of a series of capital improvements to accommodate effluent discharge to groundwater through infiltration. Alternative 3 has the lowest capital cost, mainly because of it has the lowest aeration basin expansion requirements.

Table 4-4. Planning-Level Comparative Capital Costs for Main Process Alternatives					
Process	Alternative 1: 5-stage Bardenpho	Alternative 2: 4-stage Bardenpho (N removal only)	Alternative 3: SND and Chemical P Removal		
Greenfield aeration basin tank expansion					
Volume (million gallons)	4.9	3.35	2.6		
Total cost (at \$850,000/million gallons)	\$4,170,000	\$2,850,000	\$2,210,000		
Existing basin retrofit	Common to all alternatives				
New secondary clarifiers	Common to all alternatives				
Chemical P removal facilities	\$62,500	-	\$300,000		
Acetate addition facilities	\$106,500	-	-		
Methanol addition facilities	\$568,000	\$281,000	\$280,000		
Alkalinity addition facilities	_	-	\$100,000		
Additional chlorine chemical disinfection	_	\$1,736,000	-		
Effluent pump station	_	\$4,206,000	-		
Effluent pipeline	-	\$8,723,000	-		
Infiltration basins	-	\$5,903,000	-		

Table 4-4. Planning-Level Comparative Capital Costs for Main Process Alternatives				
Process	Alternative 1: 5-stage Bardenpho	Alternative 2: 4-stage Bardenpho	Alternative 3: SND and Chemical P	
		(N removal only)	Removal	
Land purchase ^a	-	\$1,530,000	-	
Total	\$4,907,000	\$25,228,000	\$2,890,000	

a. Assumes 96 acres at \$15,900 per acre.

Note: Planning-level costs provided in this table reflect construction costs only, and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc.

The modeling results in Table 4-3 were translated into operating costs associated with chemical addition, aeration demand, and biosolids hauling. Assumptions used to develop these costs are provided in the Secondary Treatment Alternatives Evaluation report included in Appendix C (BC 2015b). The operating costs for the three alternatives are summarized in Table 4-5. Alternative 2 has the lowest operating costs, mainly because it has the lowest overall chemical requirements, while Alternative 3 has the highest operating costs, mainly due to the significant chemical requirements to achieve chemical P removal.

Table 4-5. Maximum Month Operating Costs for Main Process Alternatives				
Parameter	Alternative 1: 5-stage Bardenpho	Alternative 2: 4-stage Bardenpho (N removal only)	Alternative 3: SND and Chemical P Removal	
Methanol	\$42,000	\$21,000	\$2,800	
Acetate	\$260,000	-	-	
Process aeration	\$41,000	\$37,000	\$23,800	
Biosolids hauling	\$11,000	\$5,000	\$27,300	
P removal chemical	\$29,000	-	\$421,000	
Alkalinity addition	-	-	\$76,000	
Effluent pump station electrical cost	-	\$16,000	_	
Additional chlorine disinfection	-	\$17,000	-	
Maintenance and replacement parts for groundwater discharge components	-	\$11,000	-	
Total per month	\$383,000	\$107,000	\$551,000	

While Alternative 3 provides the lowest capital cost, the operating costs are significant. Furthermore, this alternative presents the highest potential operational issues because of the need for stringent DO control and the potential for filamentous growth and associated bulking that may occur at the low DO operating conditions. For these reasons, Alternative 3 was not recommended for further evaluation.

Alternative 1 presents a lower capital cost compared with Alternative 2. As the City is still unsure if it will discharge to groundwater infiltration as the sole discharge for the plant or remain in Fivemile Creek, and because Alternative 1 can be configured to operate for N removal only to mimic Alternative 2, Alternative 1 (5-stage Bardenpho) was selected as the main liquid treatment process for further evaluation.

4.1.5 Add-On Process Evaluations

Several add-on processes were also evaluated, both separately and in conjunction with the 5-stage Bardenpho main process alternative selected for further study. The main purpose of these processes

is to reduce the magnitude of the expansion and operational requirements of the secondary system by providing nutrient removal in a tertiary system, reducing nutrient loads in the recycle streams returned to the liquid treatment train, or converting or modifying the existing activated sludge processes to other processes that allow larger biomass inventory to accommodate biological nutrient removal. These processes include tertiary P removal, sidestream P removal, sidestream N removal, influent equalization (EQ) to reduce nutrient load peaks, centrate equalization, tertiary nitrification, and denitrification processes (to eliminate the need for N removal in the main process), conversion of the existing activated sludge process to an integrated fixed-film activated sludge process, conversion to a BioMag process, and conversion to a membrane bioreactor (MBR) process. Detailed descriptions and results of modeling and cost analyses of these add-on processes are included in the Secondary Treatment Alternatives Evaluation report (Appendix C) (BC 2015b).

Table 4-6 provides a capital and operating cost comparison of the add-on alternatives.

Based on a comparison of the results, the lowest capital cost options are MBR, base case (5-stage Bardenpho with no add-on alternatives), and centrate load equalization. The lowest-cost options from the maximum winter month operating cost standpoint are influent EQ with sidestream N and P removal, influent EQ alone, and sidestream P removal alone. Because of this analysis, the following options were selected for further evaluation:

- 5-stage Bardenpho with sidestream P removal (Ostara-type)
- 5-stage Bardenpho with sidestream P removal and centrate load equalization
- 5-stage Bardenpho with MBR

	Table 4-6. Cost Comparison of Add-On Alternatives									
Cost	Base	Sidestream P	Influent EQ	Influent EQ + Sidestream N	Influent EQ + Sidestream N and P	Centrate Load EQ	Tertiary N + Denite	BioMag	MBR	IFAS
Capital a	\$14,200,000	\$15,100,000	\$16,700,000	\$19,900,000	\$20,800,000	\$13,600,000	\$30,900,000	\$16,400,000	\$10,100,000	\$18,400,000
Operating (maximum monthly cost) ^a	\$420,000	\$268,000	\$304,000	\$306,000	\$248,000	\$411,000	\$449,000	\$457,000	\$552,000	\$442,000

a. Capital and operating costs for all alternatives except for MBR include costs for the tertiary membrane system.

Notes:

Planning-level costs provided in this table reflect construction costs only, and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc.

IFAS = integrated fixed-film activated sludge.

4.1.6 Final Alternatives Evaluation

BioWin simulations were conducted for the three options selected in Section 1.3 for 2030 flows and loading conditions; and potential site layouts, preliminary capital cost estimates, and annual average operating costs were developed. Note that all cost estimates presented here reflect preliminary estimates for evaluation purposes only. Final estimates of the recommended alternatives are presented in Section 6 of this report.

Table 4-7 and Table 4-8 summarize the estimated capital construction costs and 2030 average monthly operating costs for the three alternatives, respectively.

Table 4-7. Capital Construction Cost for Final Alternatives					
(all based on the 5-stage Bardenpho process, 2015 dollars) ^a					
Area	With Sidestream P Removal	With Sidestream P Removal and Centrate Load EQ	With MBR		
Headworks upgrade	Not estimated/separate project	Not estimated/separate project	Not estimated/separate project		
Primary influent pump station (new)	\$4,960,000	\$4,960,000	\$3,230,000		
Primary clarifiers	\$5,650,000	\$5,650,000	\$5,650,000		
Aeration basins (new)	\$18,070,000	\$18,070,000	\$5,930,000		
Aeration basins (retrofit of existing)	\$5,190,000	\$5,190,000	\$5,580,000		
MBR treatment system			\$22,660,000		
Secondary clarifiers	\$6,460,000	\$6,460,000	\$0		
Tertiary treatment processes b	\$12,280,000	\$12,330,000	\$230,000		
Supplemental carbon addition facilities	\$680,000	\$680,000	\$680,000		
Sidestream P removal system	\$4,670,000	\$4,660,000	_		
Centrate storage tank	_	\$720,000	_		
Total	\$57,960,000	\$58,700,000	\$43,960,000		

a. Association for the Advancement of Cost Engineering Class 5 estimates, including contractor markups, labor markups, sales tax, and contingency.

b. Tertiary treatment consists of Actiflo ballasted flocculation system and alum addition facility, except for alternative with MBR, for which tertiary treatment consists of alum addition facility only.

Table 4-8. 2030 Average Monthly Operating Costs for Final Alternatives					
(all based on 5-stage Bardenpho process, 2015 dollars)					
Parameter	With Sidestream P Removal	With Sidestream P Removal and Centrate Load EQ	With MBR		
Methanol	\$27,000	\$27,000	\$24,000		
Acetate (80% solution of acetic acid)	\$50,300	\$50,300	325,000		
Process aeration	\$30,100	\$30,100	46,000		
Sodium hypochlorite	-	_	\$1,400		
Citric acid	-	-	\$3,800		
Membrane replacement cost	-	-	\$24,000		
Membrane auxiliary system	-	-	\$5,800		
Actiflo monthly cost	\$7,000	\$7,000	-		
Sidestream P removal	\$15,000	\$15,000	-		
Biosolids hauling	\$11,300	\$11,300	\$11,000		
P removal chemical	\$29,000	\$29,000	\$29,000		
Total	\$170,000	\$170,000	\$470,000		

Table 4-9 shows the estimated 20-year costs incorporating both the capital and average operating costs for a 20-year life cycle. The latter was estimated by assuming that the current annual operating cost would be approximately half of the 2030 costs.

Table 4-9. 20-Year Costs for Final Alternatives (all based on 5-stage Bardenpho process, 2015 dollars)					
Parameter With Sidestream P Removal With Sidestream P Removal and Centrate Load EQ With MBR					
Total cost a	\$93,000,000	\$94,000,000	\$141,000,000		

a. Total 20-year costs including capital cost of construction and operating costs during a 20-year period. The operating costs were calculated assuming that the 2030 costs are approximately double the current.

Based on the results shown in Tables 4-7 to 4-9, the MBR option has the lowest capital cost. However, factoring in the estimates for annual operating cost differences between the options makes the MBR option far more expensive over a 20-year life cycle compared with the other two options. For the other two options with sidestream P removal, the estimated operating costs are the same, suggesting that the benefit of installing a centrate load EQ tank does not appear to translate to reduced operating costs.

Because the cost differences are relatively small, the City decided to proceed with the sidestream P removal and centrate load EQ option. This presents the most flexible option for operation of the facility, as it can be designed to operate as either a 5-stage Bardenpho or A2O process. It can also be designed to operate as a 4-stage Bardenpho or Modified Ludzack-Ettinger process, should the City decide to go to N removal only for groundwater recharge discharge.

This initial analysis looked only at expansion of the process to meet a rated capacity of 15 mgd maximum month flow and load. This required 4 new aeration basins of the 5-stage Bardenpho configuration and two additional 120 ft diameter secondary clarifiers. These are currently being constructed as part of the liquid process expansion project and are anticipated to be put into service by 2019.

To meet the 2040 design year flows and loads, two new aeration basins and one new secondary clarifier will be required. The layout for these new processes will be provided in Section 6.

4.1.7 Tertiary Filtration Alternative Assessment

Four cloth disk filters are providing tertiary treatment at the Meridian WRRF. Tertiary treatment is required to meet Class A reuse turbidity requirements. There is no coagulation system, so filter influent TSS must have solids particles greater than 10 microns for the filters to be effective. The peak firm capacity with one of the largest units out of service is 18 mgd, which less than the projected 2030 peak hour flow of 22.3 mgd. Future potential effluent N and P limits may require a higher level of tertiary filtration. This section presents an overview of the different types of tertiary filtration alternatives to address stringent P requirements and a comparison of the pros and cons of those alternatives.

The following tertiary filtration alternatives were evaluated:

- Cloth disk filters (base case)
- Granular media filters (including both downflow and upflow filters)
- Compressible media filters
- Iron-coated sand filters
- Membrane filters

4.1.7.1 Cloth Disk Filters

The existing cloth disk filtration system can be replaced with new cloth disk filters or expanded by adding new units to meet future flow requirements. In a cloth media disk filter, high-density woven fabric is used as filter media. Each disk comprises multiple pie-shaped sections, which are mounted in a vertical plane. Each filter is made up of multiple disks. During filtration, the disks remain stationary and fully submerged. Secondary effluent passes by gravity through the media, and the filtered effluent is collected in the filtrate header, or flows into the collection tank. As solids accumulate on and within the media a mat is formed, providing additional filtration, and the influent liquid level increases. The filters are automatically backwashed based on water level differential or preset time intervals, with the disks cleaned in pairs in sequence. The remaining disks remain in filtration mode.

The most common manufacturers currently marketing disk filters include Aqua Aerobics for the AquaDisk® and AquaDiamond® filters, Veolia for the Hydrotech Discfilter, and WesTech for the SuperDisc™ filters. The AquaDisk filter can be constructed of one of several different types of fabric. It uses an outside-in flow configuration, with the solids retained outside the disk. Figure 4-4 shows a schematic of the AquaDisk filter as an example of relatively similar products. AquaDiamond filters combine traveling-bridge and cloth media filters and are typically installed in retrofit applications. The Hydrotech Discfilter, on the other hand, is constructed of micro-screen type filters and has the reverse flow path (i.e., inside-out), with the solids retained inside the disk. The WesTech SuperDisc filter is constructed of polyester filter media and has an inside-out flow path.

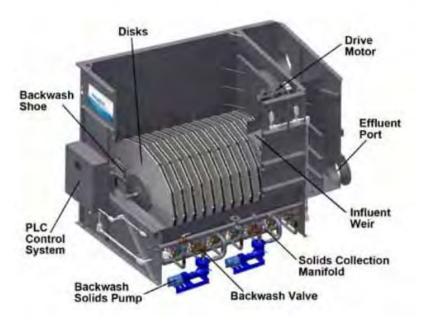


Figure 4-4. Cloth disk filter schematic

Source: Aqua Aerobics 2017

4.1.7.2 Granular Media Filters

Granular media filters can be single-media (i.e., sand), dual-media (i.e., anthracite over sand), or multi-media (i.e., anthracite, sand, and garnet). The various configurations of granular media filters include shallow or deep bed, pressure or gravity, downflow or upflow, and continuous or intermittent backwash. Downflow filters are typically backwashed intermittently and often include air scouring.

Manufacturers of downflow filters include Evoqua (Hydro-Clear® pulsed bed filter) and WesTech (pressure filters).

The upflow, continuous-backwash filter uses deep-bed sand filtration. In an upflow filter, clarifier effluent is introduced at the bottom of the filter and then flows upward through the media, while at the same time, the sand bed moves downward. The filtered effluent exits at the top of the media bed, overflows a weir, and is discharged from the weir. When the sand and accumulated solids reach the bottom of the filter, they are withdrawn by an airlift pump, lifting the mixture through the airlift pipe. This creates a scouring action of the media particles as they travel to the top of the bed. Clean sand is recycled internally after passing through a washer/separator, while the lighter, filtered particles remain in suspension and flow to the waste drain. In this manner, the sand bed is continuously cleaned while both a continuous filtrate and reject are produced. No separate backwash pumps or backwash downtime is required.

Existing upflow filters include the DynaSand® filters by Parkson, Hydrasand® filters by Andritz, and SuperSand™ filters by WesTech.

The biggest disadvantage of the upflow, continuous-backwash filters is the high backwash volume generated (about 5 to 10 percent of the filter throughput). The backwash water is returned to the aeration basins for re-treatment. Therefore, a high backwash volume will increase the hydraulic load to the activated sludge system. Parkson offers a variation of the DynaSand filter that incorporates intermittent backwashing while allowing continuous filtration. This system, termed EcoWash, reduces reject water volume by automatically closing the reject line during the no-backwash periods. Backwashing is either controlled by differential pressure measurements or set by a timer. Figure 4-5 shows a schematic of the Parkson DynaSand filter, which is relatively representative of similar upflow filters.

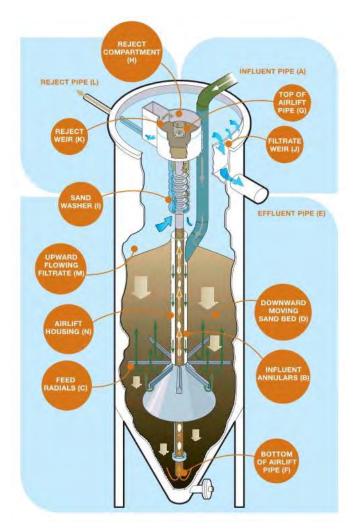


Figure 4-5. Upflow Granular Media Filter schematic

Source: Parkson 2012

4.1.7.3 Compressible Media Filters

Compressible media filters use a quasi-spherical, highly porous, and compressible medium: fuzzy balls. Operated in either upflow or downflow mode, the media are held, via upper and lower compression plates (or a compression bladder), at a specific media density. The compression can be varied, largely as a function of the type of solids being filtered and the desired solids removal rate. The filter represents a departure from conventional granular filters by allowing wastewater to flow through the media as opposed to around it. Therefore, significantly higher hydraulic loading rates (HLRs) (maximum of about 40 gallons per minute [gpm] per square foot [ft²] compared to about 5 or 6 gpm/ft² for conventional filters) are permitted. The filter is backwashed using air and influent, with the plates opened to decompress the media. The medium is cleaned by shearing forces as the fluid moves past, and by abrasion as it rubs against itself.

Two compressible media filter products are currently on the market: Fuzzy Filter made by Schreiber and the WWETCO FlexFilter™ by WesTech.

Figure 4-6 shows a schematic of the Fuzzy Filter depicting the different operating cycles.

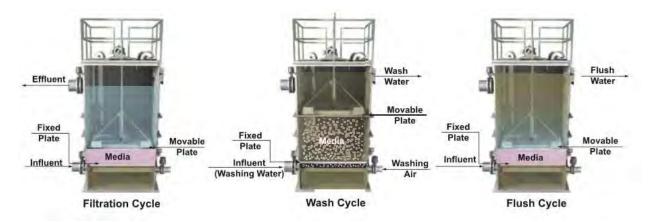


Figure 4-6. Compressible media filter schematic

Source: Schreiber 2012

4.1.7.4 Iron-coated Sand Filters

Iron-coated sand filters are marketed as reactive filters by Nexom for its Blue PRO® filters. They are designed to achieve low P and metals effluent concentrations. The Blue PRO filter is a continuous-backwash sand filter, where the sand is coated with hydrous ferric oxide (HFO). The HFO-coated sand attracts and reacts with phosphorus and metals. Water is filtered as it flows upward and the sand moves downward by gravity to an airlift device. The airlift carries the media into a washbox where the discharged HFO coating and adsorbed contaminants are separated from the media. The regenerated media is then recoated with HFO. Waste solids, along with the excess phosphorus, are removed from the filter through the backwash or reject stream.

Figure 4-7 shows a schematic of the Blue PRO system.

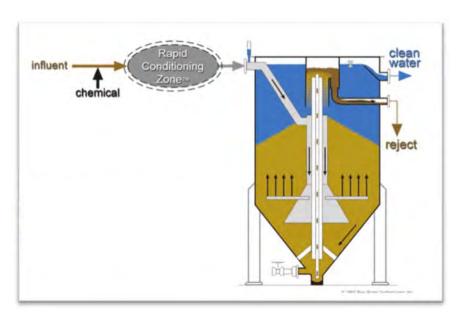


Figure 4-7. Blue PRO filter schematic

Source: Blue Water Technologies, Inc. 2010

4.1.7.5 Membrane Filters

Tertiary membranes are typically ultrafiltration membranes with a nominal pore size of 0.04 micron. An ultrafiltration unit removes all particulate and some colloidal matter from the secondary effluent. The system consists of either pressurized or submerged (i.e., vacuum) membranes; the latter are installed in process tanks. Membrane filtration systems require ancillary equipment, including inlet strainers for pretreatment (250- to 500-micron opening size), feed or filtrate pumps, backwash tank and pumps, scour air blowers, clean-in-place tanks and pumps, a compressed-air system, and chemical feed systems for membrane cleaning and neutralization. Typically, sodium hypochlorite and citric acid are used for membrane cleaning, while sodium bisulfite, sodium hydroxide, and hydrochloric acid may be used for neutralization.

Ultrafiltration membrane system suppliers include GE (ZeeWeed 1000), Evoqua (Memcor), H20 Innovation, and Pall.

Figure 4-8 shows a photograph of pressurized membrane skids.

Figure 4-8. Photograph of ultrafiltration membrane skids

4.1.7.6 Comparison of Filtration Alternatives

Table 4-10 shows a comparison of the various tertiary filtration alternatives. Capital and operations and maintenance (O&M) cost estimates were not developed as part of this investigation. In general, membrane filters are expected to have the highest capital and O&M costs because of the high cost of membranes relative to other types of media, and the high energy and chemical requirements for membrane cleaning and neutralization. For facility planning at the Meridian WRRF, it is assumed that the tertiary filtration system will be upgraded to include membrane filters mainly because of the higher effluent quality achievable, which will be required to meet a potential future lower P limit and any future limits on emerging contaminants.

	Table 4-10. Filtration Alternatives Comparison				
Alternatives	Pros	Cons			
Cloth disk filter	Small footprint Low head loss Operator familiarity	Low TSS capture efficiency More susceptible to fouling by oil and grease and water hardness scaling			
Granular media filter	Typically reliable (positive particle barrier) High HLRs (pressure filters) Can handle high TSS without blinding (upflow filters) No backwash pumping/storage (upflow filters)	High head loss (downflow filters) High backwash water volume (for continuous backwash) Airlift pipe can become plugged (upflow filters)			
Compressible media filter	High HLRs No backwash pumping/storage	Limited number of installations High head loss			
Iron-coated sand filter	Provide enhanced P removal No backwash pumping/storage	Offered by 1 manufacturer Requires many units to treat design flows			
Membrane filter	Highest effluent quality (TSS, contaminants of emerging concern) Provides barrier against bacteria and virus (may reduce disinfection requirements)	High Capital costs High O&M costs (chemicals, energy, membrane replacement)			
	Small footprint				

Table 4-11 summarizes the sizing data for the tertiary membrane system.

Table 4-11. Tertiary Membrane System Design Data ^a				
Item	Unit	Value		
Pretreatment screens				
Number of screens	-	3		
Screen type	-	Punched holes or woven mesh		
Opening size	Microns	500		
Membrane tanks				
Number of tanks	_	5		
Number of cassettes per tank	_	6		
Dimensions per tank (L x W x SWD)	ft	16.33 x 13 x 12		
Total liquid volume	gal	95,300		
Clean-in-place tank				
Number of tanks	_	1		
Tank liquid volume	gal	17,000		

a. Source: GE 2017.

4.1.8 Disinfection System Evaluation

The UV disinfection system was recently upgraded with additional units and enclosed in a building. The capacity of that system is 30 mgd total flow capacity and 22.5 mgd firm capacity. These capacities are sufficient to meet the anticipated 2040 peak hour flow of 22.3 mgd without requiring expansion of the system. The system will require additional lamps be added in the future to meet buildout flow conditions. In addition, existing UV system replacement will need to be completed due to life-cycle age within the next 10-15 years and is accounted for in the capital costs provided in Chapter 6 of this report. No expansion of the building or channels is anticipated during the planning period of this report.

4.1.9 Liquid Process Recommendations

This subsection of this report summarizes the findings of the liquids process expansion evaluation. Based on the results of the findings, the following recommendations are made for expansion of the liquid process train beyond the existing system upgrades during the 2030 planning window:

- Two new aeration basins configured as 5-Stage Bardenpho with swing cells to allow for alternate process configurations.
- One new 120 ft diameter secondary clarifier
- Tertiary treatment using membrane technology
- No anticipated expansion of headworks or primary treatment is needed to meet 2040 projected flows and loads
- No anticipated expansion of disinfection processes is needed to meet 2040 projected flows and loads

4.2 Solids Stream Treatment Analysis

While liquid expansion is required for growth and to meet stringent effluent permit limits, the solids treatment system; consisting of the biosolids thickening, stabilization, and dewatering processes; is also critical to meet City growth demands. This section of the report outlines the alternatives analysis completed for the solids treatment train.

4.2.1 Process Technology Screening Workshop

A process technology screening workshop attended by City staff and BC personnel was conducted on April 18, 2017, at the Meridian WRRF. The goal of the workshop was to discuss available solids treatment technologies and end-use alternatives, and screen those that were not viable or compatible with the long-term plan at the Meridian WRRF from further consideration.

Fermenting primary sludge will continue for the foreseeable future to produce VFAs for the liquid stream treatment process. Based on currently operation practice, the fermentation tank is reaching its capacity and an expansion is needed. Though an option of purchasing acetic acid in lieu of constructing a second fermentation tank is available, capital planning will account for the construction of a new tank and the chemical addition option will be re-evaluated as part of a separate feasibility study for fermenter system expansion at a later date. Therefore, PS fermentation was not discussed further during the workshop.

Solids treatment process technologies including thickening, stabilization, dewatering, post-dewatering, and end-use alternatives were discussed during the workshop. Details and conclusions drawn for each technology are discussed in the following sections.

4.2.1.1 Thickening

The Meridian WRRF ferments primary sludge to provide VFAs used for the liquid treatment process, and will continue for the foreseeable future. The WRRF is also considering using the Ostara Waste Activated Sludge Stripping to Remove Internal Phosphorus (WASSTRIP®) process as an alternative for struvite control. Both PS fermentation and WASSTRIP® processes work the best with separated thickening of primary sludge and WAS. Therefore, combined thickening is not considered further in this evaluation.

Currently, the Meridian WRRF uses a gravity thickener (GT) for fermented primary sludge (FPS) thickening and DAFTs for WAS thickening. The throughputs of the DAFTs are limited by the pumps and piping to transfer WAS to the DAFTs. Other than that, the performance of the existing gravity thickener and DAFTs has been satisfactory. Both technologies demonstrate the ability to effectively

thicken sludge to concentrations desired by the City. With recent operation adjustment, the DAFT has been consistently producing TWAS at a total solids (TS) concentration of 4 percent and higher. In addition, plant staff expressed confidence with their ability to operate these units continuously.

Gravity belt thickening was eliminated in the workshop because of its potential odor and relatively high maintenance requirements. Membrane thickening was also eliminated from future consideration because of its high capital and replacement costs.

Some mechanical thickening alternatives, such as rotary-drum thickener (RDT) and centrifuge, were carried forward because they have less odor potential and better performance than the existing thickening technologies.

Table 4-12 summarizes the thickening technologies discussed and the preliminary technology screening results of the workshop.

Tal	Table 4-12. Summary of Thickening Technologies Evaluation During the Workshop			
Technology	Eliminated	Retained	Reasons for Elimination/Retaining	
Gravity belt thickening	✓		Potential odor	
			High maintenance requirement	
Membrane thickening	✓		High costs	
Combined thickening	✓		FPS best achieved with separate thickening	
GT		✓	Process familiarity	
			Satisfactory performance	
DAFT		✓	Technology familiarity	
			Satisfactory performance	
RDT		✓	Potential for improved performance	
			Less odor potential	
Centrifuge thickening		✓	Potential for improved performance	
			Less odor potential	

Based on the above considerations, thickening alternatives carried forward to the conceptual-level evaluation are:

- Gravity thickener for PS thickening and DAFT for WAS thickening
- RDT for separated PS and WAS thickening
- Centrifuge for separated PS and WAS thickening

4.2.1.2 Stabilization

The Meridian WRRF currently operates two conventional mesophilic digesters. The staff are comfortable with continued operation of conventional mesophilic anaerobic digestion (CMAD) for solids stabilization because of its low cost and their familiarity with its operation.

One of the challenges that the Meridian WRRF faces is struvite formation in the digesters and downstream processes. Struvite can cause many problems to solids treatment facilities and equipment, such as reducing active digester capacity, clogging sludge piping, and even damaging equipment. One of the key ingredients for struvite is phosphate, which is mainly released from WAS during anaerobic digestion. Therefore, treating WAS with an alternative stabilization technology will reduce struvite formation in the digesters.

CleanB™ is a proprietary sludge stabilization process that can be an alternative to anaerobic digestion. Thus, the CleanB process was carried forward for more detailed evaluation as an alternative stabilization technology to anaerobic digestion.

Table 4-13 summarizes stabilization technologies discussed, and the preliminary technology screening results of the workshop.

Table 4-13. Summary of Stabilization Technologies Evaluation During the Workshop			
Technology	Eliminated	Retained	Reasons for Elimination/Retaining
TAD	✓		Potential odor from dewatering process and end product
			More vulnerable to operation changes
Temperature-phased anaerobic digestion	✓		More facilities required and high cost
Anaerobic/aerobic	✓		Complexity
			More facilities required and high cost
THP, intermediate THP	✓		High costs
			Requires specially trained operator
Enzymatic hydrolysis	✓		Lack of full-scale operation in North America
Aerobic digestion	✓		High operation costs
			No digester gas production
Lime stabilization	✓		High potential for odor and dust
CMAD		✓	Process familiarity
		·	Satisfactory performance
SMAD		✓	Can be easily modified from conventional mesophilic digestion
		,	Better performance than conventional mesophilic digestion
Acid-/gas-phased		✓	Can be easily modified from conventional mesophilic digestion
anaerobic digestion			Better performance than conventional mesophilic digestion
CleanB chemical stabilization		✓	Alternative WAS stabilization technology reducing struvite issues with anaerobic digestion

Stabilization technologies carried forward to the conceptual-level evaluation are:

- CMAD
- SMAD
- Acid-/gas-phased anaerobic digestion
- CleanB chemical stabilization

4.2.1.3 Dewatering

The Meridian WRRF currently operates two centrifuges for dewatering. The operators are comfortable with continued operation of dewatering centrifuges because of its reliable performance, and familiarity with their operation. The existing centrifuges are in good condition and should last for a relatively long time before they need replacing. A preliminary evaluation on the dewatering building indicates that there is space for adding a third centrifuge in the future, if needed.

Screw and belt filter presses offer a few advantages over centrifuges, such as lower power, polymer consumption, vibration, and noise potential. However, both screw and belt filter presses produce slightly wetter cake and have a larger footprint than the centrifuges with similar capacity.

The Meridian WRRF currently has one drying bed that is used for temporary cake storage. Because of its large footprint and low efficiency, the City has no interest in operating the drying bed in the future.

Table 4-14 summarizes dewatering technologies discussed, and the preliminary technology screening results of the workshop.

Table 4-14. Summary of Dewatering Technologies Evaluation During the Workshop			
Technology	Eliminated	Retained	Reasons for Elimination/Retaining
Belt filter press	✓		Potential odor
			High maintenance requirement
			Large footprint
			Lower cake TS
			Requires new equipment and potentially new building
Screw press	✓		Lower cake TS
			Requires new equipment and potentially new building
Drying bed	✓		Large footprint
			Potential odor
Centrifuge		✓	Process familiarity
			Satisfactory performance

Based on the above considerations, centrifuges were selected as the dewatering technology in the workshop.

4.2.1.4 Post-Dewatering Technologies and Biosolids End-Use Alternatives

The selection of solids stabilization and post-dewatering technologies is largely driven by the final use of biosolids and regulatory requirements for end use.

Dewatered solids at the Meridian WRRF are currently hauled to a local landfill for disposal. The landfill will continue to be a valid and inexpensive outlet for solids disposal in the near future.

Per the workshop, Meridian WRRF dewatered solids will continue be hauled to the landfill in the near future. Therefore, no post-dewatering technologies are considered further in this evaluation.

4.2.2 Development of Solids Process Technology Alternatives

The pre-screened technologies described in Section 1 were developed to a conceptual design level to define capital costs, feasibility to fit on the Meridian WRRF site, and process flow configuration information. This section summarizes the preliminary concept information for the selected technologies. Development of onsite technologies was based on the 2040 mass balance loading rate.

4.2.2.1 Primary Sludge Fermentation

The Meridian WRRF currently uses the primary clarifiers to thicken the primary sludge to approximately 3.5 percent TS. The thickened primary sludge is then processed in a fermenter to produce VFAs for use in the liquid-stream treatment process. Elutriation water is added before the fermented sludge is fed to a gravity thickener. The supernatant from the gravity thickener containing VFAs is then pumped to the liquid stream treatment process. A portion of the thickened sludge is recycled back to the fermenter, while the rest is sent to the digesters. A simple schematic illustrating the fermentation-thickening process is shown in Figure 4-9.

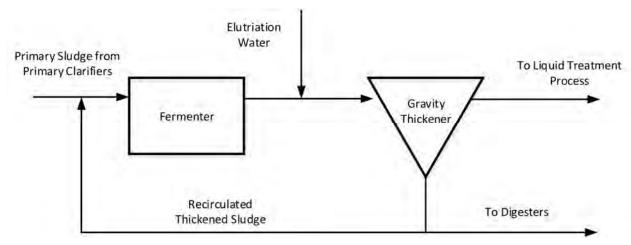


Figure 4-9. Current FPS thickening process schematic

A certain solids retention time (SRT) should be maintained for the fermenter to optimize VFA production. The SRT should be long enough to allow hydrolysis of complex compounds to VFAs, but not too long that the VFAs are converted to methane.

Historical data show that approximately 281,000 gpd of elutriation water is added to the fermented sludge, and approximately 100,000 gpd of gravity-thickened underflow is recirculated back to the fermenter. Recirculating a large amount of thickened sludge increases both the hydraulic and solids loading rates (SLRs) to the thickener, which can cause the thickener to overload, and adversely impact its performance. A potential benefit of recirculating thickened sludge is to increase the SRT in the fermenter to facilitate VFA production. However, because the TS concentration of the thicker underflow is approximately the same as the primary sludge fed to the fermenter, recirculating sludge has little impact.

The current primary solids loading rate to the fermenter indicates that it is reaching its design capacity, and that a second fermenter is required within the 2040 planning horizon. BC believes that the fermentation/thickening operation could be optimized to improve gravity thickener performance and produce more concentrated VFAs flows to the liquid treatment process. Therefore, BC recommends that the loading rates and performance for the fermentation/thickening process be reevaluated after the operation is optimized.

For planning purposes, a conceptual-level design was developed assuming that a second fermenter is required. The old digester next to the existing fermenter can be retrofitted into a second fermenter.

Table 4-15 summarizes the major equipment associated with the new fermenter. The ancillary equipment associated with the new fermenter will be in the old digester control building.

Table 4-15. Fermenter Major Equipment List ^a				
Equipment Name	Total	Duty Standby		
Fermenter cover	1	1+0		
Feed pump	2	1+1		
FPS transfer pump	2	1+1		
Odor control	1	1+0		

a. New equipment and facility only.

4.2.2.2 Thickening Technologies

As discussed previously, thickening alternatives that passed the preliminary screen are:

- Gravity thickener for PS thickening and DAFT for WAS thickening
- RDT for separated PS and WAS thickening
- Centrifuge for separated PS and WAS thickening

Advantages and disadvantages, as well as conceptual-level design for each alternative, are discussed in the following sections.

As discussed previously, the FPS/thickening process could be optimized by improving the performance of the gravity thickener and reducing recycled flow to the fermenter. The results of the process optimization would affect the flows and loadings to the thickeners. For comparison, the thickening alternative evaluation assumes that the thickened sludge recirculation would be significantly decreased, and that the elutriation water flow would be also be reduced. This would improve the efficiency of the gravity thickener and increase the solids retention time of the fermenter, resulting in more concentrated VFA flows to the liquid treatment process We recommend re-evaluating the thickening alternative after the FPS/thickening operation is optimized.

4.2.2.2.1 Gravity Thickeners

As mentioned above, GT is the current process used for FPS thickening at the Meridian WRRF. The operating principle is similar to that of a clarifier: using settling detention time to thicken solids. Gravity thickeners are easy to operate, but have limited performance potential in terms of percent TS and a significant odor control requirement. Figure 4-10 shows a typical covered gravity thickener.

Figure 4-10. Covered gravity thickener

The Meridian WRRF currently operates one 35-foot-diameter gravity thickener. Gravity thickeners can typically handle a peak SLR of up to 30 pounds per square foot per day (lb/ft²/d) of surface area and an HLR up to 760 gallons per square foot per day (gal/ft²/d) of surface area for PS thickening. Table

4-16 summarizes the results for preliminary sizing using gravity thickeners for PS flows and loadings in 2040.

Table 4-16. Gravity Thickener Sizing Summary a, b					
Parameter	Unit	Annual Average	Maximum 30-Day	Maximum Day	
Design SLR	lb/f	t²/d	3	0	
Design HLR	gal/	gal/ft²/d		760	
Feed sludge TS	lb/d	17,600	23,500	31,200	
Feed sludge flow	gpd	264,500	307,400	363,100	
Duty units	Number	1	1	1	
SLR	lb/ft²/d	18	24	32	
HLR	gal/ft²/d	275	319	377	

a. Based on 2040 solids flows and loads.

As shown in Table 4-16, one duty gravity thickener can handle PS flows and loads in 2040 except for the maximum day condition. Performance of the gravity thickener may be affected at the maximum day condition toward the end of the evaluation period (2040). because of the slightly higher SLR. Expected performance of the gravity thickener is summarized in Table 4-17.

Table 4-17. Gravity Thickener Performance Summary				
Parameter Unit Value				
Solids capture rate	Percent	90.0		
Thickened solids TS	Percent	3.5		

The results of the evaluation indicate that one duty 35-foot-diameter gravity thickener is capable of handling PS production through the design period. Performance of the gravity thickener may be slightly affected at the peak day condition in 2040 because of the slightly higher-than-recommended SLR.

The old primary clarifier adjacent to the existing gravity thickener can be retrofitted to function as a redundant gravity thickener, which will provide 100 percent redundancy. Having a redundant unit allows for non-interrupted process operation when on one unit is malfunction or taken off line for maintenance. Expected upgrades include a new gravity thickener mechanism, cover, feed pump, thickened sludge transfer pump, and expansion to the existing odor control system.

A conceptual design was developed for the new gravity thickener. Table 4-18 summarizes the major equipment associated with the new gravity thickener.

Table 4-18. Gravity Thickener Major Equipment List ^a				
Equipment Name	Total	Duty Standby		
Collector mechanism	1	1+0		
Gravity thickener cover	1	1+0		
Thickened PS recirculation pump	2	1+1		
Thickened PS transfer pump	2	1+1		
Effluent transfer pump	2	1+1		
Odor control	1	1+0		

a. New equipment and facility only.

Brown AND Caldwell

b. Based on 24/7 operation.

4.2.2.2.2 Dissolved Air Flotation Thickeners

DAFT is the current process used to thicken WAS at the Meridian WRRF. The DAFT process works by forming small air bubbles in a tank that attach to suspended solids to enhance their flotation and removal with the aid of a skimming device. Polymer is usually added as a coagulant aid. A typical DAFT installation is shown in Figure 4-11.

Figure 4-11. DAFT installation

The WAS is currently thickened in two 20-foot-diameter DAFTs. DAFTs can typically handle a peak SLR of up to 2 pounds per square foot per hour ($lb/ft^2/hr$) of surface area, and an HLR up to 2 gpm/ft² of surface area. Table 4-19 summarizes the results for preliminary sizing using DAFT for future WAS flows and loadings.

Table 4-19. DAFT Sizing Summary ^{a, b}				
Parameter	Unit	Annual Average	Maximum 30-Day	Maximum Day
Design SLR	lb/ft²/hr		2.0	
Design HLR	gpm/ft²	2.0		
Feed sludge TS	lb/d	13,000	13,300	15,700
Feed sludge flow	gpd	204,600	183,900	263,900
Duty units	Number	1	1	1
SLR	lb/ft²/hr	1.7	1.8	2.1
HLR	gpm/ft²	0.5	0.4	0.6

a. Based on 2040 solids flows and loadings.

One duty DAFT can handle WAS flows and loads in 2040 except for the maximum day condition, which may require that the second DAFT be in service. If only one DAFT is in operation during the

b. Based on 24/7 operation.

maximum day condition, the performance of the DAFT may be affected because of the slightly higher SLR. Expected performance of the DAFT is summarized in Table 4-20.

Table 4-20. DAFT Performance Summary				
Parameter Unit Value				
Polymer dose	lb/dry ton	4-10		
Solids capture rate	Percent	90		
Thickened solids TS	Percent	4.0		

The results of the evaluation indicate that one duty 20-foot-diameter DAFT is capable of handling WAS production through the design period. Performance of the DAFT may be slightly affected at the peak day condition in 2040 because of the slightly higher-than-recommended SLR.

The DAFTs are currently operated in semi-manual mode. After discussion with Meridian WRRF staff, a DAFT automation system is recommended to improve DAFT performance and reduce operation involvement. The throughputs of the DAFTs are also limited by the WAS pumps and piping. Therefore, retrofit of WAS pumps and piping is required. Table 4-21 summarizes the major equipment associated with the new DAFT.

Table 4-21. DAFT Major Equipment List ^a				
Equipment Name Total Duty Standby				
DAFT automation	1	1+0		
Retrofit DAFT feed pumps and piping	2	1+1		

a. New equipment and facility only.

4.2.2.2.3 Rotary-Drum Thickeners

RDTs feed sludge into a rotating perforated drum to allow water to separate from solid material, and a screw conveyor internal to the drum to carry sludge solids to a discharge point. A polymer is typically added upstream of the RDT to encourage large solids flocs. Figure 4-12 shows a typical RDT system.

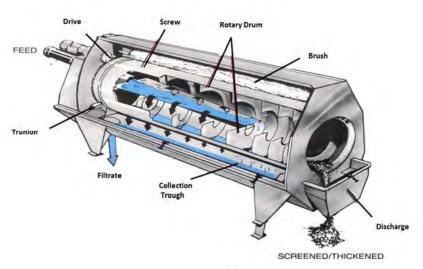


Figure 4-12. RDT

Because of the enclosed design, RDTs typically have lower odor control requirements than other alternatives, require smaller footprint, are simple to operate, and have low capital and 0&M costs

compared to DAFTs and thickening centrifuges. However, RDTs are also known to be sensitive to sludge feed concentrations and require a significant wash water demand.

Preliminary sizing and performance for separated PS and WAS thickening using RDTs are summarized in Table 4-22.

Table 4-22. RDT Sizing Summary ^{a, b}					
Parameter	Unit	Annual Average	Maximum 30-Day	Maximum Day	
PS					
Design HLR	gpm/machine		200		
Feed sludge TS	lb/d	17,600	23,500	31,200	
Feed sludge flow	gpd	264,500	307,400	363,100	
Duty units	Number	2	2	2	
SLR	lb/hr/machine	366	489	650	
HLR	gpm/machine	92	107	126	
WAS					
Design HLR	gpm/machine		200		
Feed sludge TS	lb/d	13,000	13,300	15,700	
Feed sludge flow	lb/d	204,600	183,900	263,900	
Duty units	Number	1	1	1	
SLR	lb/hr/machine	540	552	651	
HLR	gpm/machine	142	128	183	

a. Based on 2040 solids flows and loadings.

As shown in Table 4-22, four RDTs (200 gpm capacity each) are required for separated PS and WAS thickening. Two for primary sludge, one for WAS, and one swing standby unit. Expected performance of the RDTs is summarized in Table 4-23.

Table 4-23. RDT Performance Summary				
Parameter Unit Value				
Polymer	lb/dry ton	5-10		
Solids capture rate	Percent	95		
Thickened solids TS Percent 5				

Each RDT will have its dedicated feed pump, polymer system, and thickened sludge pump. We propose that the RDTs and auxiliary equipment be located in a new thickening building. A conceptual design was developed for a new RDT facility; Table 4-24 summarizes the major equipment associated with the potential new RDT facility.

b. Based on 24/7 operation.

Table 4-24. RDT Major Equipment List ^a				
Equipment Name	Total	Duty Standby		
RDT, 200 gpm	4	3+1		
RDT feed pump	5	3+2		
Polymer feed system	4	3+1		
Thickened PS transfer pump	2	1+1		
TWAS transfer pump	2	1+1		
Filtrate transfer pump	2	1+1		
Thickening building	1			

a. New equipment and facility only.

4.2.2.2.4 Centrifuge Thickeners

Centrifuge thickening feeds solids into a fast-rotating centrifuge bowl that uses centrifugal force to push solids to the outside. A slower rotating screw conveyor inside the bowl collects the solids for discharge on one end of the unit. The bowl allows water (i.e., centrate) to separate and collect in the center for discharge on the opposite end of the unit. Polymer is usually added to increase solids separation. Figure 4-13 depicts typical centrifuge thickener equipment.

Figure 4-13. Centrifuge equipment

Source: Flottweg 2017 (https://www.flottweg.com/fileadmin/user_upload/data/content-images/body-images/cms/upload/bildergalerie/Flieschema_/C5E.jpg)

Centrifuges have the potential to produce the thickest solids concentrations of the alternatives listed and have the smallest footprint. Additionally, odor control requirements are low because of the enclosed equipment. However, centrifuge installations typically incur high capital and power costs.

Preliminary sizing and performance for separated PS and WAS thickening using centrifuges are summarized in Table 4-25.

Table 4-25. Thickening Centrifuge Sizing Summary ^{a, b}				
Parameter	Unit	Annual Average	Maximum 30-Day	Maximum Day
PS (based on centrifuge with 20-inch bowl)				
Feed sludge TS	lb/d	17,600	23,500	31,200
Feed sludge flow	gpd	264,500	307,400	363,100
Duty units	Number	2	2	2
SLR	lb/hr/machine	366	489	650
HLR	gpm/machine	92	107	126

Table 4-25. Thickening Centrifuge Sizing Summary ^{a, b}				
Parameter	Unit	Annual Average	Maximum 30-Day	Maximum Day
WAS (based on centrifuge with 20-inch bowl)				
Feed sludge TS	lb/d	13,000	13,300	15,700
Feed sludge flow	lb/d	204,600	183,900	263,900
Duty units	Number	1	1	1
SLR	lb/hr/machine	540	552	651
HLR	gpm/machine	142	128	183

a. Based on 2040 solids flows and loadings.

As shown in Table 4-25, four centrifuges (each with a 20-inch-diameter bowl) are required for separated PS and WAS thickening. Two for primary sludge, one for WAS, and one swing standby unit. Expected performance of the centrifuges is summarized in Table 4-26.

Table 4-26. Thickening Centrifuge Performance Summary				
Parameter Unit Value				
Polymer	lb/dry ton	0-5		
Solids capture rate	Percent	95.0		
Thickened solids TS	Percent	5.0		

Each centrifuge will have its own dedicated feed pump, grinder, polymer system, and thickened sludge pump. We propose that the centrifuges and auxiliary equipment be located in a new thickening building. A conceptual design was developed for the new centrifuge facility. Table 4-27 summarizes the major equipment associated with the new centrifuge facility.

Table 4-27. Centrifuge Major Equipment List ^a				
Equipment Name	Total	Duty Standby		
Centrifuge, 20-inch bowl	4	3+1		
Centrifuge feed pump	5	3+2		
Polymer feed system	4	3+1		
Thickened PS transfer pump	2	1+1		
TWAS transfer pump	2	1+1		
Centrate transfer pump	2	1+1		
Thickening building	1			

a. New equipment and facility only.

4.2.2.3 Stabilization Technologies

The solids stabilization technologies that passed the preliminary screening are discussed in this section, including:

- CMAD
- SMAD
- Acid-/gas-phased anaerobic digestion
- CleanB chemical stabilization

Digestion is a core stabilization technology for reducing pathogens, reducing vector attraction, and generally making a biosolids product capable of meeting regulatory requirements associated with beneficial use and disposal.

b. Based on 24/7 operation.

All digestion processes were evaluated under three loading conditions, including (1) the typical condition, (2) service condition, and (3) peak condition depending on sludge flows and loads and digester operation conditions:

- Typical condition: Annual average sludge flows and loadings to the digestion system, assuming all digesters in service.
- Service condition: 110 percent of annual average sludge flows and loadings to the digestion system, assuming the largest digester is out of service. This allows the largest unit to be offline at sludge flows and loadings slightly higher than the annual average condition.
- **Peak condition:** Peak 14-day sludge flows and loadings to the digestion system, assuming all digesters in service.

Although landfilling continues to be the outlet for biosolids disposition at Meridian WRRF, the City considers it important for the WRRF to be capable of producing Class B biosolids to meet potential future regulatory requirements and expand outlets for biosolids end use. Therefore, the digester evaluation is based on producing Class B product.

The simplest way to achieve Class B pathogen reduction under Code of Federal Regulations Title 40 Part 503 is to meet a minimum hydraulic retention time (HRT) of 15 days. While other pathogen reduction alternatives are permissible, they could require significant process and product monitoring. Thus, a minimum 15-day HRT was selected in designing the digestion alternatives for all loading conditions.

Annual average digester gas productions for the three digestion alternatives through the planning period were estimated. Digester gas production is affected by several factors, including:

- VS loading to the digesters: conversion of volatile solids generates digester gas
- Volatile solids reduction (VSR): indicates the percentage of volatile solids entering the digestion process that are destroyed by microorganisms producing gas during digestion
- Specific digester gas production rate: amount of digester gas that is produced for each pound of volatile solids destroyed during digestion

The historical average VSR is approximately 52 percent. It is expected that the VSR will remain the same in the future for CMAD operation. It is assumed that the VSR for the SMAD and acid-gas anaerobic digestion (AGAD) will be slightly higher at 54 percent. The assumptions used for digester gas production are summarized in Table 4-28.

Table 4-28. Assumptions for Digestion Gas Calculations					
Parameter Unit Value					
VSR rate, CMAD	Percent	52			
VSR rate, SMAD and AGAD	Percent	54			
Specific biogas production rate scf/lb VSR 15					

4.2.2.3.1 Conventional Mesophilic Digestion

CMAD is a conventional sludge stabilization process currently in operation at the Meridian WRRF. CMAD employs operating temperatures between 95 and 102 degrees Fahrenheit (°F) and solids are digested under anaerobic conditions. Typically, CMAD systems are operated at a minimum HRT of 15 days, which, when requirements for VAR are met, guarantees Class B pathogen status for beneficial use. This stabilization process is known to have the longest operational history and supporting data when compared to other digestion technologies.

The benefits of using CMAD are that the plant staff currently have a significant amount of experience operating the system, producing a Class B product with a minimal amount of additional testing or

processing. Digester performance and gas production rates can be easily predicted from CMAD systems. Figure 4-14 depicts a typical CMAD process.

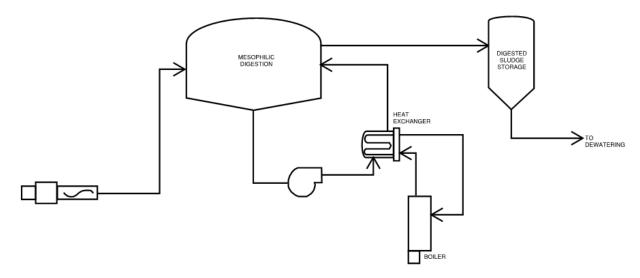


Figure 4-14. Typical CMAD process flow diagram

The design criteria for conventional anaerobic digestion are summarized in Table 4-29.

Table 4-29. Conventional Mesophilic Digestion Design Criteria							
Criterion	Criterion Unit Typical Condition ^a Service Condition ^b Peak Condition ^c						
HRT, minimum	d	15	15	15			
OLR, maximum							

- a. Annual average solids flows and loadings. All digesters in service.
- b. 110% of annual average solids flows and loadings. The largest digester out of service.
- c. Peak 14-day solids flows and loadings. All digesters in service.

The expected digester loading rates with three digesters at various loading conditions are summarized in Table 4-30.

Table 4-30. Digester Sizing Summary for CMAD ^a				
Parameter	Unit	Typical Condition b	Service Condition c	Peak Condition d
Digester feed TS	lb/d	27,500	30,300	36,300
Digester feed VS	lb/d	22,600	24,800	30,100
Digester feed flow	gpd	89,700	98,600	119,200
Duty digesters	number	3	2	3
Digester capacity, each	million gallons	0.75	0.75	0.75
OLR	lb-VS/ft ³ /d	0.07	0.12	0.10
HRT	d	25.1	15.2	18.9

- a. Based on 2040 solids flows and loadings.
- b. Typical condition: annual average solids flows and loadings, assuming all digesters in service.
- c. Service condition: 110% of annual average solids flows and loadings, assuming the largest digester out of service.
- d. Peak condition: peak 14-day solids flows and loadings, assuming all digesters in service.

The estimated digester gas flows are summarized in Table 4-31.

Table 4-31. Summary of Projected Digester Gas Flows for CMAD (scfm) a, b			
Annual Average Maximum 30-Day Maximum Day			
120	150	180	

- a. Based on 2040 solids flows and loadings.
- b. Assume 52% VSR and 15 ft³/lb VSR gas production.

Based on the design criteria in Table 4-29, three (two existing, one new) digesters are required for the CMAD alternative. The capacity of the new digester is assumed to be the same as the existing digesters. The new digester will be the same size as the existing digesters, 70 feet diameter and an active volume of 0.75 million gallons. Two digesters in service are required to meet future flows and loads, and a third digester will allow one unit out of service while maintaining stable operation and producing Class B biosolids.

We propose that the new digester be located at the open space to the west of the existing digester complex. This location will consolidate thickened sludge feeds to the digesters. Thickened sludge pumping is challenging because of high pressure requirements, non-Newtonian fluid behavior, ragging, and grease buildup. Providing short, consolidated thickened sludge piping routes will greatly reduce maintenance requirements related to this service. In addition, locating the digesters in a common location will greatly simplify connection of the digester gas piping and digested sludge transfer.

We propose constructing a new digester control building to house the mechanical equipment for the third digester. The new digester control building will be adjacent to the new digester.

The thickened PS pumps and TWAS pumps will transfer thickened sludge from the thickening facility to the digesters. Electrically operated valves located at each digester will be designed to sequentially feed PS and TWAS to each digester. Separate PS and TWAS feed lines and control valves will provide greater control of feed to the digestion process.

A conceptual design was developed for the CMAD alternative. Table 4-32 summarizes the major new equipment associated with the CMAD alternative.

Table 4-32. CMAD Major Equipment List ^a					
Equipment Name Total Duty Standby					
Anaerobic digester	1 at 0.75 million gallons				
Digester control building	1				
Digester feed valves b	2	2+0			
Digester mixing pumps	1	1+0			
Digester solids circulation pumps	1	1+0			
Sludge heat exchangers	1	1+0			
Hot water circulation pumps	1	1+0			
Digested sludge transfer pumps	2	1+1			
Sump pumps	2	2+0			
Digester gas PRV assembly	2	1+1			

a. New equipment and facility only.

PRV = pressure relief valve.

4.2.2.3.2 Staged Mesophilic Digestion

In a CMAD system, digesters are operated in parallel. In SMAD, the digesters are operated in series. Figure 4-15 shows the process schematic of this alternative including design criteria. The first stage

 ² feed valves per digester will be installed. 1 will control TWAS addition and the other will control thickening PS addition.

consists of heating and mixing the feed sludge to sufficiently stabilize the influent sludge. In this first stage, a minimum HRT is required to prevent bacteria washout. A minimum HRT of 12 days is recommended for the first-stage reactors if the organic loading rate (OLR) remains below 0.15 pound volatile solids per cubic foot (Ib-VS/ft³) of digester volume. The second stage receives, heats, and mixes sludge from the first stage, but can operate at a lower HRT because the bulk of digestion takes place in the first stage. The total HRT must be 15 days or longer to meet the Class B requirement.

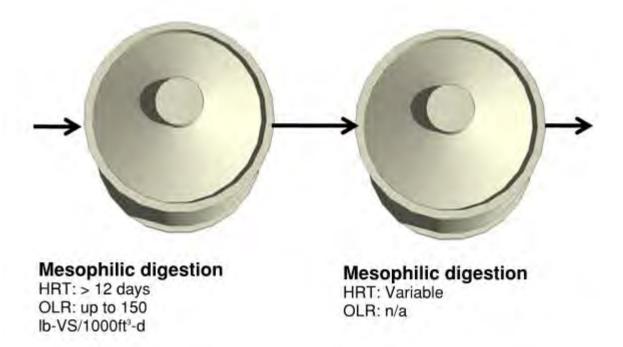


Figure 4-15. Process schematic of SMAD

The advantage of this process is that short circuiting of raw solids and pathogens is reduced because of the series configuration of the tanks. Thus, higher-quality biosolids are typical when compared against a single-staged mesophilic system operated at an equivalent detention time, although in both cases Class B biosolids are produced. A minor increase in gas production may be observed with this process. Despite these advantages, this alternative requires a large overall footprint and may require additional heating.

Digestion criteria for the staged digestion alternative evaluation are summarized in Table 4-33.

Table 4-33. Staged Digestion Design Criteria				
Parameter	Unit	Typical Condition ^a	Service Condition ^b	Peak Condition ^c
First-stage HRT, minimum	d	12	12	12
First-stage OLR, maximum	lb-VS/ft3/d	0.15	0.15	0.15
Second-stage HRT, minimum ^d	d	3	3	3

- a. Annual average solids flows and loadings. All digesters in service.
- b. 110% of annual average solids flows and loadings. The largest digester out of service.
- c. Peak 14-day solids flows and loadings. All digesters in service.
- d. Criteria based on meeting 15 days total in first and second stages.

The expected digester loading rates at various loading conditions are summarized in Table 4-34. This table assumes one smaller first-stage digester and an equally sized smaller second-stage digester with volume sized to meet the loading criteria. From a practical standpoint, if series digestion is selected, it may make more sense to build all digesters the same size at 0.75 million gallons and retain extra capacity for future loads and higher reliability.

Table 4-34. Digester Sizing Summary for SMAD ^a				
Parameter	Unit	Typical Condition b	Service Condition c	Peak Condition d
Digester feed TS	lb/d	27,500	30,300	36,300
Digester feed VS	lb/d	22,600	24,800	30,100
Digester feed flow	gpd	89,700	98,600	119,200
First-Stage Digesters				
Duty digesters	number	3	2	3
Digester capacity, each	million gallons	2 at 0.75, 1 at 0.5 e	1 at 0.75, 1 at 0.5 e	2 at 0.75, 1 at 0.5 e
OLR	lb-VS/ft ³ /d	0.08	0.15	0.11
HRT	d	22.3	12.7	16.8
Second-Stage Digesters	Second-Stage Digesters			
Duty digesters	Number	1	1	1
Digester capacity, each f	MG	0.5	0.5	0.5
HRT	d	5.6	5.1	4.2
Combined HRT	d	27.9	17.7	21.0

- a. Based on 2040 solids flows and loadings.
- b. Annual average solids flows and loadings, assuming all digesters in service.
- c. 110% of annual average solids flows and loads, assuming the largest digester out of service.
- d. Peak 14-day solids flows and loadings, assuming all digesters in service.
- e. Minimum volume of new first-stage digester to meet loading criteria.
- f. Sized same as smaller first-stage digester.

The estimated digester gas flows are summarized in Table 4-35.

Table 4-35. Summary of Projected Digester Gas Flows for SMAD (scfm) a, b		
Annual Average Maximum 30-Day Maximum Day		
130	160	190

- a. Based on 2040 solids flows and loadings.
- b. Assume 54% VSR and 15 $ft^3\slash{\mbox{lb}}$ VSR gas production.

Four digesters (2 existing, 2 new) are required for the series digestion alternative. There will be three digesters (two at 0.75 million gallons and one at 0.5 million gallons) for the first-stage digestion, and one digester (0.5 million gallons) for the second-stage digestion during normal operation. Pumping and piping configuration should allow one of the first-stage digesters to operate as a second-stage digester. This would allow the digestion system to continue operating in series mode when the second-stage digester is out of service.

In this alternative, two new digesters, each 50 feet diameter with an active volume of 0.5 million gallons, are required. One will function as a first-stage digester, the other as a second-stage digester.

A new digester control building is proposed to house the new digester mechanical equipment. We propose that the new digester and control building be located in the open space to the west of the existing digester complex.

A conceptual design was developed for the SMAD alternative. Table 4-36 summarizes the major new equipment associated with the SMAD alternative.

Table 4-36. SMAD Major Equipment List ^a				
Equipment Name	Total	Duty Standby		
Anaerobic digester	2 at 0.5 million gallons			
Digester control building	1			
Digester feed valves b	4	4+0		
Digester mixing pumps	2	2+0		
Digester solids circulation pumps	2	2+0		
Sludge heat exchangers	2	2+0		
Hot water circulation pumps	2	2+0		
Digested sludge transfer pumps	4	2+2		
Sump pumps	2	2+0		
Digester gas PRV assembly	4	2+2		

a. New equipment and facility only.

PRV = pressure relief valve.

4.2.2.3.3 Acid-Gas Anaerobic Digestion

AGAD (also known as multi-phase or two-phase digestion) is a process in which two separate tanks are designed around different process goals, allowing the conditions in each tank to be optimized for the desired metabolic process. The first phase, the acid phase, is characterized by short HRT (typically 1 to 2 days), higher OLR, and low pH. Under these conditions, the acid-forming bacteria respire optimally, converting the particulate organics to volatile acids. The gas phase receives sludge from the acid phase, and has a longer HRT. The high level of volatile acids in the sludge support a strong methanogen population. Figure 4-16 depicts this process schematic.

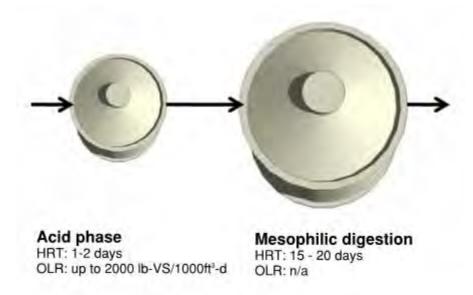


Figure 4-16. Process schematic of acid-gas phase digestion

Brown AND Caldwell

b. 2 feed valves per digester will be installed. 1 will control TWAS addition and the other will control thickening PS addition.

As with CMAD, a total 15-day HRT is desirable in the AGAD process to meet the Class B biosolids criterion, and the sum of both the acid- and the gas-phase HRT is used to achieve this goal. However, most gas production occurs in the second phase rather than the first.

Note that the acid-phase sludges and gases are corrosive, and appropriate equipment and construction materials are required. Optimization of the acid phase is important for effective operation of AGAD. Note that unlike typical fermenters as used at the Meridian WRRF for supplying VFAs to the liquid stream, the acid reactor for AGAD is typically heated to mesophilic temperatures. Gas from the acid phase includes carbon dioxide, methane, and hydrogen sulfide (H₂S), and is commonly connected to the digester gas system. If the gas phase is not connected to the gas system, extensive odor control may be required. Excessive retention times in the acid phase may increase odorous compounds, including H₂S. These compounds may impact the operational life or performance of gas utilization equipment, and may generate odors at the flares. In addition, AGAD can be challenging to operate correctly, despite its apparent similarities to CMAD.

Digestion criteria used for the AGAD digestion evaluation are summarized in Table 4-37.

Table 4-37. AGAD Digestion Design Criteria				
Parameter	Unit Typical Condition ^a Service Condition ^b Peak Condition			
Acid-phase HRT d, minimum	d	1	1	1
Acid-phase OLR d	lb-VS/ft ³ /d	2	2	2
Gas-phase HRT, minimum	d	14	14	14
Gas-phase OLR, maximum	lb-VS/ft3/d	0.15	0.18	0.18

- a. Annual average solids flows and loadings. All digesters in service.
- b. 110% of annual average solids flows and loadings. The largest digester out of service.
- c. Peak 14-day solids flows and loadings. All digesters in service.
- d. Peak day solids flows and loadings.

The expected digester loading rates at various loading conditions are summarized in Table 4-38.

Table 4-38. Digester Sizing Summary for AGAD ^a				
Parameter	Unit	Typical Condition b	Service Condition c	Peak Condition d
Digester feed TS	lb/d	27,500	30,300	36,300
Digester feed VS	lb/d	22,600	24,800	30,100
Digester feed flow	gpd	89,700	98,600	119,200
Acid-Phase Digesters	_			
Duty digesters	number	1	1	1
Digester capacity, each	million gallons	0.15	0.15	0.15
OLR	lb-VS/ft ³ /d	1.12	1.24	1.66 e
HRT	d	1.7	1.5	1.1 e
Gas-Phase Digesters				
Duty digesters	number	3	2	3
Digester capacity, each	million gallons	0.75	0.75	0.75
OLR	lb-VS/ft ³ /d	0.07	0.12	0.10
HRT	d	25.1	15.2	18.9
Combined HRT	d	26.8	16.7	20.2

- a. Based on 2040 solids flows and loadings.
- b. Typical condition: annual average solids flows and loadings, assuming all digesters in service.
- c. Service condition: 110% of annual average solids flows and loadings, assuming the largest digester out of service.
- d. Peak condition: peak 14-day solids flows and loadings, assuming all digesters in service.
- e. Acid-phase digester loading rates based on peak day solids flow and load.

The estimated digester gas flows are summarized in Table 4-39.

Table 4-39. Summary of Projected Digester Gas Flows for AGAD (scfm) a, b			
Annual Average Maximum 30-Day Maximum Day			
130 160 190			

- a. Based on 2040 solids flows and loadings.
- b. Assume 54% VSR and 15 ft 3 /lb VSR gas production.

Three new digesters, including two new acid-phase digesters and one gas-phase digester, are required for the AGAD alternative to handle future solids flows and loadings. The new acid-phase digesters will have an active volume of 0.15 million gallons each. The new gas-phase digester will be the same size as the existing digesters: 70 feet diameter with an active volume of 0.75 million gallons.

Only one acid-phase digester is required during normal condition, the second acid-phase digester is a redundant unit. Two gas-phase digesters in service are required to meet future flows and loadings, and a third digester will allow one unit out of service while maintaining stable operation and producing Class B biosolids.

A new digester control building is proposed to house the mechanical equipment for the new digesters. We propose that the new digesters and control building be located in the open space to the west of the existing digester complex.

A conceptual design was developed for the AGAD alternative. Table 4-40 summarizes the major new equipment associated with the AGAD alternative.

Table 4-40. AGAD Major Equipment List ^a			
Equipment Name	Duty Standby		
Acid-phase digester	2 at 0.15 million gallons each		
Gas-phase digester	1 at 0.75 million gallons		
Digester control building	1		
Digester feed valves b	4	4+0	
Digester mixing pumps	2	2+0	
Digester solids circulation pumps	2	2+0	
Sludge heat exchangers	2	2+0	
Hot water circulation pumps	2	2+0	
Digested sludge transfer pumps	4	2+2	
Sump pumps	2	2+0	
Digester gas PRV assembly	4	2+2	

a. New equipment and facility only.

PRV = pressure relief valve.

4.2.2.3.4 Chemical Stabilization: CleanB

The CleanB system is a plug-flow system designed to treat WAS to Class B standards through a patented chlorine dioxide injection system by BCR Environmental. It is a chemical oxidation process used to disinfect biosolids. It can be used as an alternative to anaerobic digestion processes to stabilize WAS only, or combined primary sludge and WAS.

The CleanB system uses two chemicals: (1) sulfuric acid (50 percent) and (2) sodium chlorite (15 percent). The chemicals are combined in BCR Environmental's patented generating system to

b. 2 feed valves per digester will be installed. 1 will control TWAS addition and the other will control thickening PS addition.

generate chlorine dioxide. The chlorine dioxide is injected into the WAS stream for disinfection (i.e., stabilization) and deodorization.

The system comprises a bulk chemical storage and feed arrangement and four trains (three duty and one standby) of flow-through piping with generating systems and injection of the generated chlorine dioxide into each train.

The CleanB system is relatively new, with the earliest installation in 2010. There are a few municipal installations for WAS treatment, most of which are for smaller wastewater treatment plants with an influent flow less than 5 mgd. For larger plants that have anaerobic digestion in operation, the lifecycle cost for the CleanB system is typically higher than that of anaerobic digestion, as found in a previous study BC conducted for the City of Nampa (BC 2013) and a pilot study report prepared by CDM for the City of St. Petersburg (CDM 2011).

Beyond the cost analysis, there are non-cost criteria that led to CleanB not being recommended in the CDM Smith pilot study report. The most significant criterion is that the CleanB system did not provide sufficient treatment of the WAS on several occasions. CDM Smith found that the chemical demand is likely to change because of the condition of the sludge to be treated, which makes optimizing the chemical dosage challenging (CDM Smith 2011).

Based on the above considerations, the CleanB system is eliminated from further evaluation.

4.2.2.4 Dewatering Technologies

The only dewatering technology carried through to the conceptual design was centrifuge.

A centrifuge comprises a bowl and internal screw conveyor rotating at slightly different speeds. Centrifugal force propels the heavier digested solids to the wall of the bowl at accelerations of approximately 3,000 gravitational units. Centrate (i.e., the remaining residual liquid) accumulates along the axis of rotation and is discharged over a concentric weir. An inner cylinder has a screw or scroll encircling its outer surface. Because the scroll conveyor rotates at a slightly slower rotational speed than the outer bowl (i.e., the differential), the scroll moves sludge along the inner surface of the bowl, conveying the dewatered solids to a dewatering beach, and then to its discharge. The liquid centrate is conveyed via an overflow weir to a liquid drain. A picture of a dewatering centrifuge is presented in Figure 4-17.

Figure 4-17. Dewatering centrifuge

Source: Alfa Laval 2017

 $(https://www.tpomag.com/uploads/imager/uploads/images/57685/alfa_laval_aldec_g3_180122_121252_2c7f46364ea575bd87d99\\098ec06c024.jpg)$

The Meridian WRRF currently operates two dewatering centrifuges, each with a hydraulic capacity of approximately 120 gpm and a solids capacity of approximately 1,750 lb/hr. Table 4-41 summarizes the results for preliminary sizing using centrifuge dewatering digested solids flows and loadings.

Table 4-41. Centrifuge Dewatering Sizing and Performance Summary a, b				
Parameter	Unit	Average Annual	Maximum 30-Day	Maximum Day
Centrifuge feed TS	lb/d	15,800	19,000	22,700
Centrifuge feed flow	gpd	89,700	108,800	132,800
Duty equipment	Number	2	2	2
Operation	hr/d	10	12	16
Operation	d/week	5	5	5
HLR	gpm/machine	105	106	97
SLR	lb/hr/machine	1,104	1,103	991

a. Based on 2040 flows and loadings.

Based on the results of this evaluation, two duty units are capable of processing future solids flows and loads if the operation schedule is kept for no more than 16 hours per day, 5 days per week. One new centrifuge with similar specifications is recommended to provide redundancy. The expected performance of the dewatering centrifuge is summarized in Table 4-42.

Table 4-42. Summary of Centrifuge Dewatering Performance			
Dewatering Technology Dewatered Cake TS Concentration Solids Capture Rate			
Centrifuge 18%-22% 98%			

The number of duty centrifuges required depends on the dewatering operation schedule. Only one duty dewatering centrifuge is needed if the dewatering system is operated on a 24-hour per day, 7-day per week schedule. The second unit will provide 100 percent redundancy and thus eliminates the need for a new redundant unit.

One new dewatering centrifuge is required to keep the dewatering operation schedule under 16 hours per day, 5 days per week. The new centrifuge and associated ancillary equipment will be installed in the existing dewatering building.

Plumbing in the existing centrifuges allows only one centrifuge in operation at a time; we recommend updating the plumbing and adding a new centrifuge feed pump to allow both centrifuges to work in parallel.

Table 4-43 summarizes the major equipment associated with the solids handling building.

Table 4-43. Dewatering Major Equipment List ^a				
Equipment Name	Total	Duty Standby		
Centrifuge	1	1+0		
Polymer feed system	1	1+0		
Centrifuge feed pump	1	1+0		
Grinder	1	1+0		
Dewatered cake conveyer	1	1+0		

a. New equipment and facility only.

4.2.3 Capital Costs

Planning-level capital cost estimates for the solids treatment alternatives that were evaluated were developed based on new equipment and facilities and required upgrades to the existing facilities. The results are summarized in the following sub-sections. These estimates are preliminary and for

b. Based on existing centrifuges.

evaluation purposes only. All final estimates for the recommended alternatives are updated and presented in Section 6 of this report.

4.2.3.1.1 Primary Sludge Fermentation

Capital cost estimates for the FPS process described in Section 4.2.2.1 were developed and are shown in Table 4-44. The capital costs for retrofitting the old digester to a new fermenter and associated equipment are estimated to be \$1.1 million. As discussed previously, we recommend reevaluating the need for fermenter expansion for future conditions after the FPS/thickening operation is optimized.

Table 4-44. Fermenter Capital Project Cost Estimates		
New Facility and Existing Equipment Upgrade Capital Cost		
Fermenter	\$1.14 M	

4.2.3.1.2 Thickening

Capital cost estimates for the thickening alternatives described in Section 4.2.2.2 were developed. Table 4-45 summarizes the capital cost for each alternative.

Table 4-45. Solids Thickening Alternatives Capital Project Cost Estimates					
New Facility and Existing Equipment Upgrade	Capital Cost (\$1,000)				
New gravity thickener and DAFT	\$1.22 M				
RDTs	\$5.72 M				
Centrifuges	\$7.45M				

Converting the existing abandoned facilities into a gravity thickener and using the existing DAFTs has the lowest capital cost among the three alternatives. Both the RDT and centrifuge alternatives will require all new equipment and buildings, which increase the capital costs significantly. The centrifuge alternative has the highest capital cost, mostly due to the higher cost associated with centrifuges.

One benefit for the RDT and centrifuge thickening alternative is the potential improved thickening performance. Improved thickening will reduce the hydraulic loads to the digesters. Although the increased thickening performance from RDTs and centrifuges will not eliminate the need for an additional digester for the evaluated planning period (i.e., 2040), they can be more favorable in the future when existing thickening reaches useful life and the solids production has increased to demand more digesters.

As discussed previously, we recommend re-evaluating the need for sludge thickener expansion after the FPS/thickening operation is optimized.

4.2.3.1.3 Digestion

Capital cost estimates for the digestion alternatives described in Section 4.2.2.3 were developed. Table 4-46 summarizes the estimated capital cost for each facility.

Table 4-46. Digestion Alternatives Capital Project Cost Estimates				
New Facility and Existing Equipment Upgrade	Capital Cost (\$1,000)			
CMAD	\$5.19 M			
SMAD	\$7.75 M			
AGAD	\$10.89M			

Brown AND Caldwell

The CMAD alternative has the lowest capital costs among the three alternatives, followed by SMAD. The AGAD alternative has the highest capital costs because of more required digesters and associated equipment.

One of the benefits of SMAD and AGAD is the slightly higher gas production and slightly less digested solids to dispose of compared to CMAD. Because digester gas is currently used only for heating, and dewatered solids are hauled to a landfill, the benefits of SMAD and AGAD are unlikely to offset the higher capital costs.

4.2.3.1.4 **Dewatering**

Capital costs for the dewatering process expansion described in Section 4.2.2.4 were developed and are shown in Table 4-47. The capital costs for adding one new dewatering centrifuge and associated equipment are estimated to be \$1.1 million.

Table 4-47. Solids Dewatering Alternatives Capital Project Cost Estimates				
New Facility and Existing Equipment Upgrade	Capital Cost (\$1,000)			
Centrifuge	\$1.10 M			

4.2.4 Solids Process Recommendations

This subsection presents the evaluation of historical Meridian WRRF operational data and the existing solids treatment system, and presents a cost evaluation of alternatives to determine the most appropriate solids handling process technologies for implementation for the future 20-year planning period. This evaluation included the following efforts:

- Review and validation of historical data
- Projection of solids flows and loadings for the future design condition at 2040
- Condition assessment for the existing equipment and facilities, and identification of current and future changes needed for the solids management system
- Assessment of suitable alternatives at the alternatives workshop on April 18, 2017
- Development of conceptual alternatives for the solids treatment processes for a 20-year planning period
- Development of capital cost estimates for all the alternatives identified

Based on the results of this evaluation, the following changes/upgrades to the solids treatment processes are recommended:

- The fermenter is reaching its capacity under current operation. Expansion of the fermentation
 process is needed. The old digester next to the existing fermenter can be retrofitted into a
 second fermenter as needed.
- The FPS/thickening operation should be evaluated for process operation and optimization, as it
 is likely that there are additional changes that can be made to this system to improve overall
 performance with respect to VFA generation. The capacity and performance of the PS fermenters
 and thickeners should be re-evaluated after the process optimization is completed.
- Continuation of GT for PS thickening and DAFT for WAS thickening is recommended. The old
 primary clarifier adjacent to the existing gravity thickener can be retrofitted to a new gravity
 thickener to provide redundancy. The two existing DAFT units have sufficient capacity and
 redundancy to handle future WAS flows and loadings. The DAFT feed pumping and piping should
 be retrofitted to allow more WAS flow to the DAFTs. More instrumentations and controls should
 be added to automate operation of the DAFTs.

- Continuation of CMAD is recommended for solids stabilization. A third digester is recommended
 if the City desires to consistently produce Class B biosolids.
- Continuation of centrifuge dewatering is recommended. The existing feed piping should be
 reconfigured to allow the centrifuges to operate in parallel. A third centrifuge is recommended to
 provide redundancy in case on unit is out of service.

The CMAD system can be retrofitted to produce Class A biosolids if needed to meet future regulatory or economic changes. This can be achieved in different ways, such as conversion to thermophilic anaerobic digestion (TAD) with Class A batch tanks, adding a pretreatment process such as thermal hydrolysis process, or by adding a thermal drying process after digestion and dewatering. TAD with Class A batch tanks will have lower costs and will be easier to implement than other alternatives. Converting the CMAD system to TAD with batch tanks will require addition of batch tanks and associated pumping and mixing equipment, and increasing the capacity of sludge heating system to heat sludge to thermophilic temperature.

4.3 Sidestream Treatment Technology Alternatives

Sidestream treatment is important for reducing nutrients in the recycle streams from solids thickening and dewatering processes, so that these nutrients do not need to be re-treated or removed in the liquid treatment processes. There are two types of sidestream treatment alternatives: (1) N sidestream removal and (2) P sidestream removal/recovery. Each process was looked at for viability for the City, and results are summarized here.

4.3.1 Nitrogen Sidestream Treatment Evaluation

As mentioned above, sidestream N removal was evaluated in a 2015 study, which is documented in the technical memorandum Meridian Wastewater Treatment Plant Sidestream Nitrogen Evaluation (January 9, 2015), attached in Appendix D (BC 2015a). In that study, a previously calibrated BioWin model was used to determine the impact of removing a portion of the sidestream N load on the capacity of the existing secondary activated sludge process and the upgrades necessary to meet the proposed effluent limits. An Anammox-based sidestream treatment system was assumed. In addition, the impact of yearly digester maintenance on the secondary treatment process was investigated. During digester cleaning, the centrate ammonia load greatly increases, which can stress the secondary process. The results of the study show that the high diurnal fluctuation in the raw influent N loading minimizes the impact of N removal from the centrate. Load-pacing the centrate was found to be a more cost-effective way to improve nitrification efficiency and reduce the scope of secondary process expansion. As the wastewater and centrate characteristics have not, and are not, anticipated to significantly change from those evaluated in that study, the recommendation from that study is carried forward for this facility plan: no sidestream N removal processes are recommended at this time. The City has already installed additional centrate equalization recommended from that study, and the recommended centrate load-pacing will not require additional capital installations, only control system modifications.

4.3.2 Phosphorus Sidestream Treatment Evaluation

Sidestream phosphorus treatment was evaluated in the 2015 Secondary Treatment Alternatives Evaluation study (September 24), attached in Appendix C (BC 2015b). The study used a calibrated BioWin model to determine which mainstream process would most efficiently meet future permit limitations. The study included an analysis of sidestream phosphorus removal benefits to the selected mainstream process (i.e., reducing mainstream phosphorus loads). The study demonstrated that sidestream phosphorus removal would reduce the aeration basin expansion by 26 percent and reduce annual supplemental carbon demand by 63 percent. Based on the findings installation of sidestream phosphorus removal was recommended. The 2016 Side Stream Phosphorus Removal Technology

Evaluation (BC 2016) study compared three different sidestream phosphorus removal technologies using a business case evaluation to combine capital costs and 20 years of operational costs into a single comparable figure, called the net present value. The study was updated with a new technology and new struvite related operation and maintenance costs in 2018 as part of the facility plan, the updated evaluation is included in Appendix E.

The updated sidestream phosphorus treatment evaluation compared technologies based on capital cost, operating expenses, and process benefits (mitigation of struvite operation and maintenance expense, increasing dewatered solids content, reducing polymer demand, and the potential sale of recovered struvite). The study recommends AirPrex with phosphorus sequestration as the best alternative based the highest net present value. The Airprex process places a reactor directly after digestion and forms struvite in the sludge. In the sequestration mode, the struvite remains in the sludge for final disposal. The process can easily be updated to capture and wash struvite if the plant decides to sell struvite on the fertilizer market.

Section 5

Resource Recovery

While the City of Meridian is not required by permit to recover resources from their wastewater, there are some potential advantages to some resource recovery in the treatment process. These can range from using effluent or biogas as heat and power sources to recovery of water for reuse options and nutrients or biosolids for fertilizer production. The City of Meridian WRRF generates digester gas and biosolids from its anaerobic digesters. Digester gas contains up to 60 percent methane, making it a useful energy source. The biosolids generated by the facility contain carbon, nutrients, and minerals that are valuable for soil conditioning or potentially as a solid fuel.

Digester effluent contains high concentrations of ammonia and phosphorous. These nutrients may be extracted from the effluent and marketed separately as a fertilizer. The facility's effluent may also be re-used for irrigation and other non-potable water uses.

These and other potential resource recovery opportunities as well as technologies employed for recovery and the feasibility of production for the City are discussed in this section of the report.

5.1 Potential Digester Gas Beneficial Uses

Digester gas consists of roughly 60 percent methane and 40 percent carbon dioxide, with up to a few percent of trace gasses consisting of nitrogen, oxygen, water vapor, hydrogen sulfide, and siloxanes. The methane content of the digester gas makes digester gas a potential gaseous fuel to generate heat in boilers, electricity or mechanical power in an engine, or as a raw material for generating renewable natural gas. However, the hydrogen sulfide, moisture, and siloxanes that are prevalent in digester gas may need to be removed to avoid damage to equipment that use the digester gas. Figure 5-1 illustrates the most common beneficial end uses of digester gas.



Figure 5-1. Common digester gas end uses

The following sections describe the common digester gas end uses that could be implemented at the City of Meridian's WRRF. Approximate equipment capacities are given for each use. Equipment was sized based on the projected 2040 gas production rates assuming a VSR of 52 percent and a digester gas yield of 15 standard cubic feet per pound of VSR. The resulting projected digester gas production rate resembles a standard distribution with an average value of 122 standard cubic feet

per minute (scfm) and a standard deviation of 24 scfm (Figure 5-2). The distribution of the digester gas production rate was based on the historical solids production distribution.

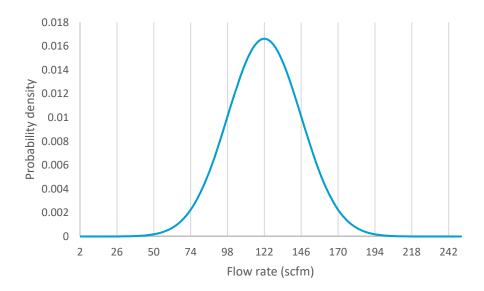


Figure 5-2. Projected 2040 total digester gas production rate distribution

5.1.1 Heating

Plant heating is the most common digester gas end use at wastewater plants, and is currently the only end use employed at the City of Meridian WRRF. Digester gas is combusted in one or both of the plant's two boilers to generate hot water. The hot water is used to heat the anaerobic digesters and the facility's buildings. Each boiler has a capacity of 60 boiler horsepower (~2 MMBtuh of hot water). Based on current digester gas use in the boilers and projected sludge production rates, one additional boiler would be necessary. The exact size of the new boiler should be determined from a thorough analysis of the plant's heating data, which was not available for this study. However, for the purposes of this facilities plan, the new boiler's capacity is estimated to be the same as existing, 60 boiler horsepower.

Figure 5-3 illustrates the boiler heat output based on digester consumption data from July 2016 to July 2017. The peak 2-week digester gas consumption was 97,000 scfd—97 percent of the boilers' peak capacities. The plant's peak 2-week sludge production (flow) is estimated add roughly 0.8 MMBtuh of peak 2-week heat demand by 2040, in addition to other future heat demands associated with a new digester (shell losses) and new buildings. Consequently, a new boiler would be necessary to meet heat demands while also retaining a standby boiler.

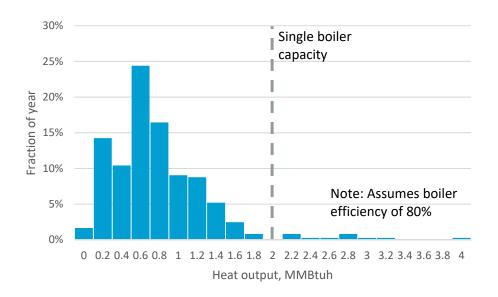


Figure 5-3. 2016-2017 boiler heat output distribution (using digester gas only)

During much of the year, the plant generates more digester gas than what is needed for plant heating. On an annual average, the plant currently uses only one-third of the digester gas it produces for plant heating. The excess digester gas is disposed of in a waste gas burner (WGB). The plant's current WGB is approximately 30 years old and has a capacity of 370 scfm of digester gas. BC recommends that WGBs have a capacity equal to or more than twice the plant's peak day production rate of digester gas. Based on this design parameter, the current WGB is adequately sized for a peak day production rate of 185 scfm. As a result, the existing WGB will have a capacity comparable to the 2040 peak day flow rate of 190 scfm. However, given the age of the WGB, and a typical design life of 30-40 years for a WGB, we recommend replacing the WGB within the next 15 years to assure adequate reliability and capacity. The City currently has a spare WGB on site for installation and is only waiting until the existing unit reaches the end of its useful life to install the new unit, which is approximately the same capacity as the existing unit.

During periods of high heat demand, usually in the winter, the quantity of digester gas produced is not sufficient to meet all of the plant's heating needs. During these times, one of both of the boilers are supplemented with natural gas. Dual-fuel burners that can combust either digester gas or natural gas are used in the boilers.

The digester gas is fed to boilers with only moisture removal conditioning, though ferric chloride is added directly to the digester liquid for sulfide control. However, depending on the future composition of the digester gas and boiler emissions requirements, the digester gas may require conditioning such as compression and reduction of hydrogen sulfide and siloxanes. Hydrogen sulfide in the digester gas creates sulfur oxide (SO_x) in the boiler exhaust and can cause corrosion in boilers and other combustion equipment. When siloxanes are combusted, they form silicon oxide (sand) that can foul burners and boiler internals. Gas compression may be necessary if siloxane removal is implemented or ultra-low NOx burners become necessary to meet emissions requirements.

Hydrogen sulfide can be removed from the digester gas in vessels containing iron-bearing wood chips, zeolite, or dried clay. Moisture must be removed from the digester gas prior to siloxane removal and is accomplished by cooling the digester gas to about 40 degrees Fahrenheit (°F). Siloxanes can be removed after hydrogen sulfide and moisture removal in vessels containing

specialized activated carbon. The iron media and activated carbon would need to be replaced periodically as they become saturated with contaminants.

While the plant currently uses hot water boilers, steam or thermal oil boilers could be used instead to accommodate a wider range of heating applications. Hot water can only be heated to about 210°F, but steam and thermal oil can be heated up to 300 and 550°F, respectively, and could be used for a wider variety of heating applications including biosolids drying (see Section 4.3) and absorption chilling, in addition to digester and space heating. Absorption chilling uses the heat from steam or thermal oil to drive a refrigeration cycle that generates chilled water that can be used for equipment and/or space cooling.

At present, digester gas can be used in boilers for plant heating without gas conditioning. The boiler air permit limits the H_2S concentration in the digester gas to less than 3,600 ppm. Ferric chloride is added to the sludge prior to digestion, which keeps H_2S in the digester gas at concentrations low enough that gas conditioning is not necessary. As a result, continuing to use digester gas for plant heating is recommended. The plant currently uses a hot water loop for plant heating; at this point, converting to steam or thermal oil would not be beneficial since there are not substantial needs for high-quality heat at the plant (e.g., large cooling loads or thermal drying).

5.1.2 Electricity Generation

Digester gas is sometimes used at wastewater treatment plants in gas-fueled engines to drive electrical generators. The electricity generated is used to reduce the plant's reliance on grid electricity. Unless co-digestion using outside additional digester feedstocks is employed, the electricity generated would not be sufficient to power the entire plant. In addition to electricity, jacket water and hot exhaust gas is generated by the combustion engines. The heat from these sources are commonly used for any of the plant heating applications described in the previous section. The generation of heat and electricity is referred to as cogeneration or combined heat and power.

The most common engines are reciprocating internal combustion engines and gas turbines. Reciprocating engine-generators fueled on digester gas are similar to automobile engines and are available in a wide range of electrical generation capacities from 50 kW up to 2,500 kW. Reciprocating engine-generators have high fuel-to-electricity conversion efficiencies, generally 36 to 40 percent. About 40 percent of the energy not converted to electricity heats water in the engine and can be transferred to the plant's hot water circulation loop for plant heating. Another 40 percent of the heat may be recovered from the engine exhaust. The engine exhaust is typically 900 to 1,000°F and can be used to generate steam or heat thermal oil, or used to dry biosolids. The remaining 20 percent of the energy becomes heat in the engine lubrication oil or radiates to the engine's enclosure and is generally not recoverable.

There are numerous reciprocating engine-generator manufacturers that offer packages for digester gas: GE Jenbacher, Caterpillar/MWM, Cummins, MTU/Rolls Royce, MAN, Mitsubishi, and Dresser Rand/Gauscor.

Gas turbine engines are and are available in electrical generation capacities of 1,000 kW and higher. As a result, these engines are employed at large wastewater treatment plants. Their fuel-to-electricity conversion efficiencies are lower, about 25 percent, but virtually all of the remaining energy creates high-temperature (1,000°F) exhaust that can be used for biosolids drying, to make steam, or to heat thermal oil. Gas turbine engines have cleaner emissions than reciprocating engines, and are therefore easier to permit in strict air quality districts. Gas turbine manufacturers include Solar and Kawasaki.

Fuel cell systems designed to operate on methane gas have been tried at the pilot scale at a few wastewater treatment plants. Methane fuel cells create hydrogen gas from the methane and

combine it with oxygen in a fuel cell to generate electricity without combustion. None of the installations have been successful, largely because even trace quantities of hydrogen sulfide and other micro-constituents will damage fuel cells.

Digester gas conditioning is required to remove hydrogen sulfide and siloxanes. The sulfur oxides and silicon oxide otherwise generated during combustion create corrosive and abrasive compounds that will quickly erode, corrode, and foul engine internals and emissions control devices.

Based on the projected 2040 digester gas production rates, a reciprocating engine with an electrical output capacity of 600 kW would maximize the use of the plant's digester gas. However, the heat produced by cogeneration would not be adequate to heat the plant digesters and buildings in the winter. Some plants with cogeneration provide additional heat with natural gas or propane in a supplemental boiler. Other plants use oversized cogeneration units and supplement the digester gas with natural gas (or landfill gas where available) to generate adequate heat for the plant, as well as additional electricity.

As examples, the City of Pocatello wastewater treatment plant and the Central Valley WRF in Salt Lake City employ reciprocating engine cogeneration facilities. Central Valley WRF fuels their engines with roughly 50 percent digester gas and 50 percent natural gas, by energy content, to generate most of the plant's electricity needs and uses both jacket water and engine exhaust heat to generate hot water. The hot water is used to heat the plant's facilities and anaerobic digesters and also to make chilled water via an absorption chiller in the summer.

Cogeneration requires a significant capital and maintenance investment. Given the relatively low cost of electricity to the plant at present, there is not likely a strong economic advantage to making such an investment. A typical 20 year payback for cogeneration requires a power cost of greater than \$0.08-0.10/kWh, which is higher than that currently paid by the City. If future utility prices make cogeneration an attractive digester gas end use, one or more engine-generators and associated equipment could be located in a new building with a footprint of approximately 3,000 square feet.

5.1.3 Biomethane

Biomethane, also known as renewable natural gas, is methane that has been extracted from digester gas and compressed for injection into the utility natural gas pipeline or for use in compressed natural gas (CNG) vehicles. The methane is separated from the carbon dioxide via a series of physical and/or chemical processes collectively referred to as gas upgrading.

There are four common gas upgrading processes: membrane separation, pressure swing absorption, water solvent, and amine solvent. Each of these technologies are described briefly below:

- Membrane separation. Membrane separation gas upgrading compresses the digester gas into special membranes that allow carbon dioxide (tail gas) to pass across the membrane while the methane (product gas) is retained within the membrane. The product gas is further compressed for vehicle use or pipeline injection. Two manufacturers offer gas separation membranes: Air Liquide and DMT Carborex. BioCNG packages Air Liquide's membranes with compressors and gas conditioning equipment into systems with capacities from 50 to 400 scfm of digester gas.
- **Pressure swings absorption.** The pressure swing absorption process compresses digester gas into vessels that contain a media that absorbs carbon dioxide at high pressures. When the media becomes saturated with carbon dioxide, the vessel is switched offline and a CO₂-free gas is used to remove the CO₂ from the media. When the media is recharged, the vessel is then switched online to resume gas upgrading. Guild Associates and Xebec currently offer pressure swing absorption systems for digester gas.
- Water solvent extraction. Water-solvent gas upgrading compresses the digester gas and bubbles it through a pressurized column of water. At high pressure, the water absorbs CO₂ and hydrogen

sulfide while the methane remains in a gaseous form and exits the top of the column. The water is then depressurized in a separate vessel and aerated to release the CO₂ and hydrogen sulfide. Greenlane is currently the only company to offer a water solvent system in the United States.

• Amine solvent extraction. Amine solvent gas upgrading works similarly to water solvent extraction, except that it is done under near-atmospheric pressure and heat is used to drive the CO₂ out of the amine solvent. Amine solvent extraction is common in the natural gas refining industry, but is uncommon at U.S. wastewater treatment plants. Läckeby Water offers an amine solvent system sized for wastewater treatment plants.

In all cases, the tail gas contains carbon dioxide and some residual methane, hydrogen sulfide, and other constituents that must be flared in a specialized low-Btu WGB or thermal oxidizer.

Biomethane has commanded high market values in recent years thanks to the federally-mandated Renewable Fuels Standards. This program requires that a certain volume of the vehicle fuels sold in the United States be from renewable resources, such as ethanol, biodiesel, and biomethane. Renewable identification numbers (RINs) can be obtained for biomethane that is produced and used to fuel CNG vehicles. RINs for biomethane generated by municipal sewage sludge have had market values ranging from \$2.60 per therm to 3.90 per therm in the past 12 months. As a result of the high revenues associated with biomethane, gas upgrading processes have become popular at wastewater treatment plants in recent years. The federal renewable fuel volume requirements are only defined through 2022, however they are currently anticipated to continue at present levels beyond 2022.

The quantity of biomethane that could be generated by a typical wastewater treatment plant is usually far more than can be consumed on-site by city vehicles. Consequently, gas upgrading installations either only upgrade a small fraction of the plant's available digester gas, or upgrade a large portion of the digester gas and inject it into the plant's natural gas utility. The biomethane can then be "wheeled" through the natural gas pipeline to public CNG fueling stations. The biomethane quality requirements for pipeline injection are more restrictive than the fuel quality requirements for on-site CNG vehicle use, and real-time gas quality monitoring is generally required. These requirements increase the cost and complexity of the gas upgrading process.

As an example, King County's South Treatment Plant in Renton, Washington currently produces about 500 million Btu per day (MMBtu/d) of pipeline-quality biomethane using a water solvent system. The system is approaching 30 years of age and a detailed design is in progress for an Air Liquide gas membrane separation system to replace it by 2021. Accounting for the sale of RINs, the project is expected to pay back in about 11 years.

The Persigo wastewater treatment plant in Grand Junction, CO produces approximately 40 scfm of biomethane (60 MMBtu/d or 500 gasoline gallon equivalents) and pipes it directly over a distance of about 6 miles to the City's transit bus fueling station. The gas upgrading system is a packaged gas membrane separation system provided by BioCNG.

The appropriate capacity for a digester gas upgrading system depends on the process. Assuming a gas membrane separation system with a high methane recovery rate (86 percent), the City of Meridian's WRRF could produce up to 140 MMBtu/d of biomethane. This is equivalent to about 1,200 equivalent gallons of gasoline per day.

While gas upgrading can be an economical end use for digester gas, at present the City of Meridian has not evaluated opportunities associated with purchase of a large CNG vehicle fleet or sale of biomethane to a large natural gas pipeline nearby (which currently does not exist within several miles of the WRRF). Meridian should continue to investigate the challenges and opportunities of a biomethane program and if opportunities become available to the City of Meridian that make gas

upgrading attractive, the equipment could be located at the facility within a footprint of approximately 3,000 square feet.

5.2 Potential Biosolids Beneficial Uses

Biosolids produced by the City of Meridian's WRRF are currently transported to the local landfill. Biosolids contain organic carbon, nitrogen, phosphorous, and other micronutrients and minerals which makes them useful for fertilizing crops and improving soils when used as a soil amendment. If the biosolids are dried, their carbon content also makes them a potential solid fuel and used in place of coal or wood. This section describes potential beneficial products that are made from biosolids and the processes that would be necessary to create these products.

Beneficial use of biosolids on land is regulated under federal law by US EPA Part 503 regulations (Code of Federal Regulations Title 40 Part 503). This regulation defines principally two levels of treatment: Class A designation requires a process to further reduce pathogens (PFRP) in which biosolids are treated with high temperatures or chemicals to reduce pathogens to very low levels (comparable to pasteurization) and are deemed suitable for unrestricted use by the public as a soil amendment. Class B biosolids are treated to reduce volatile solids to below a prescribed, reducing vector attraction, and at elevated temperatures to significantly reduce pathogens, a process to significantly reduce pathogens. Class B biosolids are permitted to be used on private agricultural lands, but with limited application rates, set backs from public access, and monitoring.

Figure 5-4 summarizes these products and processes.

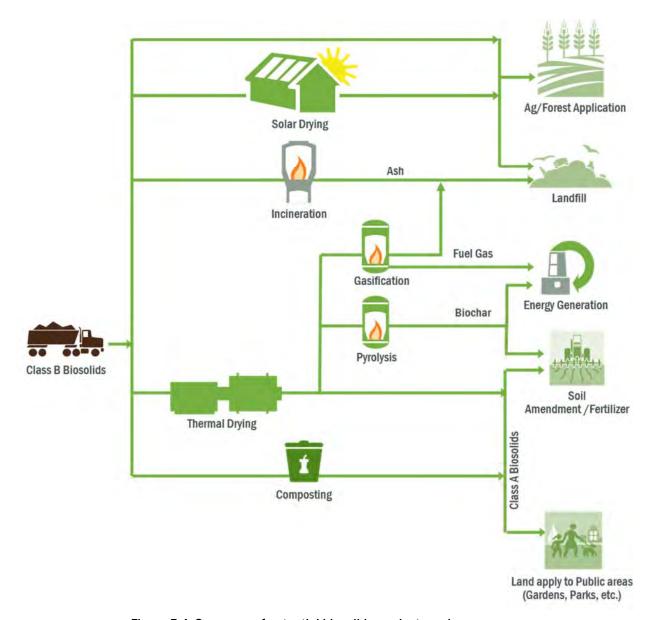


Figure 5-4. Summary of potential biosolids products and processes

The WRRF is expected to generate an average of 15,775 dry lb/day of biosolids in 2040, with a peak day production rate of 23,760 dry lb/day (see Chapter 3). Based on these values, the capacities for each biosolids end use are estimated assuming all of the biosolids are applied toward the end use.

5.2.1 Class B Land Application

Class B biosolids can be applied directly to agricultural lands, forests, or marginal lands (e.g., mine reclamation land) where public access is restricted. Since the organic carbon, nitrogen, and phosphorous in the biosolids are beneficial to the soil, the product can offset commercial fertilizers. Typically, the biosolids is provided to farmers free of charge. For the City of Meridian, the distance over which the biosolids must be transported to an accepting farmer may be significantly greater than the distance to the local landfill. Since the WRRF already produces Class B biosolids, the City could elect to land apply their biosolids with no modification to the plant.

As an example, the City of Boise and King County currently land apply biosolids to agricultural and forest lands. The City of Boise land-applies its biosolids from its two wastewater treatment plants at its Twenty Mile South Farm.

Currently the City disposes of biosolids at the landfill. Dewatered cake is stored on the treatment plant site on an old drying bed and trucked to the landfill on a periodic basis. To make agricultural use economically attractive to the City, the hauling and application costs would have to be lower than current costs. One option the City could consider is continuing landfill disposal as their primary disposal option, while at the same time allowing local farmers to pick up dewatered biosolids from the plant at their own cost and be responsible on their own for complying with Part 503 limitations and reporting requirements and acquiring any necessary permits from the state. Alternatively, the City could truck biosolids to local farmers willing to apply and monitor their application as required, as long as the hauling distance and related cost to the City is less than landfilling costs. A modest educational and advertisement campaign by the City could help encourage farmers to participate.

5.2.2 Class A Compost

Biosolids composting would involve blending of dewatered biosolids with bulking material (e.g., yard, agricultural, or forestry waste) and aerating/holding the blend according to US EPA Class A prescriptions to produce compost, a humus-like product suitable for unrestricted beneficial use. Blending is necessary to achieve the water retention, density, and handling properties that are desirable for composting. Compost blends generally consist of one part biosolids to 1.5 to 3 parts of bulking material.

As the organic material in the compost mass degrades, the compost itself heats to temperatures within the pasteurization range, destroying pathogenic organisms. Composting is a mostly aerobic process, as the introduction of oxygen accelerates microbial reactions necessary to achieve pasteurization temperatures. Composting is considered a PFRP in achieving Class A pathogen reduction under the Part 503 regulations, but temperature and processing time must be carefully monitored. While the compost feedstocks reduce in mass during the degradation inherent in the composting process, the addition of a bulking agent translates to having a similar or somewhat greater volume of product to manage. Unlike Class B biosolids that can only be applied to limited-access areas, Class A biosolids may be applied to gardens, lawns, parks, and other public or residential areas.

Biosolids composting has been successfully practiced in the United States for several decades. Common composting technologies include in-vessel, aerated static pile, and windrow composting. These are distinguished by the manner in which feedstocks are introduced and mixed, and how the active piles are aerated. In-vessel systems allow composting to occur in an enclosed vessel and are typically selected because of the ability to control odors and a somewhat higher process throughput. In aerated static-pile systems, aeration is provided below the pile through aeration piping. In a windrow system, tall rows of compost are "built" and periodically turned with specialized equipment to aerate the compost. Windrow composting is typically the least expensive composting option, but concerns over odors and emissions can make it difficult to site these installations.

Composting in general has a large footprint, as separate process areas are required for preprocessing (blending of biosolids with other feedstocks/bulking agents), active composting,

screening/post-processing, and curing/storage. For example, to process all of the plant's biosolids through 2040 with a 2:3 biosolids:bulking agent ratio would require a 4- to 5-acre aerated static pile facility. In addition to considering available land for a composting facility, the capacity of the local compost market would also need to be considered.

As an example, Central Valley WRF in South Salt Lake, Utah composts their biosolids with shredded landscape wood waste to a Class A product using in-vessel aerated static piles. The compost is sold to the public under the name of Oquirrh Mountain Compost.

The City of Meridian could truck their biosolids to a composting facility as an alternative to landfilling it, with no modifications to the facility.

Costs for composting can be high and are typically only partially offset by revenue from the sale of the compost product. As an example, the Inland Empire Utilities Agency in southern California pays a tipping fee of about \$50 per wet ton of biosolids to a private composter who generates the compost and markets and retains revenues from sales. With current City of Meridian landfill tipping fees at less than \$30 per wet ton, a composting operation is not likely be economically viable.

5.2.3 Class A Soil Amendment

Soil amendments consist of biosolids mixed with other carbonaceous materials (i.e., agricultural or forestry waste) to augment the texture, moisture retention, and nutrient content of the soil amendment product.

Producing a soil amendment is advantageous over composting in that it does not require the acreage and monitoring of compost piles. If Class A biosolids are produced by the plant, they can be processed directly into a soil amendment. If the plant produces Class B biosolids, they must be thermally processed to Class A biosolids (see below for more information on thermal treatment), then used to produce a soil amendment. Because the soil amendment contains Class A biosolids, it has a wider range of potential uses.

The City of Tacoma in Washington produces and sells a soil amendment it calls TAGRO to local residents and businesses. TAGRO is a mixture of approximately 50 percent Class A biosolids from their temperature-phased anaerobic digestion process, 25 percent sawdust, and 25 percent sand. Since the City of Meridian's WRRF only produces Class B biosolids and Class A biosolids production was not recommended for expansion of the solids facilities as discussed in Chapter 4, this end use is not considered further in this facilities plan.

5.2.4 Thermal Treatment

After digestion, the biosolids may be heated for the purpose of reducing/eliminating pathogens to create Class A biosolids, and/or removing moisture to reduce the volume and weight of the biosolids. This section discusses three thermal treatment processes that may be applied to municipal biosolids: solar drying, and two types of mechanical dryers.

Solar drying is a low-energy means of reducing the weight and volume of biosolids through evaporation of the water bound up in the solids. Historically, this took the form of open-air drying beds, but because of both aesthetic (e.g., odors, vectors) concerns and the desire to increase drying bed throughput, covered solar drying beds and greenhouse-type installations are becoming more common. The product resulting from solar drying typically has a total solids content around 75 percent. In addition, while the process does reduce pathogens, it is not considered a PFRP for achieving Class A pathogen reduction under federal law (Part 503). Instead, utilities wishing to market or distribute their product as Class A biosolids must test for bacteria and viruses per federal regulations. Consequently, solar drying is generally only used as a means to reduce transportation costs for landfilling or land applying the biosolids.

Thermal drying of biosolids involves using heat generated at the plant to dry the biosolids to a low moisture content, usually less than 10 percent moisture. The resulting biosolids are Class A and the weight and volume are significantly reduced. The biosolids may be landfilled, land applied, used to make soil amendments and fertilizers, or used as a solid fuel.

Biosolids dryers are manufactured by several established companies including Kruger, Komline-Sanderson, Huber, and Andritz. Biosolids dryers are available in different configurations that are categorized by their heating method: direct drying or indirect drying. These dryer technologies are briefly discussed in the following sections.

5.2.4.1 Direct Dryers

In direct dryers, moisture removal is achieved predominantly by convective heat transfer. As an example, convective heat transfer is similar to using a hair dryer. Air is blown over a hot surface, transferring the heat with the flow of the air. For a direct dryer, hot air is produced through the combustion of fuel in a furnace, boiler, or combustion engine, or the use of an air-to-air or liquid-to-air heat exchanger with a high-grade heat source. The resulting hot air is exhausted directly into the drying vessel. The hot gases come into direct contact with the dewatered cake, causing the water within the cake to evaporate. Direct dryers are capable of making a high-quality biosolids product consisting of uniform, hard, spherical pellets similar in appearance (with the exception of color and odor) to commercial inorganic fertilizer products. Most of the largest thermal drying operations in the United States use direct dryers to create their biosolids products. Two types of commonly used direct dryers are drum dryers and belt dryers.

An advantage of the belt drying system is that it operates at lower temperatures than a drum dryer, and typically creates an air stream with fewer odors. The typical operating temperature for the hot air in a belt dryer is 280°F-350°F, whereas the typical operating temperature for a drum dryer is 800°F-1100°F. This permits a belt dryer to use a wider variety of heat sources than a drum dryer, although their physical size is larger to facilitate the necessary heat transfer at lower temperatures.

5.2.4.2 Indirect Dryers

Indirect dryers achieve moisture removal predominantly by conductive heat transfer, and the biosolids are kept separate from the primary heated drying medium. An example of conductive heat transfer is frying an egg in a skillet. The skillet is heated by the stove and transfers heat into the egg through the surfaces in physical contact with the egg. This is referred to as indirect heating because the egg is not in direct contact with the heating medium (i.e., the stove).

In an indirect biosolids dryer, the biosolids are heated through physical contact with the heated surfaces of the dryer. The indirect dryer consists of a stationary vessel with an internal agitator and stirring assembly that is heated with a heat conveyance medium (steam or thermal oil) that is either heated in a boiler or comes from another high-grade heat source. The dewatered cake enters the stationary vessel of the indirect dryer and is continuously agitated as it passes from one end of the vessel to the other. The heat is transferred from the drying medium to the cake by circulating the medium through the internals of the stirring mechanisms, augers, shafts, disks, dryer casing, or other equipment that comes into contact with the cake. A small flow of air is passed through the vessel to carry away water vapor. Indirect dryers are typically identified by the internal mechanism used to agitate and convey the material in the dryer. Thus, these dryers are commonly known as screw dryers or paddle dryers. Indirect dryers may be operated on a continuous basis or batch-operated and can use heat at a temperature of 350°F-400°F.

Regardless of the dryer technology, thermal drying is energy-intensive. Energy requirements vary somewhat among dryer manufacturers, but as a conservative estimate, 1,600 Btu's of heat is required to evaporate one pound of water from biosolids. Assuming the solids can be thickened to 20 percent, drying all of the plant's biosolids to 90 percent dry weight would require an average of about 100 MMBtu per day. The plant's average digester gas production would just be adequate to provide the required heat for drying the biosolids. Consequently, natural gas would be expected to be

needed to supplement the plant's digester gas supply since the boilers impose an additional fuel demand of up to 120 MMBtu per day.

The dried product can be landfilled, land-applied, sold as fertilizer to businesses or to the general public, or sold as a solid fuel to coal power plants or cement factories. The Milwaukee Metropolitan Sewerage District uses a drum dryer to dry their biosolids. The biosolids are sold nationwide as Milorganite. At present, there is not a strong economic or regulatory driver for drying biosolids since the City of Meridian can cheaply landfill their biosolids. However, space will be reserved at the plant's location for a biosolids drying facility in case changes to the market and/or regulations make dried biosolids economically advantageous.

Dried biosolids may be further processed to generate additional fuels or soil conditioning products, as will be discussed in the next section.

5.2.5 Thermal decomposition

In contrast to thermal treatment, thermal decomposition processes, including incineration, gasification and pyrolysis, modify the chemical makeup of the biosolids to generate various products.

Biosolids may be incinerated to reduce the biosolids to its ash content – about 10 percent of its dry weight. The ash generally has no value and would be landfilled. Incineration is more common in the Eastern United States where space and disposal options are limited. Janicki Bioenergy has recently introduced an incineration process that recovers some of the water and energy content from the biosolids to generate a small amount of electricity and reclaimed water.

Gasification and pyrolysis heat the biosolids to high temperatures in the absence of oxygen to produce syngas, a combination of hydrogen, carbon monoxide, and carbon dioxide. The syngas could be used on-site for heat or power generation. In the gasification process, only syngas and ash are produced. In the pyrolysis process, less syngas is produced while the process also generates biochar. Biochar is similar to charcoal and can be sold as a solid fuel or as a soil conditioner. While the gasification and pyrolysis processes are successful in the fossil fuel and charcoal industries, they have not been reliably applied to municipal biosolids beyond the pilot scale.

Of the thermal decomposition technologies, only incineration is considered technically viable for municipal biosolids. Incineration is attractive when there is limited space at the wastewater treatment plant and landfilling or land applying biosolids is not a viable option. Further, air permits for incinerator technologies can be difficult to acquire and are often more stringent that typical air permits for waste gas burner systems, as they typically require monitoring of fugitive metal emissions like mercury. As a result, incinerators are uncommon in sparsely populated western states like Idaho. Typically, incineration is accomplished on raw, undigested biosolids. The City of Meridian already has significant investment and familiarity with their digestion system. For these reasons, these technologies were not considered further.

5.3 Sidestream Nitrogen Recovery

Sidestream nitrogen removal can be carried out using a biological or non-biological (physical-chemical) process. This section summarizes the findings of a previous biological nitrogen removal study and discusses non-biological sidestream removal technologies.

5.3.1 Nitrogen Sidestream Treatment Evaluation

Sidestream N removal was evaluated in a 2015 study, which is documented in the technical memorandum *Meridian Wastewater Treatment Plant Sidestream Nitrogen Evaluation* (January 9, 2015), attached in Appendix D (BC 2015a). In that study, a previously calibrated BioWin model was used to determine the impact of removing a portion of the sidestream N load on the capacity of the

existing secondary activated sludge process and the upgrades necessary to meet the proposed effluent limits. An Anammox-based sidestream treatment system was assumed. In addition, the impact of yearly digester maintenance on the secondary treatment process was investigated. During digester cleaning, the centrate ammonia load greatly increases, which can stress the secondary process. The results of the study show that the high diurnal fluctuation in the raw influent N loading minimizes the impact of N removal from the centrate. Load-pacing the centrate was found to be a more cost-effective way to improve nitrification efficiency and reduce the scope of secondary process expansion. As the wastewater and centrate characteristics have not, and are not, anticipated to significantly change from those evaluated in that study, the recommendation from that study is carried forward for this facility plan: no sidestream N removal processes are recommended at this time. The City has already installed additional centrate equalization recommended from that study, and the recommended centrate load-pacing will not require additional capital installations, only control system modifications.

5.3.2 Non-Biological Nitrogen Removal Sidestream Processes

Ammonia may be removed from side streams by physical-chemical means. Processes that have been used in the past are ammonia stripping and selective ion exchange. Neither of these processes are used today because of significant operational constraints and their high costs relative to biological treatment.

In ammonia stripping, ammonia nitrogen can be converted from the ammonium (NH₄+) ion to ammonia gas (NH₃) by raising the wastewater pH to approximately 11. Passing the high pH wastewater flow counter-current against an upflowing stream of air in a tall column filled with plastic media will transfer the ammonia into the air stream. The ammonia-rich air stream is directed to a second column counter-current to a downward flow of sulfuric acid. Ammonium sulfate is produced that may be used as a fertilizer. The efficiency of the stripping reaction declines at low temperatures. The cost of elevating pH is high and the marketability of the fertilizer product is limited. Fouling of the media with scale also occurs, causing poor liquid distribution in the column. This technology has been marketed as AmRhex by a Canadian company, 3XR, Inc. over the past decade but it is no longer in business. Ammonia strippers may be purchased from chemical industry contractors.

In ion exchange, zeolite materials such as clinoptilolite, selectively remove ammonia from solution by adsorption. The process is very efficient but the clinoptilolite becomes saturated with ammonia and needs to be regenerated, typically achieved by passing sodium chloride solution through the column of ion exchange media. The ion exchange media is expensive and disposal of the ammonia-rich regenerant has proven to be difficult. This technology (in concert with ammonia stripping) was marketed as ASR by Thermo-Energy Corp. over the past decade. It, too, is no longer in business.

Costs were compared of ammonia stripping versus Anammox treatment of ammonia-rich sidestreams for the Central Valley Water Reclamation Facility in Salt Lake City in 2017. For a flow rate of 467,000 gal/day and an ammonia concentration of 829 mg/L, capital costs for the Anammox system were \$5.7 million versus \$3.7 million for air stripping. However, operating costs were \$4.70/gal for the Anammox system but \$87/gal for the stripping system because of the high chemical costs.

5.4 Sidestream Phosphorous Recovery

Sidestream Phosphorous removal was initially considered in the City of Meridian WRRF's 2012 Facility Plan to help reduce the amount of internally recycled phosphorus to improve secondary treatment performance with respect to biological phosphorus removal. The specific recommendation was for a struvite recovery system, which removes the phosphorus by precipitating it as the mineral

struvite, where struvite is a solid composed of equimolar amounts of magnesium (Mg), ammonium, and phosphate (PO₄) (chemical formula: MgNH₄PO₄·6H₂O). Results of the add-on process evaluation discussed above confirmed that adding a side stream phosphorus removal facility would significantly reduce the amount of supplemental carbon required to drive the Bio-P process in the main stream, with potentially significant savings in operating costs. Phosphorus removed from the side stream also has the potential for reducing high O&M costs associated with controlling and mitigating struvite precipitation within the solids handling processes at the Facility, which has been an issue with the City because of the nature of struvite precipitating out on solids handling pipelines and equipment. A review of available phosphorus removal technologies was thus conducted, with development of life cycle costs. These are provided in the updated technical memorandum *WRRF Side Stream Phosphorus Removal Technologies Evaluation* dated December 1, 2017, included in Appendix E.

5.5 Water Reuse

Due to the high-quality effluent and tertiary treatment process at the WRRF, virtually all of effluent produced during the reuse season (typically May through October) is of reuse quality. However, due to limits in the reuse water system (storage and disinfection), only up to 1 mgd is used for reuse as described in Chapter 2. At this time, the City intends to continue maintaining this system at its current size, with no plans to expand or modify it as there are currently no anticipated increases in demand for this water.

5.6 Sludge Fermentation

Volatile fatty acids are generated from the plant's primary sludge and used as a carbon source for liquid stream biological phosphorous removal. This process is considered part of the liquid stream process and is discussed in greater detail in Chapter 4.

5.7 Selected Resource Recovery Approach

The facilities plan will include space for a biosolids thermal drying facility and sidestream phosphorous recovery. The plant will continue to use its digester gas to fuel its boilers for process and space heating and the facilities plan will include a new 60-hp boiler to meet future heat demands. If future conditions are such that cogeneration or gas upgrading becomes an attractive digester gas end use for the City of Meridian, space for a 3,000 square foot area has been identified to house either end use equipment.

While landfilling the biosolids is currently economical for the plant, dried biosolids would provide the plant with more disposal or end use options if landfilling becomes less economical in the future. Natural gas would be used to supplement the plant's digester gas supply in the future if a biosolids drying process is introduced. The City of Meridian could also consider land applying, offering existing produced biosolids for farmer pickup and use, or providing its biosolids to an off-site compost facility with no modifications to the plant.

For the facilities plan layout, a belt dryer is assumed for the biosolids dryer because it would require the most space of the biosolids drying technologies. If drying is selected in the future, the type of biosolids dryer should be evaluated in detail and ultimately selected based on staff preference, product requirements, air permitting, lifecycle costs, and heat source. The belt dryer assumed in the facilities plan is sized to dry all of the plant's biosolids to 90 percent solids content.

The dryer would be housed in a facility with dimensions of approximately 40 ft by 50 ft, located near the existing dewatering facility to minimize sludge transport distances. The dried biosolids are assumed to be loaded directly into a truck, with no on-site storage.

The plant's existing WGB may have enough capacity through 2040. However, given the age of the existing WGB (commissioned in the late 1980s), it is assumed in this facilities plan that it will be replaced within the next 15 years to ensure the WGB has adequate capacity and reliability.

Section 6

Capital Improvements Plan

6.1 Objective

The purpose of this chapter is to present a capital improvements plan (CIP) for the projects recommended in Sections 4 and 5. The CIP provides a clear outline of the required projects between 2019 and 2039, including estimated costs and approximate year of initiation for each project. Costs presented are planning-level estimates (Association for the Advancement of Cost Engineering Class 5). The CIP was developed with consideration for project grouping and potential delivery methods to meet regulatory, financial, and organizational constraints of the City.

6.2 Schedule and Sequence

The CIP schedule and project sequencing are driven by regulatory constraints, future capacity needs, and infrastructure replacement requirements. The 10-year compliance schedule in the City's NPDES permit includes several planning and construction deadlines, as summarized in Table 6-1, that set the construction schedule for many of the projects. The City's growth projections, as described in Chapter 3, are the basis for scheduling capacity upgrades.

Table 6-1. NPDES Permit Schedule of Compliance Deadlines				
Task	Deadline			
Provide amended facility plan to the IDEQ	July 31, 2019			
Provide schedule of design upgrades required to meet final effluent limits to the IDEQ and EPA	July 31, 2022			
Achieve TP interim limit not to exceed 1.0 mg/L (annual average)	July 31, 2022			
Complete final design report on BNR upgrades	July 31, 2023			
Complete construction for BNR upgrades to meet the final ammonia and TP limitations				
Complete tertiary filtration construction and begin process optimization	July 31, 2026			
Achieve compliance with final effluent limitations in NPDES permit	July 31, 2027			

6.3 Site Layout and CIP Outline

The projects recommended in this Facility Plan are shown on the site layout in Figure 6-1. The figure includes projects currently in construction (blue outline), projects projected for this facility planning window (red outline), and potential future facilities (green outline). The potential future facilities are shown to reserve space onsite. Construction of these facilities is not anticipated before 2040, however, so they are not included as part of the CIP.

The CIP is outlined in Table 6-2, covering all the planned future facilities from Figure 6-1 (those in red). Projects were assembled into two primary groups based on the NPDES permit compliance schedule: construction starting in 2020 and in 2024. Start dates for individual projects can be moved up as needed to meet the City's funding schedule. Two projects are planned for later dates: construction starting in 2030 and 2037.

Path: Wockoifp01tprojects_Meridian, City of\150068 - COM WRRF Facility Plan
Update_Working\Chapte 6 - CIPI-Equire 8-1_Meridian Facility Plan Layout.pdf

Figure 6-1 Meridian facility plan layout

Table 6-2. Meridian WRRF Capital Improvement Plan							
Construction Start, Fiscal Year	Facility Plan Project	Meridian Comprehensive Financial Plan Project	Subtotal Project Cost, including contingency and escalation ^a	Total Project Cost, including soft costs ^b	Project Description	Project Justification	
2020	Side Stream Phosphorus Removal System	Sidestream Phosphorus Recovery	\$6,040,000	\$7,550,000	The estimate for this project was based on an Ostara Pearl system, as it was the higher cost/more conservative option. Other technologies, including CNP's AirPrex system, are also under consideration. The Ostara system consists of a Pearl reactor, sodium hydroxide for pH control, and magnesium chloride, as well as associated equipment for chemical pumping and feeding of centrate and DAFT subnatant to the reactor. Harvesting struvite crystals from the reactor requires grit dewatering, washing, and drying systems, as well as equipment for bagging and moving the crystals. The system is housed within a building and requires a struvite storage area.	This system would reduce the amount of internally recycled phosphorus at the WRRF, improving secondary treatment performance with respect to biological phosphorus removal (Bio-P). The process would reduce the amount of supplemental carbon required to drive Bio-P and reduce O&M costs associated with controlling and mitigating struvite precipitation within pipelines and solids handling processes at the WRRF. If the Pearl system is selected, the City could also make a small profit from selling the struvite product to Ostara for use as a fertilizer supplement.	
2020	WASSTRIP tank	Sidestream Phosphorus Recovery	\$1,750,000	\$2,190,000	Construct a concrete WASSTRIP tank with a capacity of approximately 550,000 gallons to hold WAS for approximately 10 hours in an anaerobic environment. The project also requires two 650-gpm solidshandling pumps for conveying WASSTRIP effluent to the DAFTs.	The WASSTRIP process is designed to release phosphate from WAS that was taken up during the Bio-P process. Once the WASSTRIP effluent is thickened, the phosphate-rich subnatant is combined with centrate from the dewatering centrifuges and passed to the Pearl reactor. The thickened WAS is sent to digestion, and since it now has a much lower phosphorus concentration, the potential to precipitate struvite in the digesters and downstream piping and equipment is greatly reduced. The WASSTRIP process directs phosphorus to where it is desired (Pearl reactor), while reducing 0&M costs associated with controlling unwanted struvite formation.	
2020	DAFT automation	DAFT Retrofit	\$190,000	\$240,000	Configure the existing WAS flow meter and WAS TSS meter to calculate solids loading to the DAFT. Add additional	The current DAFT configuration limits polymer dose control to manual adjustment and is often set at a single flow rate. Automation of	

	Table 6-2. Meridian WRRF Capital Improvement Plan					
Construction Start, Fiscal Year	Facility Plan Project	Meridian Comprehensive Financial Plan Project	Subtotal Project Cost, including contingency and escalation ^a	Total Project Cost, including soft costs ^b	Project Description	Project Justification
					controls equipment to automate polymer dosing. Address pipe bottlenecks into DAFTs by upsizing influent pipe to 6-inch glass-lined ductile iron pipe.	polymer dosing to the WAS load to the DAFTs would improve system control and reduce overall polymer use.
2020	Anaerobic Digester with Control Building	Digester 6 and New Digester Control Building	\$11,090,000	\$13,860,000	Construct Digester No. 6 to match existing Digesters Nos. 4 and 5 (0.75 Mgal, 70-ft diameter, 26-ft side water depth). Also construct a control building of approximately 5,000 sq-ft (half below grade, half above grade) adjacent to the new digester. Major equipment includes a mixing pump, a heat exchanger, two feed pumps, and two solids circulation pumps.	The City places an importance on achieving Class B pathogen reduction in biosolids to meet potential future regulatory requirements and to expand outlets for biosolids end use. Class B pathogen reduction can be achieved by meeting a minimum HRT of 15 days. Two digesters in service are required to meet this minimum HRT at future flows and loads. A third digester is necessary to maintain the required HRT if one unit is out of service.
2020	Centrifuge feed piping	DAFT Retrofit	\$190,000	\$240,000	Install additional piping and add a centrifuge feed pump to allow both existing dewatering centrifuges to operate in parallel.	Setting up the centrifuges to operate in parallel would push off the need for adding a third centrifuge for several years. It would also add operational flexibility, allowing for shorter dewatering operation periods.
2020	New Secondary WRRF Entrance	WRRF Second Access	\$980,000	\$1,230,000	Build a second WRRF entrance. For this Facility Plan, the assumed route was from Ustick Road to the south of the plant, through the reservoir site parcel owned by the City and portions owned by private individuals and Nampa Meridian Irrigation District. The 20-ft wide, paved road crosses Fivemile Creek over a new bridge (18-ft wide and 50-ft long) before entering the plant near Secondary Clarifiers Nos. 4 and 5. Cost includes \$100,000 for easement acquisition.	As the WRRF area grows, it will soon trigger a requirement for two access points, per the local fire marshal. A second entrance would ensure that an access road to/from the WRRF remains open in case the primary entrance is blocked due to construction, accident, etc. Large trucks could also be directed to enter through the second entrance to avoid congestion near the Administration Building.

	Table 6-2. Meridian WRRF Capital Improvement Plan					
Construction Start, Fiscal Year	Facility Plan Project	Meridian Comprehensive Financial Plan Project	Subtotal Project Cost, including contingency and escalation ^a	Total Project Cost, including soft costs ^b	Project Description	Project Justification
2022	Aeration Basins 1-4 retrofit	Wastewater Treatment Plant Capacity Upgrades	\$6,240,000	\$7,800,000	Demolish select concrete and piping in existing basins, install new concrete baffle walls, reconfigure the aeration grid with new diffusers, add new basin mixers, install new IMLR pumps, replace pumps in the existing RAS basin, add new chemical feed points, and repair concrete.	Retrofitting Aeration Basins 1–4 will allow the basins to operate in a 5-Stage Bardenpho configuration, matching the configuration of new Aeration Basins 5–8 and providing the most efficient process for biological nutrient removal. By upgrading existing infrastructure, the City will be able to delay construction of future Aeration Basins 11 and 12, saving capital expense. Operators will benefit from having a consistent plant process configuration for treatment.
2022	Aeration Basins 9 and 10	Wastewater Treatment Plant Capacity Upgrades	\$4,900,000	\$6,130,000	Install two rectangular concrete aeration basins south of Aeration Basins 5–8, including aeration diffusers. Extend the Mixed Liquor Distribution Channel to the new basins. Add another 700-hp blower to the Blower Building to meet additional air demands.	Additional treatment volume is required to achieve compliance with final effluent limitations in the City's NPDES permit. The stringent ammonia-nitrogen limits are the primary driver for expansion, which would create enough nitrification volume for the remainder of the facility planning window.

	Table 6-2. Meridian WRRF Capital Improvement Plan					
Construction Start, Fiscal Year	Facility Plan Project	Meridian Comprehensive Financial Plan Project	Subtotal Project Cost, including contingency and escalation ^a	Total Project Cost, including soft costs ^b	Project Description	Project Justification
2022	Blower Building No. 1 (demolish/replace)	Wastewater Treatment Plant Capacity Upgrades	\$4,230,000	\$5,290,000	Demolish existing Blower Building No. 1 and existing secondary splitter box. Construct a new facility, approximately 55-ft by 70-ft, in the same area. The facility includes two new 700-hp blowers and one new 350-hp blower.	In the workshop described in Section 2.5 of this document, Blower Building No. 1 was flagged for replacement by WRRF staff. The facility has old and outdated electrical systems that have reached maximum capacity. The HVAC system also needs to be replaced. The facility has no space for expansion, though new VFDs and harmonic filters may be needed. Plant staff is concerned about the reliability of the K-Turbo blowers, along with the availability of parts to maintain them. The Spencer blowers may reach the end of their useful life in this planning window. Fully functional and reliable blowers in this facility are important for maintaining treatment in Aeration Basins 1–4. Since the existing secondary splitter box is being replaced in the Liquid Stream Expansion project, a new larger facility could be placed in the location of existing Blower Building No. 1 and the adjacent splitter box.
2024	Fermenter No. 2 (digester retrofit)	Biological Nutrient Removal Carbon Distribution (Fermentation)	\$2,410,000	\$3,010,000	Retrofit existing 35-ft diameter Digester No. 2 into a second fermenter. This will require the demolition of portions of the digester along with the addition of electrical equipment, instrumentation, pumps, and piping.	Fermenters produce readily available carbon in the form of VFAs, which drives Bio-P in the secondary treatment process. VFAs produced in the fermenters reduce the amount of supplemental carbon that needs to be purchased for the process. Based on the current primary solids loading rate to Fermenter No. 1, it will soon reach its design capacity, necessitating additional fermenter capacity.

	Table 6-2. Meridian WRRF Capital Improvement Plan					
Construction Start, Fiscal Year	Facility Plan Project	Meridian Comprehensive Financial Plan Project	Subtotal Project Cost, including contingency and escalation ^a	Total Project Cost, including soft costs ^b	Project Description	Project Justification
2024	Gravity Thickener No. 2 (primary clarifier retrofit)	Biological Nutrient Removal Carbon Distribution (Fermentation)	\$2,660,000	\$3,320,000	Retrofit existing 40-ft diameter Primary Clarifier No. 2 into a second gravity thickener to be used in conjunction with the fermentation system. Upgrades include a new mechanism, a cover, a feed pump, a thickened sludge transfer pump, and expansion of the existing odor control system.	A second gravity thickener would provide full redundancy of thickening capabilities for the fermentation system, allowing for the continued production of VFAs even if one thickener is not operational.
2024	Tertiary Membrane Facility	Tertiary Filter Expansion	\$18,070,000	\$22,590,000	Construct five 21,000-gal rectangular membrane basins, a common feed channel, and a 17,000-gal clean-in-place tank. Install five membranes with associated pumps, compressed air system, backwash tank and pumps, and scour air blowers, along with three inlet strainers (500-micron opening) and chemical day tanks/totes for cleaning. Construct a 7,000-sq ft building for equipment, and install covers on the membrane basins and feed channel.	Tertiary membrane filters would allow the WRRF to meet stringent NPDES effluent P limits, along with any potential future limits on emerging contaminants. While the capital and 0 &M costs are high for membrane filters, they produce the highest effluent quality of any tertiary filter on the market. Membrane filters also provide a barrier against bacteria and viruses and may thus reduce disinfection requirements. Compared to other filter options, membrane filters have a relatively small footprint.
2024	New Parking Area	Tertiary Filter Expansion	\$100,000	\$130,000	Construct an additional 16,000-sq ft asphalt parking area to the east of the reclaimed water tanks near the WRRF entrance.	In the workshop described in Section 2.5 of this document, parking was identified as an area of need for the City. More parking spaces are needed for staff and fleet vehicles.
2024	Centrifuge No. 3	Centrifuge No. 3	\$1,570,000	\$1,960,000	Install a third centrifuge, along with ancillary piping and electrical/controls equipment, within the existing dewatering facility.	Two duty centrifuges are capable of processing future solids flows and loads if the dewatering schedule is limited to no more than 16 hours per day, 5 days per week. One new centrifuge is recommended to provide redundancy, especially since drying beds at the WRRF are being demolished for construction of other facilities. If a centrifuge bowl requires repairs, it can be offline for an

	Table 6-2. Meridian WRRF Capital Improvement Plan					
Construction Start, Fiscal Year	Facility Plan Project	Meridian Comprehensive Financial Plan Project	Subtotal Project Cost, including contingency and escalation ^a	Total Project Cost, including soft costs ^b	Project Description	Project Justification
						extended period, making a redundant centrifuge important.
2024	Boiler	Boiler	\$370,000	\$460,000	Install a third 60-hp boiler in the existing digester control building, along with ancillary piping and electrical/controls equipment.	Digester gas is combusted in the boilers to generate hot water, which is used to heat the digesters and the facility's buildings. Based on current digester gas use in the boilers and projected sludge production rates, one additional boiler will be necessary.
2025	Upgrade UV Equipment in UV Channels 1 and 3	WRRF UV Channel Bulbs (replace two banks of original bulbs)	\$1,490,000	\$1,860,000	Upgrade the older UV equipment in UV Channels 1 and 3 to match the Trojan 3000Plus units installed in the newer UV Channels 2 and 4. Project includes minor demolition and concrete work in UV Channels 1 and 3 and new electrical equipment.	The existing UV equipment will reach obsolescence around this time. The new UV units will more efficiently disinfect the effluent stream, providing greater treatment capacity through the UV channels at lower operating costs. The new UV units require much fewer lamps per channel, which will reduce staff time spent maintaining lamps.
2030	Waste Gas Burner installation	_	\$120,000	\$150,000	Replace the existing waste gas burner with the new waste gas burner that has already been purchased by the City. Project includes piping and electrical components.	The existing waste gas burner is approximately 30 years old and will reach the end of its useful life within approximately 15 years. It should be replaced to ensure adequate reliability and gas disposal capacity.
2037	Secondary Clarifier No. 8	_	\$3,170,000	\$3,960,000	Construct an additional 100-ft diameter secondary clarifier adjacent to Secondary Clarifier No. 6, including excavation, piping, and electrical equipment.	Another secondary clarifier is required to maintain solids loading rates below design maximum levels at 2040 flows and loads.

^aSubtotal project cost includes 30% contingency and escalation to midpoint of construction.

bTotal project cost is subtotal project cost plus soft costs. Soft costs are assumed to be 25% of subtotal project cost and include engineering design services, services during construction, and legal and administrative services.

Table 6-3 shows the cost estimates for the projects in the CIP outline, grouped and summed by fiscal year of construction start. Detailed cost estimate reports are provided in Appendix F.

Table 6-3. CIP Estimates of Total Cost					
Projects by Construction Start Fiscal Year	Subtotal Project Cost, including contingency and escalation ^a	Total Project Cost, including soft costs ^b			
2020 Projects	\$20,240,000	\$25,310,000			
2022 Projects	\$15,370,000	\$19,220,000			
2024 Projects	\$25,180,000	\$31,470,000			
2025 Project	\$1,490,000	\$1,860,000			
2030 Project	\$120,000	\$150,000			
2037 Project	\$3,170,000	\$3,960,000			

^aSubtotal project cost includes 30% contingency and escalation to midpoint of construction.

^bTotal project cost is subtotal project cost plus soft costs. Soft costs are assumed to be 25% of subtotal project cost and include engineering design services, services during construction, and legal and administrative services.

Section 7

Financial Information

7.1 Introduction

One of the most critical elements in the development of a Wastewater Resource Recovery Facility Plan is ensuring that the identified capital plan can be funded and implemented on the proposed schedule. This section provides a review of the City's ability to implement the projects identified in Section 6 – Capital Improvements Plan and any effects that the proposed projects will have on staffing and organizational requirements. The City's Capital Improvements Plan is derived from the City's Comprehensive Financial Plan (CFP).

As part of the Facility Plan, the City has identified a CIP that includes over \$66 million (2019 dollars) worth of projects for implementation between FY2019 and FY23 funding. The costs included in the Facility Plan are "planning level" and are considered somewhat conservative. The City regularly conducts an analysis to ensure adequate funding is available to satisfy the CIP projects. This analysis includes modeling efforts conducted by the Public Works and Finance departments.

7.2 Funding Analysis

The City maintains the Enterprise Fund under the premise of "pay as you go." This approach means the City accumulates the money before it spends it. The City of Meridian has been fortunate enough to historically self-fund all WRRF projects. The City's funds are managed using financial management best practices. The City's model accounts for forecasted revenue, operations expense, capital expense, and required reserves and budgets to maintain solvency through a minimum of a 5-year forecast window. Assumptions used in that effort change as information becomes available. Ending fund balance is calculated at the close of the fiscal year and at the conclusion of a full financial audit that the City is required to undertake to reconcile the books annually. At the conclusion of FY17, the Enterprise Fund ending balance was approximately \$50M. Projections from models express the Ending Fund Balance (EFB) in terms of "Undesignated" fund balance. This represents any remaining fund balance after all revenue and liabilities are calculated. Model projections for the next 5 years (FY19–23) show the undesignated EFB in the \$10M - \$30M range given the current CIP. This would suggest that the fund is capable of supporting the current plan. As with any projection, any number of variables could affect that analysis positively or negatively. The City takes a conservative approach in its forecasting efforts.

The current 5-year forecast does not contemplate rate increases at this time. Any revenue increases that are approved would further strengthen the fund assuming the same expense profile.

The fund balance could be significantly impacted by the following factors:

- Actual construction costs
- Rate adjustments
- Actual CIP implementation rates
- · Variable growth rates
- Unanticipated capital projects
- Unanticipated reduction in revenue due to reductions in consumption and development.

7.3 Staffing Analysis

The Wastewater Resource Recovery Facility staffing requirements have been analyzed with respect to current growth rates and compliance with the new NPDES discharge permit. Additionally, the decision was recently made to move towards a 24-hour/7-days-a-week operation of the facility by Fiscal Year 2020, eliminating the five hours of unstaffed time during the night. Four new positions (three operators and one mechanic), anticipated to be added in FY19 and FY20, will be needed to facilitate this transition. The Facility's new permit includes interim limits and requirements which are much more stringent and complex than those in the previous permit. Coupled with growth, the new permit regulations will necessitate an advanced level of oversight at the treatment facility. In total there will be approximately 13 additional staff positions added to the WRRF over the course of the next 10 years. Of these positions, six are planned to be wastewater operators, four are planned to be wastewater mechanics, two are planned to be lab staff, and one additional instrument technician is planned to be added. The WRRF is doubling its assets with the current capacity expansion project, which includes new, advanced equipment, and the WRRF will be further expanded with the projects identified in the facility plan. This development increases the complexity of the operation and necessitates staff with advanced knowledge of treatment processes and biological nutrient removal. The addition of these positions will provide necessary resources to accommodate growth and additional treatment requirements as the wastewater utility continues to grow each year.

7.4 Summary

Overall the City has been proactive in maintaining their WRRF and consistently provides a high level of service to their customers. The City evaluates their financial status and staffing levels regularly to ensure there is adequate funding and staff to implement the CIP. Rate and fee adjustments are evaluated on an annual basis and recommendations are made to City leadership as a part of that process.

Section 8

References

Alfa Laval. 2017. Dewatering centrifuge, accessed online at: http://www.alfalaval.com/products/separation/centrifugal-separators/decanters/aldec-g3/.

Aqua Aerobics. 2017. Cloth disc filter schematic, accessed online at: http://www.aqua-erobic.com/index.cfm/products-systems/filtration/aquadisk/.

Blue Water Technologies, Inc. 2010. Blue PRO filter schematic, accessed online at: https://nexom.com/blue-pro.

BC (Brown and Caldwell). 2012. Study for the City of Nampa.

- -. 2013. Alternative Solids Stabilization Technology Evaluation. November 18.
- Secondary Treatment Alternatives Evaluation, 2015.
- -. 2015a. Meridian Wastewater Treatment Plant Sidestream Nitrogen Removal. January 9.
- 2015b. Secondary Treatment Alternatives Evaluation. September 24.
- -. 2016. WRRF Side Stream Phosphorus Removal Technology Evaluations. May 19.

Carollo Engineers. 2007. WWTP Facility Plan - Environmental Information Document.

CDM. 2011. Sludge Treatment Process Evaluation CleanB™ Biosolids Demonstration Southwest Water Reclamation Facility Results and Recommendations Report.

CH2M Hill and HDR Engineering, Inc. 2012. Wastewater Facility Plan.

CH2M Hill. 2015. Meridian WRRF Headworks Capacity Expansion Design Criteria Coordination.

Flottweg. 2017. Centrifuge equipment, accessed online at: https://www.flottweg.com/product-lines/decanter/c-series/.

General Electric. 2017. Sizing data based on proposal for the ZeeWeed ultrafiltration tertiary membrane system. June 27.

HDR Engineering, Inc. 2012. City of Meridian Recycled Water Master Plan.

Idaho Department of Environmental Quality. 2015. Lower Boise River TMDL 2015 Addendum.

Idaho Department of Environmental Quality. 2017. Reuse Permit M-215-03.

J-U-B Engineers, Inc. 2017. Meridian WWTF Flow & Load Projections.

Materials Testing & Inspection. 2015. Geotechnical Engineering Report of Meridian WWTP Treatment Expansion.

Mountain Waterworks, Inc. 2016. Alternatives Analysis: Meridian WRRF Boise River Outfall, Seal Water, and Non-Potable Water Pump Stations.

Murray, Smith, & Associates, Inc. 2012. Final —Water Master Plan.

Murray, Smith, & Associates, Inc. 2015. Collection System Flow Monitoring Program for the City of Meridian, Idaho.

Murray, Smith, & Associates, Inc. 2016. 2015 Flow Monitoring Study.

Parkson. 2012. Upflow granular media filter schematic, accessed online at: https://www.parkson.com/sites/default/files/documents/document-dynasand-brochure-print-version-1045.pdf.

Schreiber. 2012. Compressible media filter schematic, accessed online at: http://www.schreiberwater.com/wp-content/uploads/2017/06/Fuzzy_Filter-web.pdf.

Appendix A: EID from 2007 Facility Plan – Carollo Engineers (2007)

USDA Soil Survey Map
Archaeological and Historical Studies
Average Precipitation and Temperature

September 27, 2007 7425A.00

Idaho Department of Environmental Quality 1410 N. Hilton Boise, ID 83706

Attention: Ms. Nancy Bowser, NEPA Coordinator

Subject: City of Meridian - Facility Plan Update EID

Dear Nancy:

As a follow-up to our telephone conversation yesterday, we are sending you three copies of the Environmental Information Document (EID) and one Final Facility Plan, complete with EID, for your review.

Based on the September 14, 2007 letter we received from Peter Bair at DEQ and on our conversation yesterday, we understand that DEQ has a large backlog of EIDs for review and a priority system. The priority system includes higher priority for projects that have received DEQ funding for their preparation, or are on the DEQ fundable projects list. As such, the Meridian Facility Plan Update EID has a lower priority than fundable projects and this will likely result in delaying the review of the document for an extended period of time, or until the City's projects are listed on the fundable list.

Please review the document when your priorities allow, and please feel free to call us at the number below at any time during your review, if you have questions or need further clarification on the contents of the Facility Plan Update or EID.

Sincerely,

CAROLLO ENGINEERS, P.C.

Timothy R. Tekippe, P.E.

TRT:sf

Enclosures: Facility Plan Update, EID

cc: Len Grady, P.E., City of Meridian

CVR LTR_Final EID.doc

City of Meridian

WWTP Facility Plan

ENVIRONMENTAL INFORMATION DOCUMENT

September 2007

CITY OF MERIDIAN

WWTP Facility Plan

ENVIRONMENTAL INFORMATION DOCUMENT

TABLE OF CONTENTS

			Page No.
1.0	PUF	RPOSE AND NEED FOR ACTION	1
2.0	PRO 2.1 2.2 2.3 2.4	DPOSED ACTION AND ALTERNATIVES Headworks Primary Treatment Secondary and Tertiary Treatment Biosolids Treatment and Reuse	2 4 5
3.0	AFF 3.1 3.2 3.3 3.4	ECTED ENVIRONMENT/ENVIRONMENTAL CONSEQUENSES Planning Area Proposed Action	9
4.0	МІТ	IGATION SUMMARY	13
5.0	PUE	BLIC PARTICIPATION AND INPUT	14
		A – Archaeological Survey Report B – Correspondence/Data	
		<u>LIST OF TABLES</u>	
Table '	1	Flow and Loading Projections	1
		LIST OF FIGURES	
Figure	1	WWTP Facility Plan Update	3

City of Meridian WASTEWATER TREATMENT PLANT FACILITY PLAN ENVIRONMENTAL INFORMATION DOCUMENT

COVER SHEET

PROJECT IDENTIFICATION

City of Meridian Wastewater Treatment Plant Facility Plan
City of Meridian
660 E. Watertower, Ste. 200
Meridian, Idaho 83642

CONTACT PERSONS

Mr. Clint Dolsby, P.E. City Engineer 660 E Watertower, Ste. 200 Meridian, Idaho 83642 Phone (208) 898-5500 Fax (208) 887-1297

PROJECT COST ESTIMATE/FUNDING SOURCES

The estimated capital costs for the Proposed Actions are as follows:

TOTAL CAPITAL COST*:

\$ 108,500,000

* Conceptual level estimate in 2006 dollars. Actual cost is spread out over several years. See the Executive Summary for details.

The City will consider funding the recommended upgrades through an SRF loan. The estimated capital cost, including engineering services, for the first phase of the project (2008-2010) is approximately \$34,529,000.

ESTIMATED USER FEES

The existing wastewater system user charge is approximately \$21.28 per month, and the debt service charge is \$0 per month. The project will increase the user charge by approximately \$5.53 per month, all of which will go to new debt service. The total monthly cost per household after the project is in operation will therefore be \$26.81 per month.

The current wastewater collection system assessment fee (connection fee) is \$1,730 per Equivalent Residential Unit (ERU). The project will increase wastewater assessment fees by approximately \$3,400.

ABSTRACT

The City of Meridian is undertaking an overall wastewater treatment plant facilities evaluation that identifies present and future improvements necessary to maintain acceptable operation and treatment capacity of the plant. A Facility Plan Report was prepared to identify the necessary improvements (Reference 1). As part of the overall wastewater treatment plant evaluation, an environmental report has been prepared to assess the potential impacts that the actions could have on the existing environment within the planning area. The environmental report is comprehensive and includes a description of the existing environment, a description of the alternative actions, an assessment of potential impacts that the actions could have on the environment, and a listing of mitigation measures that would be followed during implementation of the Proposed Action. Public hearings were held during the preparation of the final report to solicit input on the alternative evaluations.

ENVIRONMENTAL INFORMATION DOCUMENT

1.0 PURPOSE AND NEED FOR ACTION

The City of Meridian owns and operates the wastewater treatment plant (WWTP), which treats municipal wastewater from the City. The City is conducting a facility plan update project for their WWTP to meet future growth and potential future National Pollutant Discharge Elimination System (NPDES) discharge permit requirements. The WWTP currently discharges all treated wastewater to either Five Mile Creek or the Boise River. The existing WWTP is adequate treatment capacity to meet current capacity demands and discharge permit requirements. However, continued growth will require additional treatment capacity to ensure discharge permit requirements are met in the future. The WWTP Facility Plan Update (Reference 1) recommends additional facilities necessary to meet projected treatment requirements over the next 24 years. The Proposed Action addresses this need through construction and expansion of various plant processes, as discussed below. The purpose of the Proposed Action is to construct improvements necessary to allow the WWTP to achieve capacity and treatment requirements over the next 24 years.

Table 1 Flow and Loading Projections WWTP Facility Plan Update City of Meridian				
Parameter	Existing Plant Criteria ⁽¹⁾	2030 Projections	2030 Treatment Plant Expansion Criteria ⁽²⁾	
Population	96,000	192,593		
Avg. Day Flow (mgd)	7.0	16.2	9.2	
Avg. Max Month Flow (mgd)	9.1	19.1	10	
Peak Hour Flow (mgd)	15.9	36.7	27.6 ⁽³⁾	

Notes:

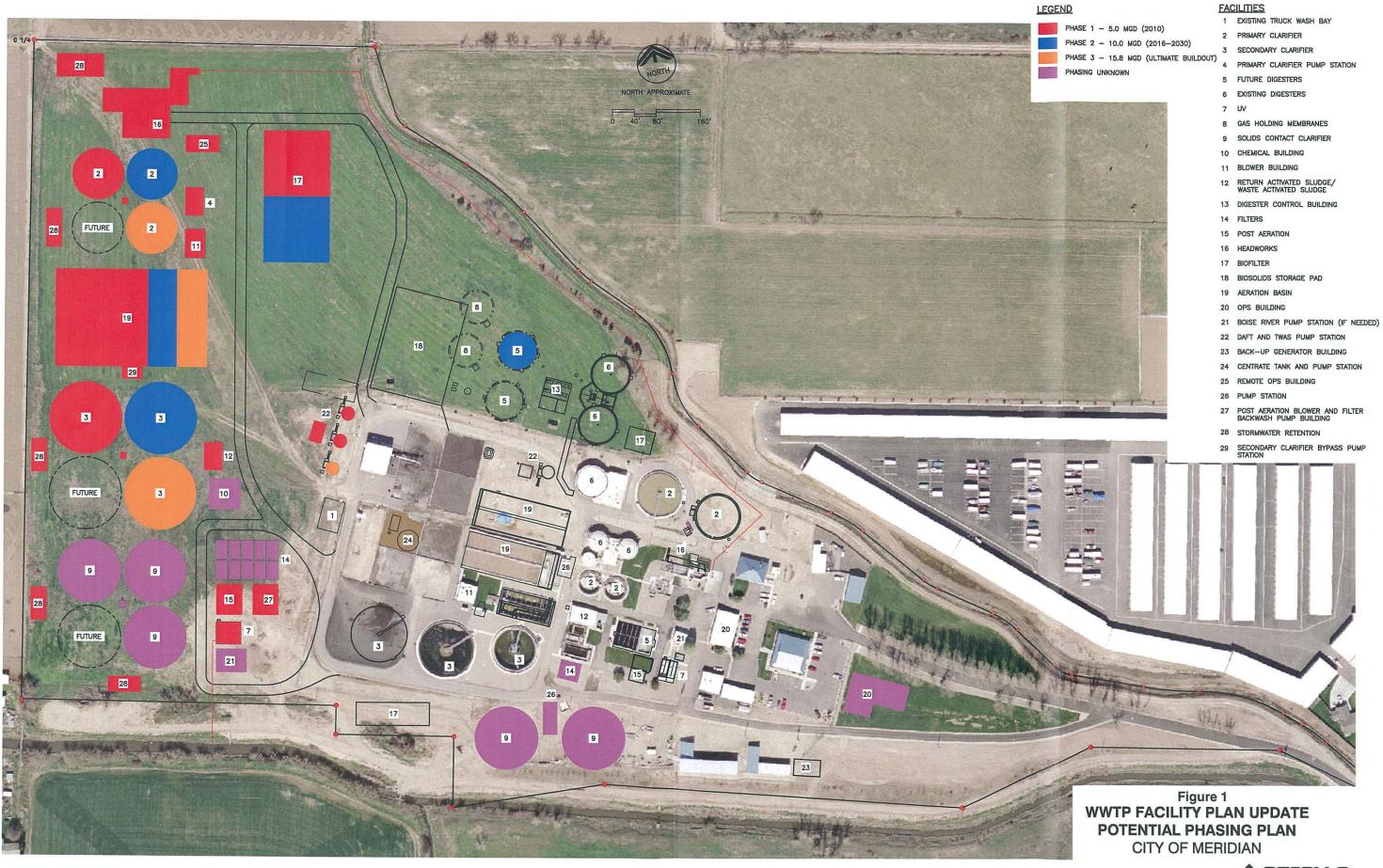
- 1. Capacity and criteria after current expansion project is completed.
- 2. Capacity assumes exiting plant in service.
- 3. Assumes only 9.1 mgd going to existing treatment plant.

Given the existing treatment capacity and limited space available with the existing facility footprint to expand treatment capacity, a new parallel treatment plant built on vacant land within the plant boundary is recommended.

2.0 PROPOSED ACTION AND ALTERNATIVES

The WWTP Facility Plan Update project has evaluated and recommended various upgrades and expansion options for the WWTP. As part of this process, alternative evaluations have been provided, and a No Action Alternative was investigated. The Proposed Action and Alternative Actions consist of expansion and construction of new facilities to meet future treatment requirements. A site-plan identifying the locations of the Proposed Action improvements is provided in Figure 1. The following discussion is broken down into each process area, detailing the Proposed Action and alternative comparisons.

2.1 Headworks


The plant headworks removes screenings and grit from the influent, measures influent flow, and lifts flow to the primary clarifiers. The existing headworks consists of two mechanical screens, five screw pumps, two grit chambers, and a flow measurement/flow splitting structure. The existing headworks does not have adequate capacity to serve future plant expansion requirements.

2.1.1 Proposed Action

The Proposed Action involves constructing a new separate headworks, with a gravity line connecting the existing headworks to the new headworks. Additional details are provided below.

The existing headworks screening capacity is limited to a peak hour flow, firm process capacity (capacity with largest unit out of service) of 18 million gallons per day (mgd). The 2005 peak hour flow was recorded at 13.0 mgd (Technical Memorandum No. 1 of the Facility Plan Update). The Idaho Department of Environmental Quality (DEQ) requires wastewater treatment plants to have a firm screening process capacity to meet or exceed peak hour flow. The 2030 projected peak hour flow is 36.7 mgd.

The Proposed Action for expanding the headworks includes construction of a new gravity line from the existing headworks influent collection box to a new remote headworks, that will include flow measurement, screening, pumping, and grit removal. It is recommended that a new 72-in pipe gravity pipe be constructed from the existing headworks to the new headworks. The new headworks would be similar to the existing headworks configuration with the exception that the screens will be located after pumping as opposed to before pumping at the existing headworks. In order to minimize process upsets, it is recommended that the existing plant be operated at a relatively constant flow of 9.1 mgd. Therefore the conveyance, pumping, screening, and grit removal facilities are sized for a firm peak hour flow capacity of 27.6 mgd (2030 peak hour of 36.7 mgd minus existing plant capacity of 9.1 mgd) with room to expand for community buildout flows.

2.1.2 Alternative Actions

Alternative actions for the above Proposed Action are explained further in Technical Memorandum No. 2. One alternative option involves pumping at the existing headworks with dual forcemain to the new headworks. This option was not elected due to difficulties in construction, high costs, and limitations it would cause on existing required plant access. The second alternative option is similar to the recommended option, however, screening and grit removal would occur below grade and prior to pumping. This option was not selected because it would require the screening and grit removal facilities to be placed approximately 20 feet below grade. This would lead to problems due to high groundwater levels and cost associated with constructing facilities below grade.

2.1.3 No Action

Under the No Action alternative, the existing headworks capacity will not meet the projected flows to the plant or the necessary DEQ requirements. If the incoming flow exceeds the headworks capacity, wastewater will backup onto streets and into homes.

2.2 Primary Treatment

Primary treatment facilities at the WWTP remove a portion of the influent suspended solids that can be separated from the flow by gravity, as well as those solids that float and can be skimmed off. The existing WWTP currently has four primary clarifiers available for primary treatment with associated sludge and scum pumps. A comprehensive description of the primary treatment process is contained in Technical Memorandum No. 2 of the Facility Plan Update.

2.2.1 Proposed Action

The current firm peak hour process capacity (with the largest tank out-of-service) is 15.9 mgd, and firm average day capacity is 7.0 mgd. Therefore, the firm process capacity must be expanded to meet the projected 2030 average day flow of 16.2 mgd and projected peak hour flow of 36.7 mgd.

The Proposed Action includes constructing additional primary clarifiers to meet future firm capacity requirements. Initially, two (2) 80-foot diameter primary clarifiers will provide redundant average day capacity of approximately 5.0 mgd. To meet 2030 demands, one additional 80-foot diameter clarifier is needed for redundancy.

2.2.2 Alternative Actions

No Alternative Actions are developed for the primary treatment process.

2.2.3 No Action

The No Action alternative would not allow the WWTP to effectively treat future flows. Implementation of a No Action alternative is not a viable option.

2.3 Secondary and Tertiary Treatment

Secondary treatment at the WWTP removes total suspended solids, biochemical oxygen demand, ammonia, and nitrate/nitrite from the flow stream. Tertiary treatment provides additional solids removal, dissolved oxygen addition, and disinfection. Secondary treatment at the existing WWTP consists of four aeration basins, and three secondary clarifiers. Existing tertiary treatment includes three tertiary filters, a post-aeration basin, and two ultraviolet (UV) disinfection basins. Technical Memorandum No. 2 of the Facility Plan Update contains a detailed description of the secondary and tertiary treatment processes and upgrade alternatives.

2.3.1 Proposed Action

The Proposed Action involves constructing new secondary and tertiary treatment processes, as discussed below.

2.3.1.1 Secondary Treatment

At present, there are four aeration basins at the plant, each with an approximate treatment capacity of 3.2 mgd. To provide adequate treatment capacity for future flow (year 2030) conditions, installing five new aeration basins is recommended.

Secondary clarification is accomplished at the existing plant using two 100-foot diameter clarifiers and one 80-foot diameter clarifier. In order to meet the 2030 flow requirements, three 120-foot diameter secondary clarifiers are recommended with two to be run at any given time and the third in reserve.

2.3.1.2 Tertiary Treatment

The existing three filters have an average day treatment total capacity of approximately 5.0 mgd. The new plant will likely meet existing permit requirements without tertiary filtration. However, to consistently meet the BOD₅ limit of 10 mg/L, it is recommended that tertiary filtration be included with the initial construction of the new plant and new filters be constructed at the existing plant. Recommended alternatives include conventional granular media or cloth-disc media.

The existing UV disinfection system has capacity to treat peak flow conditions by installing additional banks of UV lamps into the existing basins. However, to treat the projected 2030 flows, three additional UV basins are recommended to be added as part of the new treatment train.

2.3.2 Alternative Actions

Expansion Alternative Actions developed for the secondary treatment process included treatment trains with oxidation ditches, extended aeration basins, membrane bioreactors, the "Cannibal" process, and sequencing batch reactors. With the exception of the membrane bioreactors, each of these alternatives were either expensive, did not make use of existing equipment and tankage, or were in some other way incompatible with the existing facilities when compared to the Proposed Action.

Alternative Actions included in the tertiary treatment expansion involved adding various types of filtration equipment including membranes, upflow sand media, conventional granular media, and cloth-disc media. Based on the evaluation completed, it is recommended to evaluate granular media and cloth-disc media filters further. Further evaluation is necessary during pre-design of the tertiary treatment expansion to develop firm design criteria and provide the most effective filtration system for the WWTP.

2.3.3 No Action

The No Action alternative would compromise the ability of the WWTP to effectively treat future flows, and will result in the plant violating its NPDES discharge permit requirements.

2.4 Biosolids Treatment and Reuse

Biosolids at the WWTP include solids removed during primary sedimentation (primary sludge) and excess solids generated and removed from the secondary treatment process (waste activated sludge). The existing biosolids stabilization facilities include two dissolved air flotation thickeners (DAFTs), two thermophilic anaerobic digesters, and a mesophilic anaerobic digester. A centrifuge and eight sludge drying beds are available for biosolids dewatering. A current expansion project will provide two new mesophilic digesters and one new centrifuge. Primary sludge is sent directly to the digesters. Waste activated sludge (WAS) is thickened in the DAFTs to produce thickened waste activated sludge (TWAS) prior to digestion. After digestion, sludge is dewatered with a centrifuge and land-applied to local agricultural fields.

2.4.1 Proposed Action

As discussed in Technical Memorandum No. 3 of the Facility Plan, the existing biosolids treatment process has adequate capacity to treat current solids loading. However, future redundancy is limited. To continue land applying the biosolids, the plant must meet Environmental Protection Agency (EPA) Class B biosolids treatment requirements, which includes a 15-day detention time at temperatures between 35 to 50 degrees Celsius for pathogen reduction. Under 2030 projections, if one mesophilic digester must be taken out of service for any length of time, the plant is not able to provide the 15-day detention time. In order to meet the upcoming needs of the plant, by 2030 two additional DAFTs will need to be constructed. In addition to the two 70-foot diameter mesophilic digester units currently

planned, one additional digester is needed in the future. As for disposal, the City will continue to land apply their current solids. In the event that this option is no longer available, another viable alternative is to dispose of the solids at the Ada County landfill.

2.4.2 Alternative Actions

One alternative to land application or landfill disposal options is to produce a Class A biosolids. Presently, a sludge dryer appears to be the most cost effective way for the plant to produce Class A biosolids, with the lowest potential for odor generation (if the dryer is contained and air scrubbed for odors).

2.4.3 No Action

The No Action alternative would not allow the WWTP to treat the biosolids to a level acceptable for land application, and would result in the need to find alternative biosolids disposal options which may not be available, or at the very least would increase disposal cost considerably.

3.0 AFFECTED ENVIRONMENT/ENVIRONMENTAL CONSEQUENSES

This section provides a description of the existing environment for the Proposed Action, Alternative Actions, and No Action Alternative and discusses potential environmental consequences associated with each of these alternatives.

3.1 Planning Area

The planning area includes the incorporated areas of the City of Meridian. The Proposed Action and Alternative Actions are all located within the existing wastewater treatment plant property boundaries. The existing wastewater treatment plant is the sole wastewater treatment plant in the City of Meridian's planning area. No inter-regional issues would result from construction within the plant boundaries.

There are no active plans to regionalize wastewater treatment in the Boise River watershed. The economies of scale from a larger centralized treatment facility may offer a marginal cost savings with regionalized wastewater treatment. However, the total costs for regional collection are expected to exceed any savings in treatment, so regionalization has not been developed beyond a conceptual feasibility study in the mid-1990s. Currently, there are no inter-agency agreements to support regionalization.

The following paragraphs provide a general description of the existing wastewater treatment plant site and describes the features and conditions of the site.

3.1.1 General Description of the Site

The wastewater treatment plant is located to the north/northwest of the City of Meridian. The site is situated on existing land that is open space owned by the City, and is not currently used for any designated purpose. The site is located within Ada County and within the City's area of impact.

3.1.2 Topography and Soils

The topography around the site consists of relatively flat ground.

A copy of the soil survey map for the immediate area (per U.S. Department of Agriculture - Natural Resource Conservation Service (NRCS)) is included in Appendix B. Soil units at the site consist of Unit 1, Abo Silt Loam, Unit 5, Aeric Haplaquepts, and Unit 141, Purdam Silt Loam.

No slides or faults were identified at the site, and groundwater ranges from approximately 6 feet below the surface in non-irrigation seasons to 4 feet below the surface during irrigation season.

3.1.3 Land Use

The Proposed and Alternative Actions all lie within the existing wastewater treatment plant's boundaries (see Figure 1). The Proposed Action and Alternative Actions are compatible with current and future land uses at the site.

3.1.4 Farm Land

The NRCS has designated 66 soil units within Ada County as prime farmland (see Appendix B). Prime farmland is defined as "land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for those uses." Neither the Proposed Action nor the Alternative Actions would directly convert any prime farmland to a different use. The conversion of farmland to other uses would be governed by land use policies that are independent of this project.

3.1.5 Formally Classified Lands

The site is not located on any formally classified lands.

3.1.6 Climate

The climate of the Meridian area can be characterized as a moderate continental climate characterized by hot, dry summers with cold and wet winters. The temperature varies from a normal mean low temperature of approximately 22.6 degrees Fahrenheit in January to a normal mean high temperature of 90.6 degrees Fahrenheit in July (Reference 2). Snowfall averages 21.6 inches per year, total yearly precipitation averages about 11.7 inches, while free water surface evaporation reaches about 40 inches a year (Reference 3).

3.1.7 Population

The population of Meridian grew as follows from 1970 to 2000:

Year	Population ¹
1970	2,616
1980	6,658
1990	9,596
2000	34,919
2005 ²	62,997
¹ Per US Census D	ata (Reference 2)
² COMPASS, April	2006

Overall, the rate of growth averaged about 9.0 percent per year for the 30-year period, while growth during the period from 1990 to 2000 was slightly higher at about 13.8 percent per year. The City's population is projected to grow to about 192,593 by 2030. This growth in the City is a major factor necessitating upgrades to the wastewater treatment plant.

3.1.8 Wastewater Flow Projections

Wastewater flows are projected to increase over the next several years as the City population grows. In 2005, the City experienced an average day flow of 4.3 mgd and peak hour flow of 13.0 mgd. By the year 2030, these flows are projected to increase to approximately 16.2 mgd for an average day flow and approximately 36.7 mgd for peak hour flow (see Technical Memorandum No. 1).

The upgraded wastewater treatment facilities must be capable of providing adequate treatment for the plant to meet its discharge permit requirements and flow projections. The Proposed Action will provide adequate treatment capacity for the plant to meet current and projected future needs.

3.2 Proposed Action

The following paragraphs describe environmental baseline conditions associated with the Proposed Action and any potential impacts that construction of the Proposed Action could have on these conditions.

3.2.1 Floodplains

As discussed previously, the Proposed Action involves expansion of the current wastewater treatment plant site, part of which is located above and part is below the 100-year flood plain that has been designated by the Federal Emergency Management Agency. A map of the 100-year flood plain is included in Appendix B. Construction of facilities within this area of impact will be done with the walls of the facilities above the 100-year floodplain.

3.2.2 Wetlands

Construction of the Proposed Action would occur entirely within an upland environment that is void of any hydric soils and hydrophytic vegetation, and it is not subject to wetlands hydrology. As such, the site does not qualify as wetlands.

Given the existing site conditions and designation of mitigation measures, no direct or indirect impacts to any existing wetlands would occur as a result of constructing the Proposed Action.

3.2.3 Cultural Resources

Laurie Mauser, an archaeological and historical resource consultant, completed a cultural resource survey in August 2006. No cultural resources were found or recorded for the Proposed Action site. As such, the Proposed Action is not projected to have any impact on cultural resources. A copy of the complete Cultural Resource Report is included in Appendix A.

A copy of historic sites listed in the National Register of Historic Places was viewed to determine if the Proposed Action was located near any registered site (Reference 4). A total of four sites were listed, and all are within the City limits of Meridian, but away from the Proposed Action site. No impact to these sites is anticipated.

3.2.4 Visual Aesthetics

The new facilities to be constructed as part of the Proposed Action would be constructed within the existing plant boundaries. Care will be taken during and after construction to restore disturbed vegetation. The Proposed Action would not result in a visual impact to the area.

3.2.5 Biological Resources

Most of the existing site contains large process equipment buildings and concrete tanks, asphalt and gravel roadways, decorative shrubs and turf. A portion of the site has been cultivated with alfalfa hay. The Proposed Action would result in construction of additional buildings and concrete tanks and roadways and eliminate the vast majority of the cultivated ground, which is within the plant boundaries. Construction of the Proposed Action would be confined to areas within the existing site.

The Idaho Conservation Data Center indicated that no species listed as threatened or endangered are present in the planning area based on current information (see attached letter in Appendix B).

3.2.6 Water Quality

Construction of the Proposed Action is expected to have no direct impacts on the existing water quality of Five Mile Creek, located approximately 500 feet from the site. Best Management Practices (BMPs) would be employed during construction to control erosion and contain sediment run-off from the site.

3.2.7 Socio-Economic/Environmental Justice

In 2003, the per capita income for the City of Meridian was \$32,571. This is about 125 percent of the State of Idaho's per capita income of \$26,137 for the same year (*Reference 2*).

The Proposed Action is the least expensive alternative for upgrading the wastewater treatment capacity for the City. This provides an opportunity to minimize cost impacts to the residents, some of whom are lower-income citizens. In this way, the impacts to the existing socio-economic make-up of the area should be minimized.

The Proposed Action would be undertaken in phases constructed over a several years. This phased construction approach will spread construction costs over a number of years to minimize cost impacts to citizens.

3.2.8 Air Quality and Noise

The Proposed Action would result in short-term increases of vehicle and equipment emissions during periods of construction. Dust control measures would be implemented during construction to limit the formation of dust. The Contractor would be required to meet any applicable emission standards for construction equipment.

The Proposed Action would not incorporate any new facilities that would cause additional odor sources beyond current treatment processes.

Noise levels during construction would increase. The amount of construction noise could range from 68 to 96 decibels at a distance of 50 feet depending upon the type of construction equipment used. Long-term background noise may increase slightly, however, noise-generating equipment similar to existing equipment would be installed. If above-average noise-generating equipment would be installed, provisions for noise control would be included in the design and construction of such equipment.

3.2.9 Transportation

Short-term traffic to the site would increase as workers, equipment, and material deliveries access the construction. In the long-term, the Proposed Action would have no significant impact on the existing traffic flow of nearby streets and roads.

3.2.10 Energy Consumption

A number of energy-consuming devises would be installed as part of the Proposed Action. The Proposed Action requires the addition of pumps, process motors, blowers, and ultraviolet disinfection lamps. The amount of increase would be determined during design of the new facilities. New equipment incorporated into the design would achieve current industry standards regarding energy efficiency.

3.2.11 Recreation and Open Space

The site is bordered by agricultural land, and access to this land would not be altered with construction of the Proposed Action.

3.3 Alternative Actions

The environmental baseline conditions associated with the Alternative Actions are identical to the Proposed Action. As such, there are no deviations from Section 3.2.

3.4 No Action Alternative

The following paragraphs describe impacts that could be expected with implementation of the No Action Alternative.

3.4.1 Flood Plain

No impact.

3.4.2 Wetlands

No impact.

3.4.3 Cultural Resources

No impact.

3.4.4 Visual Aesthetics

No impact.

3.4.5 Biological Resources

No impact.

3.4.6 Water Quality

The existing plant could not meet the water quality requirements outlined in the discharge permit at future flow and loading conditions. Since the plant discharges to either Five Mile Creek or the Boise River, the water quality of those receiving waters would be impacted.

3.4.7 Socio-Economic/Environmental Justice

The No Action Alternative would result in the City's wastewater treatment plant being deficient with respect to effectively treating the wastewater prior to discharge. This would impact public safety, the environment, and could result in large monetary fines.

3.4.8 Air Quality and Noise

No impact.

3.4.9 Transportation

No impact.

3.4.10 Energy Consumption

Energy consumption would remain at current use levels.

3.4.11 Recreation and Open Space

No impact.

4.0 MITIGATION SUMMARY

Mitigation measures would be undertaken with the Proposed Action to minimize the potential for impacting the surrounding environment as a result of implementing the action. At a minimum, the following mitigation measures would be undertaken as necessary:

- The Contract Documents would require the Contractor for the project to employ erosion prevention and sediment control measures to limit the opportunity for sediment to migrate off-site during construction. Methods employed would include installing silt fencing around the entire work area, placing straw bales and intermediate fencing as necessary, collecting and routing run-off to a sedimentation area prior to discharge to off-site, constructing rock construction entrances, and other methods as required. The goal would be to minimize the opportunity for sediment to leave the site and enter area receiving waters.
- Equipment fueling and washing would occur in designated areas away from any run-off features.
- The Contract Documents would require the Contractor to employ dust control at the site as necessary to limit the formation of dust.
- Following construction, the site landscaping (grass cover and some trees) would be restored.
- Portable sanitary facilities would be used throughout construction.

- Recommendations provided in the cultural resource evaluation would be incorporated into the Contract Documents as applicable. Any construction activities that unearth cultural resources would result in a halt to construction in the affected area and lead to a detailed archeological investigation.
- The wastewater treatment plant would remain in operation throughout construction to ensure continual use for the City's customers.

5.0 PUBLIC PARTICIPATION AND INPUT

Public participation in the planning process was solicited at the following meeting:

- An open house Public Meeting was held on October 30, 2006 at Meridian City Hall.
 The intent of the open house was to provide an opportunity for local citizens to view the planned project and to answer any questions.
- Although the public meeting was advertised in the local paper and at previous City Council Meetings, no citizens attended the meeting or sent written comments on the draft Facility Plan.

- Reference 1 City of Meridian WWTP Facility Plan Update, City of Meridian. 2006. Carollo Engineers.
- Reference 2 Idaho Department of Commerce website at http://www.idoc.state.id.us.
- Reference 3 Idaho State Climate Services website at http://baegis.ag.uidaho.edu.
- Reference 4 National Register Information System, database of the National Register of Historic Places website at http://www.nr.nps.gov

The following agencies were consulted during the preparation of this Environmental Report:

- U.S. Department of the Interior Fish and Wildlife Service (USFWS)
- U.S. Department of Agriculture Natural Resource Conservation Service (NRCS)
- U.S. National Park Service National Register of Historic Places

Idaho Department of Commerce

Idaho Department of Fish and Game (IDFG)

Idaho Division of Environmental Quality (IDEQ)

ARCHAEOLOGICAL AND HISTORICAL RESOURCE CONSULTING

August 22, 2006

Carollo Engineers Stuart Hurley 12592 W. Explorer Drive Boise, ID 83713 RECEIVED

4Uh 2 4 7006

CAROLLO ENGINEERS
BOISE OFFICE

Dear Mr. Hurley,

Enclosed are four sets of the Cultural Resource Survey Report for the Meridian project. Two sets go to ISHPO to the attention of Suzi Neitzel, Deputy SHPO. Two sets are for your records.

Thank you for the opportunity to do this project. Please contact me if you have any questions.

Sincerely,

Laurie Mauser Archaeologist

Enc.

17474 E. Cape Horn Road Bayview, Idaho 83803

> Bayview: 208-683-1751 Boise: 208-331-8464

ARCHAEOLOGICAL AND HISTORICAL SURVEY REPORT ARCHAEOLOGICAL SURVEY OF IDAHO

A. KEY INFORMATION

Project Name: City of Meridian Wastewater Treatment Expansion Project

Author/principal investigator: Laurie Mauser

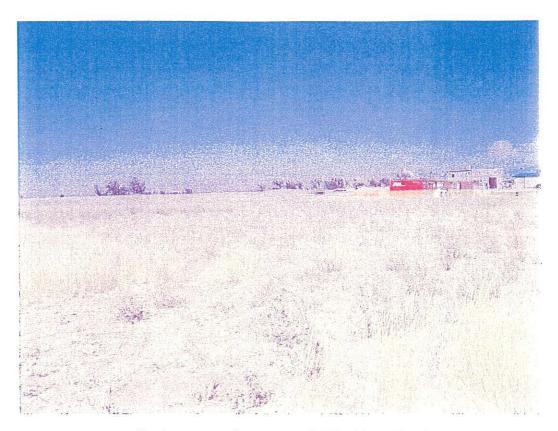
Report Date: August 21, 2006

County: Ada

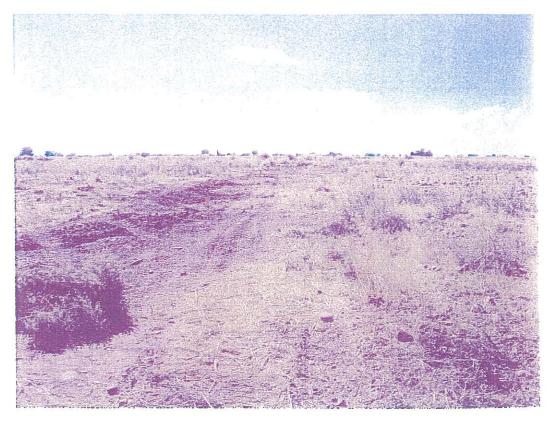
Legal Description: T. 4 N., R. 1 W., Section 34

Acres Surveyed/level of survey: 35 acres intensive-complete

B. PROJECT DESCRIPTION


The City of Meridian is proposing to expand existing wastewater treatment facilities on city-owned property west of the existing wastewater treatment plant. The APE is bounded by the Creason Lateral on the northeast boundary, a lined irrigation ditch and agricultural field on the north, an irrigation ditch and agricultural field on the west boundary and Fivemile Creek along the south boundary. The project will consist of construction of basins, ponds, structures and equipment within an approximate 35 acre area and within a 50 foot setback from city property boundaries on the north, west and south sides. See Figure 3 which illustrates the expansion project.

Potential direct and indirect impacts to known or suspected cultural properties: Cultural resources within the APE may be destroyed by excavation.


Area of Potential Effect (APE): The APE consists of approximately 35 acres of city-owned land. (See Figures 2 and 3 for location of the APE.)

Acres in project APE: 30 acres

Landowner: City

View from near southwest corner of APE looking northeast.

View looking west from center/east boundary of the APE. City of Meridian Wastewater Treatment Expansion Project

C. STATEMENT OF OBJECTIVES FOR SURVEY

The objectives of the survey were to document prehistoric and historic cultural material through review of archival sources and intensive surface examination of the APE in accordance with 36 CFR 800.

D. LOCATION AND GENERAL ENVIRONMENTAL SETTING

The project is located three miles south of the Boise River on a low river terrace developed for agriculture. The project vicinity is located within the lower Boise River basin on the Western Snake River Plain, a Basin and Range valley (Alt and Hyndman 1989). The floodplain of the Boise River consists of unconsolidated alluvium and well-sorted gravel containing gravel and cobbles from the Idaho batholith and Snake River Group. Shrub-steppe desert vegetation predominated before irrigation transformed the region. Vegetation in the project area is plowed grain crop with weeds. Elevation is 2555 feet amsl.

USGS topographic map source: Star, ID 7.5' series (Figure 2)

E. PRE-FIELD RESEARCH

Sources of information checked: a records check was conducted at the Idaho State Preservation Office which included a check of archaeological and architectural inventories, maps, and survey reports.

Summary of previous studies:

Several studies have been conducted within a mile of the project APE:

Table 1. Summary of previous cultural resource studies conducted within a mile of the APE.

Report No.	Date	Author	Title	Results
2000/1033	2000	Ogden Environmental and Energy Services	Nampa-Meridian Irrigation District Proposed Fee Title and Rights-of-Way Transfer; Ada and Canyon Counties, Idaho.	Fivemile Creek
2004/12	2003	Mauser, L.	City of Meridian Wastewater Treatment Plant Upgrade Project, Ada County.	No sites
Survey 260	1999	Arrowrock Group	Ada County Reconnaissance	01-19743
				01-19747
				01-19764
				01-19766
				01-19768
Survey 159	1990	Davis, B.	Ada County Irrigation Study	01-5983-5

Ogden Environmental recorded canals and drains for transfer of title from the Bureau of Reclamation to Nampa-Meridian Irrigation District, one of which was Fivemile Creek located adjacent to the south boundary of the project APE.

Mauser surveyed the area adjacent and east of the APE for expansion of the plant facilities in 2003. No sites were recorded in the mostly developed area.

The Arrowrock Group recorded farmsteads in Ada County, four of which are located in the vicinity of the project. Davis's survey of Ada County irrigation features resulted in recording three canal structures near the project.

F. EXPECTED HISTORIC AND PREHISTORIC LAND USE AND SITE SENSITIVITY

The project area is located at the northern edge of the Great Basin culture area. A chronology for the region is offered by Meatte (1990) which contends use of the region from 11,500 BP extending to 4,200 BP by small mobile groups using a small range of tools to utilize food resources. From 4,200-250 BP groups were semi-sedentary foragers, occupying riverine villages during winter months, relying on stored foods with more diverse tool assemblages and occupying subterranean dwellings in riverine locations where salmon runs were relied on for subsistence. Ethnographically, the Northern Paiute occupied the Western Snake River Plain wintering along the Snake and Boise Rivers and moving seasonally to higher elevations in search of subsistence. Expected sites would contain artifacts associated with hunting, fishing and gathering and fire-affected rocks and groundstone implements used in food processing.

Euroamerican settlement began as emigrants on the Oregon Trail were attracted to the region in the mid1800s and in response to the mining boom on the Boise Front and south of the project area in Silver City.

Small farms to supply the miners grew along the rivers. The Oregon Short Line Railway mainline and other branch lines were constructed across southern Idaho 1880-1920s providing early settlers access to other regions and aided southern Idaho in its development and growth. The U.S. Bureau of Reclamation Boise Project through the Reclamation Act of 1902 included completion of construction of the New York Canal and smaller ditches, Arrowrock Dam and three storage facilities including Deer Flat Reservoir (Lake Lowell) in 1909 and ditches in the project vicinity. An historic barn located near the project was constructed in 1917 (ISHS site inventory form for 01-19764), indicating the project area has been farmed since the early 1900s.

Expected historic sites include features and material associated with early settlement, transportation, and agriculture themes such as watercourse features, roads or trails, fences, and structures.

Table 2. Previously recorded sites located within a mile of the project APE.

Site No. Date/Recorder		Description	NRHP eligibility	Proximity to APE	
01-5983-4	Davis/1990	Lemp Canal Structures	Not eligible	Outside/0.5 mile N	
01-5985	Davis/1990	Lemp Canal Drop Structure Not eligible		Outside/0.75 mile NE	
01-19743	Arrowrock/1999	"Hoot" Gibson barn/2789 W. McMillan	Eligible	Outside/0.9 mi NE	
01-19747	Arrowrock/1999	Ustick Farmstead/2875 Ustick Road	Not eligible	Outside/0.75 mile SE	
01-19764	Arrowrock/1999	King Barn/4065 Ten Mile	Eligible	Outside/0.25 mile E	
01-19766	Arrowrock/1999	Quenzer Farmstead	Eligible	Outside/0.5 mile NW	
01-19768	Arrowrock/1999	Dean Quenzer Barn/3680 Black Cat Road	Not eligible	Outside/0,4 mile SW	
(no # found)	Ogden Environmental/2000	Fivemile Creek	Eligible	Outside/adjacent	
01-19880	Oz bun and Hylton/2000	Rutledge Lateral	Eligible	Outside/0.5 mile W	
01-19881	Ozbun and Hylton/2000	Ninemile Creek	Eligible	Outside/0.1 mile S	

G. FIELD METHODS

Areas examined and type of coverage: An intensive-complete pedestrian survey was conducted within the APE in east-west transects spaced 30 meters apart.

Ground surface conditions: Surface visibility was approximately 75 percent.

Areas not examined and reasons: The entire APE was examined.

Field personnel: Laurie Mauser

Survey date: August 15, 2006

City of Meridian Wastewater Treatment Expansion Project

Problems encountered: none

Area surveyed: 35 acres

H. RESULTS

The project APE consists of an agricultural field which has been plowed and formerly planted in grain. The field area is disturbed further by vehicle movement and some use for staging for current plant expansion activities. No cultural resources were noted or recorded within the project APE.

The Creason Lateral (M-1) was recorded, located outside the APE but adjacent to the city-owned property boundary and outside of the 50 foot setback from the property boundary.

Table 3. Properties located within or adjacent to the APE.

Site No.	Site Type	Description	Relationship to APE	National Register eligibility
(no # available)	Historic	Fivemile Creek	Outside	Eligible
M-1	Historic	Creason Lateral	Outside 50 ft. setback	Eligible
01-19764	Historic	King Barn/4065 Ten Mile	Outside	Eligible


Creason Lateral (M-1) is an historic canal associated with the Boise Project (U.S. Dept. of the Interior 1920). It is located on the city property line outside the APE and outside of the 50 foot setback. The site is eligible for the National Register under Criteria A for its association with the Boise Project and the development of agriculture in the region.

Creason Lateral (M-1), canal maintenance road and undeveloped area (right of road) on northeast boundary of city-owned property looking southeast.

Previously recorded cultural resources:

Fivemile Creek is located adjacent to the south boundary of the city-owned property and outside of the APE and 50-foot setback.

Fivemile Creek looking west.

King Barn (01-19764) is not visible from the project APE nor Ten Mile Road. It may no longer exist, however, newly constructed storage buildings and other structures may block the view of the barn.

Noted but not recorded:

A wooden aqueduct structure crossing Fivemile is located outside of the project area approximately 100 feet from the APE southwest corner boundary. A farmstead is located southwest of the APE corner boundary on the south side of Fivemile Creek. Several structures appear to be historic but vegetation along Fivemile Creek blocked a clear view and there was no access to this property.

Table 4. Properties noted but not recorded.

Site No.	Site Type	Description	Relationship to APE	Reason Not Recorded
M-2	Historic	Irrigation aqueduct	Outside and outside 50 ft. setback	Outside APE
M-3	Historic	Farmstead	Outside and outside 50 ft. setback,	Outside APE, no access

View of wooden aqueduct (M-2) looking southwest across Fivemile Creek and toward farmstead (M-3).

I. CONCLUSIONS AND RECOMMENDATIONS

The project consists of construction of wastewater treatment ponds and facilities on a 35 acre parcel of cityowned land adjacent to existing wastewater treatment facilities.

Cultural resources eligible for the National Register of Historic Places were identified near but outside the project APE, the Creason Lateral (M-1) and Fivernile Creek. A National Register-eligible barn (01-19764) is located near the project but was not visible from the APE. These properties and project effects are summarized in Table 5.

Table 5. All properties in/abutting the APE newly or previously recorded and summary of eligibility and project effects.

Site No.	Site Type	Description	NRHP eligibility	Project Impacts
(no # available)	Historic	Fivemile Creek	Eligible	No effect/outside APE
M-1	Historic	Creason Lateral	Eligible	No effect/outside APE
01-19764	Historic	King Barn/4065 Ten Mile	Eligible	No effect/outside APE

The project will have **no effect** on properties eligible for the National Register because they are outside of the APE. It is recommended that the project proceed.

J. ATTACHMENTS

Figure 1. Vicinity Map

Figure 2. Location of Project, Previously Recorded Sites and Area Surveyed.

Figure 3. Aerial plan map ISHS Site Inventory Form

City of Meridian Wastewater Treatment Expansion Project

K. REPOSITORY

Original survey records and attendant data will be maintained at 17474 E. Cape Horn Drive, Bayview, ID 83803.

L. CERTIFICATION OF RESULTS

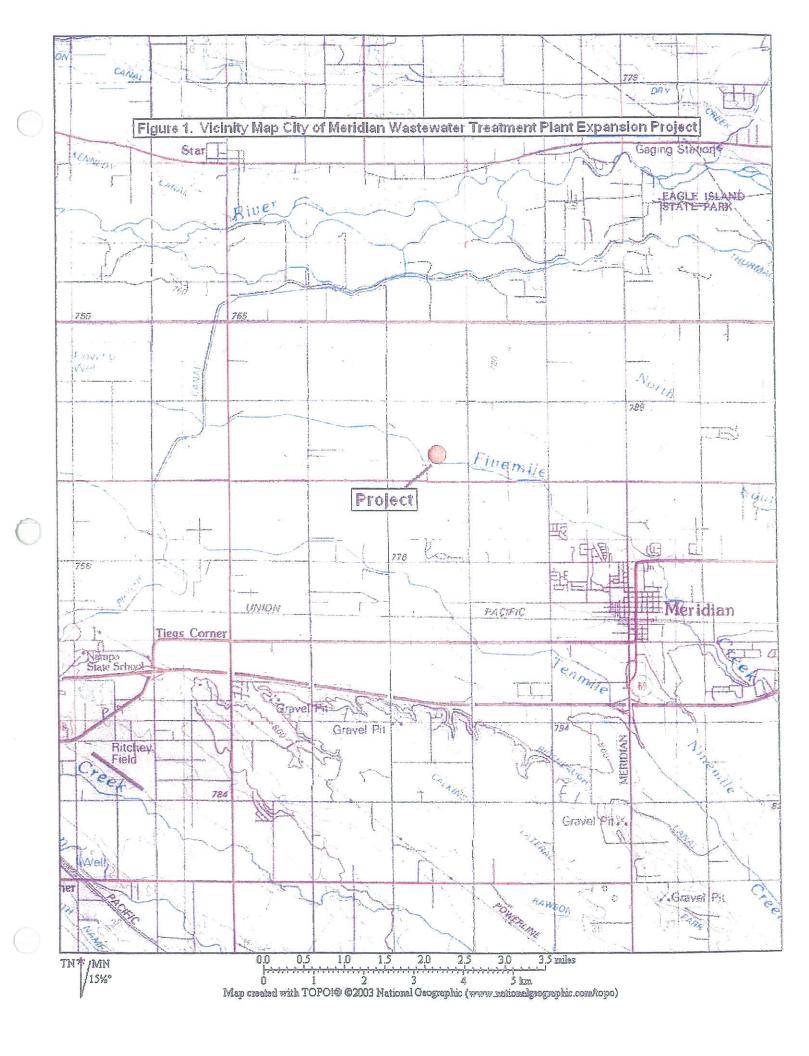
I certify that the investigation was conducted and documented according to Secretary of Interior's Standards and Guidelines and that the report is complete and accurate to the best of my knowledge.

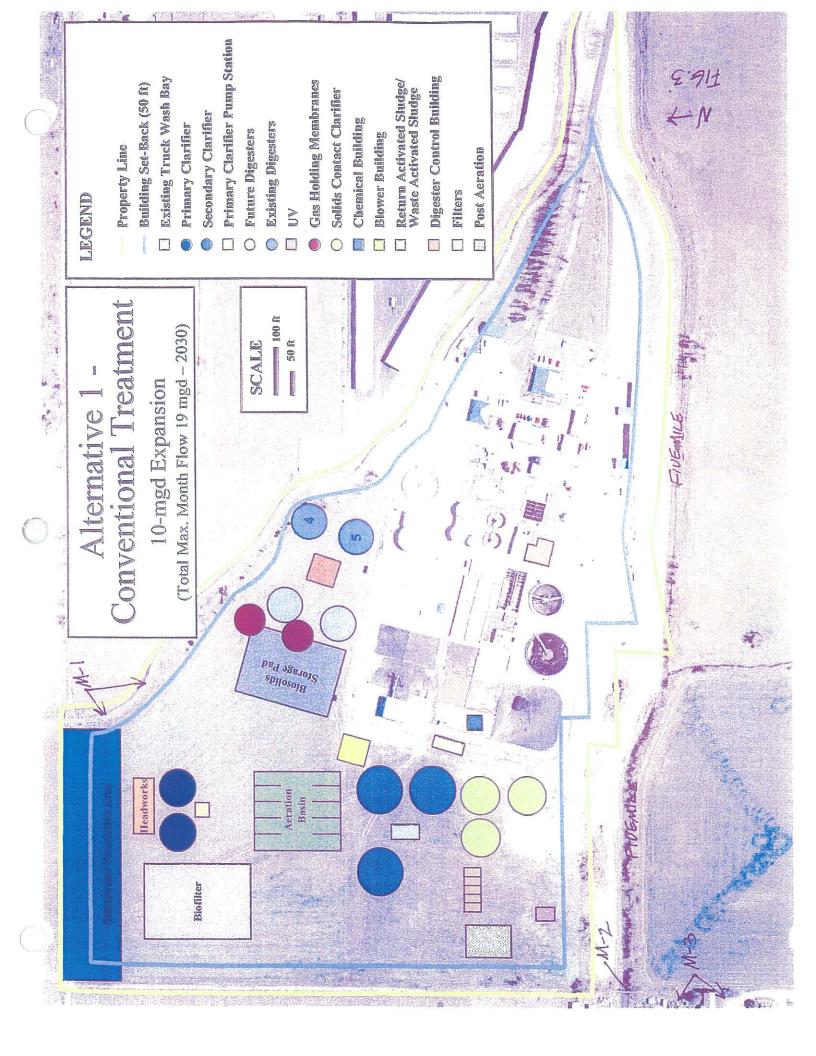
Reporter

Date

References:

Alt, David D and Donald W. Hyndman


1989 Roadside Geology of Idaho. Mountain Press Publishing Company, Missoula.


Meatte, Daniel S.

1990 Prehistory of the Western Snake River Basin: An Overview. Occasional Paper of the Museum of Natural History No. 35, Pocatello, Idaho.

U. S. Department of the Interior

1920 United States Reclamation Service Boise Project Idaho map.

IDAHO HISTORIC SITES INVENTORY FORM

PROPERTY NAME Creason Lateral FIELD# M-1
STREET RESTRICT
CITY Meridian VICINITY V COUNTY CD 1 COUNTY NAME Ada
SUBNAME BLOCK SUBLOT ACRES LESS THAN V
TAX PARCEL UTMZ 11 EASTING 545765 NORTHING 4831534
TOWNSHIP 4 N_S N RANGE 1 E_W W SECTION 34 NE 1/4 SE 1/4
QUADRANGLE Star OTHERMAP US Reclamation Service Boise Project 1920
SANBORN MAP SANBORN MAP# PHOTO#
PROPERTY TYPE Structure CONST/ACT1 Original Construction ACTDATE1 1908 CIRCA1
CONST/ACT2 ACTDATE2 CIRCA2
ASSOCIATED
FEATURES TOTAL # FEATURES
ORIGINAL USE Agriculture/Subsistence WALL MATERIAL EARTH
ORIGSUBUSE FOUND, MATERIAL
CURRENT USE Agriculture/Subsistence ROOF MATERIAL
CURSUBUSE OTHER MATERIAL
ARCHSTYLE PLAN CONDITION Excellent
NR REF # NPS CERT ACTIONDATE FUTURE ELIG DATE
DIST/MPLNAME1 DIST/MPLNAME2
Individually Eligible Contributing in a potential district Noncontributing Future eligibility Not Eligible Not evaluated □ Not evaluated □
The Lagrange Country C
CRITERIA A B C D D CRITERIA CONSIDERATION A B C D D E F G
AREA OF SIGNIF Agriculture AREA OF SIGNIF Engineering
The canal is indicated on the 1920 Usf Reclamation Service map of the Boise Project. The canal originates at the South Slough, flows northwesterly to the Lemp Canal (USArmy Corps of Engineers Juridictional Determination 2004). Additional legals: NW 1/4 T3N, R1E Section 1,;S 1/2 T4 N, R1W Section 35; NW 1/4 and SW 1/4 of NE 1/4 T4N, R1W Section 34.
PROJ/RPT TITLE City of Meridian Wastewater Treatment Expansion SVY DATE 8/15/06 SVY LEVEL Intensive
RECORDED BY L. Mauser PH 208-683-1751 ADDRESS 17474 E. Cape Horn Road, Bayview, ID 83803
SUBMITTED PHOTOS ☑ NEGS ☐ SLIDES ☐ SKETCH MAP ☐
SVY RPT # IHSI# 01-11111
MS RPT # SITS#
IHPP# HARRING ID HARRING ID DELW

IDAHO HISTORIC SITES INVENTORY FORM

CS # IHSI# REF NR REF# 2 REV# REF SVY RPT# 1 SVY RPT# 2 SVY RPT# 3 MS RPT# 1 MS RPT# 2	REV#_	#STIS#_
ADD'L NOTES		
MORE DATA		
ATTACH 🔲		
# OF PHOTOS NEGBOX# # OF SLIDES SHPO DETER DETER DATE		
INITIALED ENTRY DATE REVISE1 REVISE2 REVISE3		, ,
	Secondariano	retted his termed teat of the terment of the personal teat of the


Creason Lateral (M-1)

View of Creason Lateral looking southeast in NW $\frac{1}{2}$ of SE $\frac{1}{2}$ of Section 34.

View looking southeast from southeast of above photo.

August 4, 2006

Stuart Hurley, P.E. Carollo Engineers 12592 W. Explorer Drive, Suite 200 Boise, ID 83713

The Idaho

Conservation Data

Center collects.

analyzes, maintains,

and disseminates

scientific information

necessary for the

management and

conservation of Idaho's

biological diversity.

Dear Mr. Hurley:

I am responding to your request for a list and database records of plant and animal species of greatest conservation need for the Meridian Wastewater Treatment Plant located in T4N R1W Section 34.

The Idaho Conservation Data Center database contains the following known occurrences either within or within the vicinity of the area indicated (see database records for details):

<u>Animals</u>

Merriam's shrew (State S2): one occurrence.

Peregrine falcon (USFS Sensitive): one occurrence.

Woodhouse's toad (BLM Type 3): one occurrence.

Plants

None

Other species to be considered:

Gray wolf (USFWS Experimental Nonessential Population Zone): needs to be considered.

Pygmy rabbit (USFS Sensitive): needs to be considered if big sagebrush habitat is present.

StreamNet provides the fish species of special concern data and their response is included as a separate letter.

Idaho Conservation Data Center, Idaho Department of Fish and Game, 600 South Walnut, P.O. Box 25, Boise, ID 83707 Phone 208.334.3402 FAX 208.334.2114 http://fishandgame.idaho.gov/

For animal status definitions please go to http://fishandgame.idaho.gov/cdc/cwcs_table_of_contents.cfm and click on Appendix B: Idaho Species of Greatest Conservation Need. For plant status definitions please go to http://fishandgame.idaho.gov/cdc/plants/ and follow the links for the species you are searching for. On the pages with species and status information you can click on the heading (BLM, USFS, etc.) at the top of the status columns and you will automatically go to the page with the status definitions for that heading.

If there are questions pertaining to this request please contact me at 208-287-2730 or smitchell@idfg.idaho.gov.

Sincerely,

Stephanie Mitchell

Ecology Information Manager

Sephanie Mitchell

Office Manager

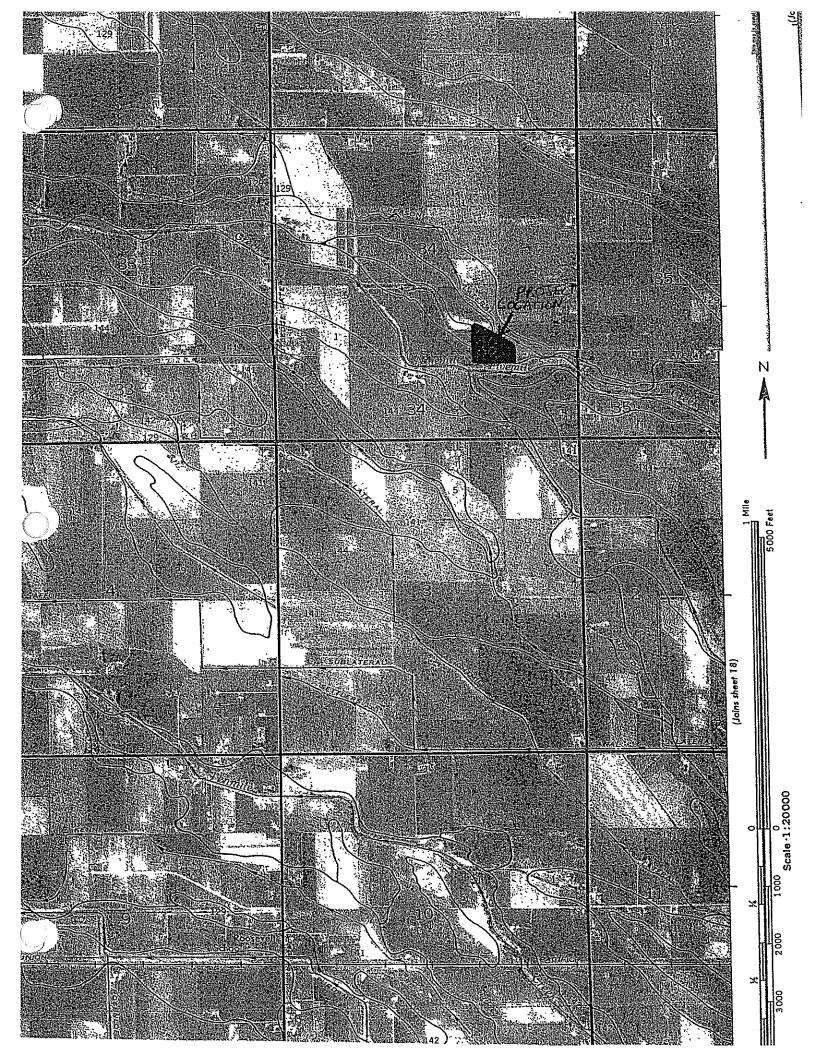
Index by State and City National Register Information System

08/12/2003 17:06:32

N	o	fil	ter
13	v	111	

Include filter in navigation

Row	STATE	COUNTY	RESOURCE NAME	ADDRESS :	CITY 1	LISTED♭	MULTIPLE
I	ID	Ada	Hunt, E. F., House	49 E. State	Meridian		Tourtellotte and Hummel Architecture TR
2	ID	Ada	Meridian Exchange Bank		Meridian		Tourtellotte and Hummel Architecture TR
3	ID	Ada	Neal, Halbert F. and Grace, House	101 W. Pine St.	Meridian		
4	ID	Ada	Tolleth House	134 E. State Ave.	Meridian	1996-12-20	



USDA-NACS

NASIS Reports

Soll Survey Division

Ada County Area, Idaho Table Y.--Prime Farmland

Pri

(Only the soils considered prime farmland are listed. Urban or built-up areas of the not considered prime farmland. If a soil is prime farmland only under certain c conditions are specified in parentheses after the soil name.)

Map symbol	Soil name
1	ABO SILT LOAM (Prime farmland if irrigated)
6	BALDOCK LOAM (Prime farmland if drained)
7	BEETVILLE FINE SANDY LOAM (Prime farmland if irrigated)
8	BISSELL LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
9	BISSELL LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated)
13	BRENT LOAM, LOW RAINFALL, O TO 2 PERCENT SLOPES (Prime farmland if irrigated
14	BRENT LOAM, LOW RAINFALL, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated
22	CASHMERE COARSE SANDY LOAM, 0 TO 4 PERCENT SLOPES (Prime farmland if irrigat
26	CHARDOTON STONY SILTY CLAY LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if ir
27	CHARDOTON STONY SILTY CLAY LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if ir
28	CHARDOTON-KIESEL VARIANT SILTY CLAY LOAMS, 0 TO 2 PERCE NT SLOPES (Prime far
29	CHARDOTON-TINDAHAY COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigat
30	CHILCOTT SILT LOAM, BEDROCK SUBSTRATUM, 0 TO 2 PERCENT SLOPES (Prime farmlan
31	CHILCOTT SILT LOAM, BEDROCK SUBSTRATUM, 2 TO 4 PERCENT SLOPES (Prime farmlan
32	CHILCOTT-BRENT SILT LOAMS, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigate
34	CHILCOTT-SEBREE COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
35	CHILCOTT-SEBREE COMPLEX, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated)
37	CHILCOTT-SEBREE COMPLEX, BEDROCK SUBSTRATUM, 0 TO 2 PER CENT SLOPES (Prime f
2.0	irrigated)
38	CHILCOTT-SEBREE COMPLEX, BEDROCK SUBSTRATUM, 2 TO 4 PER CENT SLOPES (Prime f
1.6	irrigated)
46	DRAX LOAM (Prime farmland if irrigated)
47	DRAX-GOOSE CREEK-URBAN LAND COMPLEX (Prime farmland if irrigated)
48	ELIJAH SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
49 51	ELIJAH SILT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated)
52	ELIJAH SILT LOAM, BEDROCK SUBSTRATUM, 0 TO 2 PERCENT SL OPES (Prime farmland ELIJAH SILT LOAM, BEDROCK SUBSTRATUM, 2 TO 4 PERCENT SL OPES (Prime farmland
54	ELIJAH-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigate
55	FALK FINE SANDY LOAM (Prime farmland if irrigated)
56	FALK-MOULTON-URBAN LAND COMPLEX (Prime farmland if irrigated)
60	GARBUTT SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
61	GARBUTT SILT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated)
65	GOOSE CREEK LOAM (Prime farmland if irrigated)
66	HARPT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
67	HARPT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated)
71	JENNESS FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
72	JENNESS FINE SANDY LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated)
92	LANKBUSH-CHARDOTON COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigat
99	LANKBUSH-TINDAHAY SANDY LOAMS, 0 TO 2 PERCENT SLOPES (Prime farmland if irri
100	LANKBUSH-TINDAHAY SANDY LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irri
110	MINIDOKA SILT LOAM, BEDROCK SUBSTRATUM, 2 TO 4 PERCENT SLOPES (Prime farmlan
115	OLIAGA VARIANT LOAM (Prime farmland if irrigated)
124 125	POTRATZ SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) POTRATZ SILT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated)

POWER SILT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) POWER-MCCAIN SILT LOAMS, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) POWER-MCCAIN SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) POWER-MCCAIN COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) POWER-MCCAIN COMPLEX, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) POWER-POTRATZ SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
POWER-MCCAIN SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) POWER-MCCAIN COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) POWER-MCCAIN COMPLEX, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) POWER-POTRATZ SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM SILT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
POWER-MCCAIN SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) POWER-MCCAIN COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) POWER-MCCAIN COMPLEX, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) POWER-POTRATZ SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM SILT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
POWER-MCCAIN COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) POWER-MCCAIN COMPLEX, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) POWER-POTRATZ SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM SILT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
POWER-MCCAIN COMPLEX, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) POWER-POTRATZ SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM SILT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
POWER-POTRATZ SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated PURDAM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM SILT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
PURDAM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM SILT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
PURDAM SILT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) 144 PURDAM-POWER SILT LOAMS, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) 145 PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) 147 PURDAM-POWER-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) 160 SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
PURDAM-POWER SILT LOAMS, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if ir SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated) PURDAM-POWER-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if ir SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
PURDAM-POWER-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES (Prime farmland if ir SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated)
161 Lagran area sons a management of the second sec
SCISM SILT LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated)
163 SCISM SILT LOAM, BEDROCK SUBSTRATUM, 0 TO 2 PERCENT SLO PES (Prime farmland
SCISM SILT LOAM, BEDROCK SUBSTRATUM, 2 TO 4 PERCENT SLO PES (Prime farmland
Table YPrime FarmlandContinued

Map symbol	Soil name
174	 TENMILE VERY GRAVELLY LOAM, 0 TO 4 PERCENT SLOPES (Prime farmland if irrigat
178	TINDAHAY FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigated
179	TINDAHAY FINE SANDY LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigated
186	TRUESDALE FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigate
187	TRUESDALE FINE SANDY LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigate
191	TRUESDALE FINE SANDY LOAM, BEDROCK SUBSTRATUM, 2 TO 4 P ERCENT SLOPES (Prime irrigated)
192	TURBYFILL FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES (Prime farmland if irrigate
193	TURBYFILL FINE SANDY LOAM, 2 TO 4 PERCENT SLOPES (Prime farmland if irrigate

USDA-KRCS

NASIS Reports

Soil Survey Division

Ada County Area, Idaho Soil Map Legend

Print

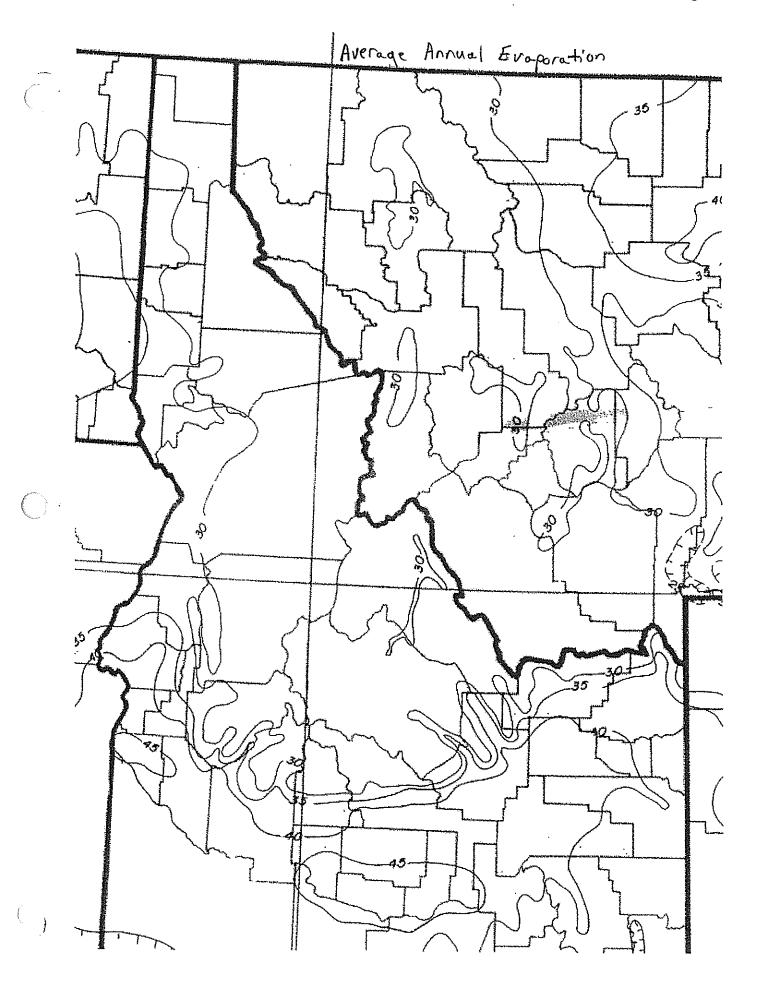
Map symbol	Soil name
1 2 3 4 5	ABO SILT LOAM ADA GRAVELLY SANDY LOAM, 4 TO 15 PERCENT SLOPES ADA GRAVELLY SANDY LOAM, 15 TO 30 PERCENT SLOPES ADA GRAVELLY SANDY LOAM, 30 TO 60 PERCENT SLOPES AERIC HAPLAQUEPTS, NEARLY LEVEL
6	BALDOCK LOAM
7	BEETVILLE FINE SANDY LOAM
8	BISSELL LOAM, 0 TO 2 PERCENT SLOPES
9	BISSELL LOAM, 2 TO 4 PERCENT SLOPES
10	BOWNS STONY LOAM, O TO 8 PERCENT SLOPES
11	BOWNS-ROCK OUTCROP COMPLEX, 0 TO 15 PERCENT SLOPES
12	BRAM SILT LOAM
13 14	BRENT LOAM, LOW RAINFALL, 0 TO 2 PERCENT SLOPES
15	BRENT LOAM, LOW RAINFALL, 2 TO 4 PERCENT SLOPES BRENT LOAM, LOW RAINFALL, 4 TO 8 PERCENT SLOPES
16	BRENT LOAM, 8 TO 12 PERCENT SLOPES
17	BRENT LOAM, 12 TO 30 PERCENT SLOPES
18	BRENT-HAW LOAMS, 8 TO 25 PERCENT SLOPES
19	BRENT-LADD LOAMS, 4 TO 15 PERCENT SLOPES
20	BRENT-LADD LOAMS, 15 TO 30 PERCENT SLOPES
21	BRENT-SEARLES COMPLEX, 15 TO 30 PERCENT SLOPES
22	CASHMERE COARSE SANDY LOAM, 0 TO 4 PERCENT SLOPES
23	CASHMERE COARSE SANDY LOAM, 4 TO 12 PERCENT SLOPES
24 25	CASHMERE COARSE SANDY LOAM, 12 TO 30 PERCENT SLOPES
26	CHARDOTON CTONY CLAN CLAN COME COME
27	CHARDOTON STONY SILTY CLAY LOAM, 0 TO 2 PERCENT SLOPES CHARDOTON STONY SILTY CLAY LOAM, 2 TO 4 PERCENT SLOPES
28	CHARDOTON-KIESEL VARIANT SILTY CLAY LOAMS, 0 TO 2 PERCE NT SLOPES
29	CHARDOTON-TINDAHAY COMPLEX, 0 TO 2 PERCENT SLOPES
30	CHILCOTT SILT LOAM, BEDROCK SUBSTRATUM, 0 TO 2 PERCENT SLOPES
31	CHILCOTT SILT LOAM, BEDROCK SUBSTRATUM, 2 TO 4 PERCENT SLOPES
32	CHILCOTT-BRENT SILT LOAMS, 0 TO 2 PERCENT SLOPES
33	CHILCOTT-BRENT COMPLEX, 2 TO 8 PERCENT SLOPES
34	CHILCOTT-SEBREE COMPLEX, 0 TO 2 PERCENT SLOPES
35 36	CHILCOTT-SEBREE COMPLEX, 2 TO 4 PERCENT SLOPES
37	CHILCOTT-SEBREE COMPLEX, 4 TO 8 PERCENT SLOPES
38	CHILCOTT-SEBREE COMPLEX, BEDROCK SUBSTRATUM, 0 TO 2 PER CENT SLOPES CHILCOTT-SEBREE COMPLEX, BEDROCK SUBSTRATUM, 2 TO 4 PER CENT SLOPES
39	CHILCOTT-SEBREE COMPLEX, BEDROCK SUBSTRATUM, 4 TO 8 PER CENT SLOPES
40	COLTHORP SILT LOAM, 0 TO 2 PERCENT SLOPES
41	COLTHORP SILT LOAM, 2 TO 4 PERCENT SLOPES
42	COLTHORP COBBLY LOAM, 0 TO 2 PERCENT SLOPES
43	COLTHORP COBBLY CLAY LOAM, 2 TO 4 PERCENT SLOPES .
44	DAY CLAY, 5 TO 15 PERCENT SLOPES
45	DAY CLAY, 15 TO 30 PERCENT SLOPES
46	DRAX LOAM
47	DRAX-GOOSE CREEK-URBAN LAND COMPLEX
48	ELIJAH SILT LOAM, 0 TO 2 PERCENT SLOPES
49 50	ELIJAH SILT LOAM, 2 TO 4 PERCENT SLOPES
30	ELIJAH SILT LOAM, 4 TO 8 PERCENT SLOPES

```
ELIJAH SILT LOAM, BEDROCK SUBSTRATUM, 0 TO 2 PERCENT SL OPES
 51
 52
          ELIJAH SILT LOAM, BEDROCK SUBSTRATUM, 2 TO 4 PERCENT SL OPES
          ELIJAH SILT LOAM, BEDROCK SUBSTRATUM, 4 TO 8 PERCENT SL OPES
 53
          ELIJAH-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES
 54
 55
          FALK FINE SANDY LOAM
          FALK-MOULTON-URBAN LAND COMPLEX
 56
          FELTHAM LOAMY SAND, 0 TO 3 PERCENT SLOPES
 57
 58
          FELTHAM LOAMY SAND, 3 TO 12 PERCENT SLOPES
          FELTHAM-RUBBLE LAND COMPLEX, 0 TO 10 PERCENT SLOPES
 59
 60
          GARBUTT SILT LOAM, O TO 2 PERCENT SLOPES
 61
          GARBUTT SILT LOAM, 2 TO 4 PERCENT SLOPES
 62
          GARBUTT SILT LOAM, 4 TO 8 PERCENT SLOPES
          GEM SILTY CLAY LOAM, 2 TO 15 PERCENT SLOPES
 63
 64
          GEM-ROCK OUTCROP COMPLEX, 5 TO 40 PERCENT SLOPES
 65
          GOOSE CREEK LOAM
 66
          HARPT LOAM, 0 TO 2 PERCENT SLOPES
Soil Map Legend--Continued
```

Map Soil name symbol 67 HARPT LOAM, 2 TO 4 PERCENT SLOPES 68 HAW-LANKBUSH COMPLEX, 4 TO 15 PERCENT SLOPES 69 HAW-LANKBUSH COMPLEX, 15 TO 25 PERCENT SLOPES 70 HAW-LANKBUSH COMPLEX, 25 TO 40 PERCENT SLOPES 71 JENNESS FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES 72 JENNESS FINE SANDY LOAM, 2 TO 4 PERCENT SLOPES 73 KUNATON SILTY CLAY LOAM, 0 TO 2 PERCENT SLOPES 74 KUNATON SILTY CLAY LOAM, 2 TO 4 PERCENT SLOPES 75 KUNATON-RUBBLE LAND COMPLEX, 2 TO 8 PERCENT SLOPES 76 KUNATON-SEBREE SILTY CLAY LOAMS, 0 TO 2 PERCENT SLOPES 77 KUNATON-SEBREE SILTY CLAY LOAMS, 2 TO 4 PERCENT SLOPES 78 KUNATON-SEBREE SILTY CLAY LOAMS, 4 TO 8 PERCENT SLOPES 79 LADD LOAM, 4 TO 15 PERCENT SLOPES 80 LADD LOAM, 15 TO 30 PERCENT SLOPES 81 LADD LOAM, 30 TO 65 PERCENT SLOPES 82 LADD-ADA COMPLEX, 15 TO 30 PERCENT SLOPES LADD-ADA COMPLEX, 30 TO 60 PERCENT SLOPES 83 84 LADD-HAW LOAMS, 30 TO 60 PERCENT SLOPES 85 LADD-SEARLES COMPLEX, 4 TO 15 PERCENT SLOPES 86 LADD-SEARLES COMPLEX, 15 TO 30 PERCENT SLOPES 87 LADD-SEARLES COMPLEX, 30 TO 65 PERCENT SLOPES 88 LADD-VAN DUSEN LOAMS, 30 TO 60 PERCENT SLOPES LANKBUSH-BRENT SANDY LOAMS, 4 TO 12 PERCENT SLOPES 89 90 LANKBUSH-BRENT SANDY LOAMS, 12 TO 30 PERCENT SLOPES LANKBUSH-BRENT SANDY LOAMS, 30 TO 65 PERCENT SLOPES 91 92 LANKBUSH-CHARDOTON COMPLEX, 0 TO 2 PERCENT SLOPES 93 LANKBUSH-LADD COMPLEX, 15 TO 30 PERCENT SLOPES 94 LANKBUSH-LADD COMPLEX, 30 TO 60 PERCENT SLOPES 95 LANKBUSH-TENMILE COMPLEX, 0 TO 4 PERCENT SLOPES 96 LANKBUSH-TENMILE COMPLEX, 4 TO 12 PERCENT SLOPES 97 LANKBUSH-TENMILE COMPLEX, 12 TO 20 PERCENT SLOPES 98 LANKBUSH-TENMILE COMPLEX, 35 TO 65 PERCENT SLOPES 99 LANKBUSH-TINDAHAY SANDY LOAMS, 0 TO 2 PERCENT SLOPES 100 LANKBUSH-TINDAHAY SANDY LOAMS, 2 TO 4 PERCENT SLOPES 101 MCCAIN SILT LOAM, 0 TO 2 PERCENT SLOPES 102 MCCAIN SILT LOAM, 2 TO 4 PERCENT SLOPES 103 MCCAIN SILT LOAM, 4 TO 8 PERCENT SLOPES 104 MCCAIN SILT LOAM, 8 TO 12 PERCENT SLOPES 105 MCCAIN EXTREMELY STONY SILT LOAM, 0 TO 2 PERCENT SLOPES

```
106
          MCCAIN EXTREMELY STONY SILT LOAM, 2 TO 4 PERCENT SLOPES
 107
          MCCAIN EXTREMELY STONY SILT LOAM, 4 TO 8 PERCENT SLOPES
 108
          MCCAIN EXTREMELY STONY SILT LOAM, 8 TO 12 PERCENT SLOPE S
 109
          MCCAIN-ROCK OUTCROP COMPLEX, 0 TO 15 PERCENT SLOPES
          MINIDOKA SILT LOAM, BEDROCK SUBSTRATUM, 2 TO 4 PERCENT SLOPES
 110
 111
          MOULTON FINE SANDY LOAM
 112
          NOTUS SOILS
 113
          OLA-SEARLES COMPLEX, 15 TO 30 PERCENT SLOPES
          OLA-SEARLES COMPLEX, 30 TO 80 PERCENT SLOPES
 114
 115
          OLIAGA VARIANT LOAM
 116
          PAYETTE-QUINCY COMPLEX, 15 TO 30 PERCENT SLOPES
          PAYETTE-QUINCY COMPLEX, 30 TO 65 PERCENT SLOPES
 117
          PEASLEY SILTY CLAY LOAM, 2 TO 6 PERCENT SLOPES
 118
 119
          PIPELINE SILT LOAM, 0 TO 2 PERCENT SLOPES
 120
          PIPELINE SILT LOAM, 2 TO 4 PERCENT SLOPES
 121
          PIPELINE SILT LOAM, 4 TO 8 PERCENT SLOPES
          PIPELINE SILT LOAM, 8 TO 12 PERCENT SLOPES
 122
 123
          PITS, GRAVEL
 124
          POTRATZ SILT LOAM, 0 TO 2 PERCENT SLOPES
 125
          POTRATZ SILT LOAM, 2 TO 4 PERCENT SLOPES
 126
          POTRATZ SILT LOAM, 4 TO 8 PERCENT SLOPES
 127
          POTRATZ-POWER SILT LOAMS, 4 TO 8 PERCENT SLOPES
 128
          POTRATZ-TREVINO COMPLEX, 4 TO 12 PERCENT SLOPES
 129
          POWER SILT LOAM, 0 TO 2 PERCENT SLOPES
 130
          POWER SILT LOAM, 2 TO 4 PERCENT SLOPES
 131
          POWER SILT LOAM, 4 TO 8 PERCENT SLOPES
 132
          POWER SILT LOAM, 8 TO 12 PERCENT SLOPES
 133
          POWER-MCCAIN SILT LOAMS, 0 TO 2 PERCENT SLOPES
Soil Map Legend--Continued
```

Map	Soil name
symbol	
134	POWER-MCCAIN SILT LOAMS, 2 TO 4 PERCENT SLOPES
135	POWER-MCCAIN SILT LOAMS, 4 TO 8 PERCENT SLOPES
136	POWER-MCCAIN SILT LOAMS, 8 TO 12 PERCENT SLOPES
137	POWER-MCCAIN COMPLEX, 0 TO 2 PERCENT SLOPES
138	POWER-MCCAIN COMPLEX, 2 TO 4 PERCENT SLOPES
139	POWER-MCCAIN COMPLEX, 4 TO 8 PERCENT SLOPES
140	POWER-POTRATZ SILT LOAMS, 2 TO 4 PERCENT SLOPES
141	PURDAM SILT LOAM, 0 TO 2 PERCENT SLOPES
142	PURDAM SILT LOAM, 2 TO 4 PERCENT SLOPES
143	PURDAM SILT LOAM, 4 TO 8 PERCENT SLOPES
144	PURDAM-POWER SILT LOAMS, 0 TO 2 PERCENT SLOPES
145	PURDAM-POWER SILT LOAMS, 2 TO 4 PERCENT SLOPES
146	PURDAM-POWER SILT LOAMS, 4 TO 8 PERCENT SLOPES
147	PURDAM-POWER-URBAN LAND COMPLEX, 0 TO 2 PERCENT SLOPES
148	QUINCY SAND, 2 TO 8 PERCENT SLOPES
150	QUINCY-LANKBUSH COMPLEX, 4 TO 12 PERCENT SLOPES
151	QUINCY-LANKBUSH COMPLEX, 12 TO 30 PERCENT SLOPES
152	QUINCY-LANKBUSH COMPLEX, 30 TO 80 PERCENT SLOPES
153	to the second state of the second seco
154	RAINEY-OLA COARSE SANDY LOAMS, 30 TO 65 PERCENT SLOPES
155	RIDENBAUGH-SEBREE SILTY CLAY LOAMS, 0 TO 2 PERCENT SLOP ES
156	RIDENBAUGH-SEBREE SILTY CLAY LOAMS, 2 TO 4 PERCENT SLOP ES
157	RIVERWASH
158	ROCK OUTCROP-TREVINO COMPLEX, 5 TO 20 PERCENT SLOPES
159	RUBBLE LAND
160	SCISM SILT LOAM, 0 TO 2 PERCENT SLOPES


SCISM SILT LOAM, 2 TO 4 PERCENT SLOPES

161

```
162
         SCISM SILT LOAM, 4 TO 8 PERCENT SLOPES
163
         SCISM SILT LOAM, BEDROCK SUBSTRATUM, 0 TO 2 PERCENT SLO PES
164
         SCISM SILT LOAM, BEDROCK SUBSTRATUM, 2 TO 4 PERCENT SLO PES
165
         SCISM SILT LOAM, BEDROCK SUBSTRATUM, 4 TO 8 PERCENT SLO PES
166
         SCISM SILT LOAM, BEDROCK SUBSTRATUM, 8 TO 12 PERCENT SL OPES
167
         SEARLES-LADD COMPLEX, 4 TO 15 PERCENT SLOPES
         SEARLES-LADD COMPLEX, 15 TO 30 PERCENT SLOPES
168
         SEARLES-LADD COMPLEX, 30 TO 65 PERCENT SLOPES
169
         SEARLES-ROCK OUTCROP COMPLEX, 30 TO 80 PERCENT SLOPES
171
172
         SHABLISS VERY FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES
173
         SHABLISS VERY FINE SANDY LOAM, 2 TO 4 PERCENT SLOPES
         TENMILE VERY GRAVELLY LOAM, 0 TO 4 PERCENT SLOPES
174
175
         TENMILE VERY GRAVELLY LOAM, 4 TO 12 PERCENT SLOPES
         TENMILE VERY GRAVELLY LOAM, 12 TO 30 PERCENT SLOPES
176
177
         TENMILE VERY GRAVELLY LOAM, 30 TO 65 PERCENT SLOPES
178
         TINDAHAY FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES
179
         TINDAHAY FINE SANDY LOAM, 2 TO 4 PERCENT SLOPES
180
         TINDAHAY FINE SANDY LOAM, 4 TO 8 PERCENT SLOPES
         TINDAHAY GRAVELLY LOAM, 8 TO 12 PERCENT SLOPES
181
182
         TREVINO-POTRATZ COMPLEX, 0 TO 4 PERCENT SLOPES
183
         TRIO VERY FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES
184
         TRIO VERY FINE SANDY LOAM, 2 TO 4 PERCENT SLOPES
185
         TRIO VERY FINE SANDY LOAM, 4 TO 8 PERCENT SLOPES
186
         TRUESDALE FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES
         TRUESDALE FINE SANDY LOAM, 2 TO 4 PERCENT SLOPES
187
188
         TRUESDALE FINE SANDY LOAM, 4 TO 8 PERCENT SLOPES
         TRUESDALE FINE SANDY LOAM, 8 TO 12 PERCENT SLOPES
189
190
         TRUESDALE FINE SANDY LOAM, BEDROCK SUBSTRATUM, 0 TO 2 P ERCENT SLOPES
191
         TRUESDALE FINE SANDY LOAM, BEDROCK SUBSTRATUM, 2 TO 4 P ERCENT SLOPES
         TURBYFILL FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES
192
193
         TURBYFILL FINE SANDY LOAM, 2 TO 4 PERCENT SLOPES
         TURBYFILL FINE SANDY LOAM, 20 TO 35 PERCENT SLOPES
194
195
         URBAN LAND
196
         VANDERHOFF SOILS, 30 TO 60 PERCENT SLOPES
197
         VAN DUSEN-PAYETTE COMPLEX, 30 TO 65 PERCENT SLOPES
198
         XEROLLIC HAPLARGIDS, VERY STEEP
199
         DAM
200
         PLAYAS
```

201

WATER

110 - 1003

Appendix B: Meridian WRRF Flow and Load Projections TM

JUB developed flow and load projections TM

Technical Memorandum

DATE: April 6, 2017

TO: Clint Dolsby, P.E.

FROM: Chris Webb, P.E.

REVIEW BY: Dan Ayers, P.E.

SUBJECT: Meridian WWTF Flow & Load Projections - DRAFT

I. Introduction

The City requested that J-U-B prepare flow and loading projections for the current Wastewater Treatment Facility Plan. This included analyzing flow and load data for the Wastewater Treatment Facility (WWTF), as well as summarizing population and employment projections from the current Sewer Master Plan (SMP) update.

This memorandum includes a summary of the following:

- Existing population, employment, flows and loads
- Unit flows, unit loads and peaking factors used in future projections
- Population and employment projections for the committed and buildout scenarios
- Flow and load projections for the committed and buildout scenarios

Table 1 lists and defines several flow and load terms used in this memorandum.

TABLE 1 – DEFINITION OF TERMS

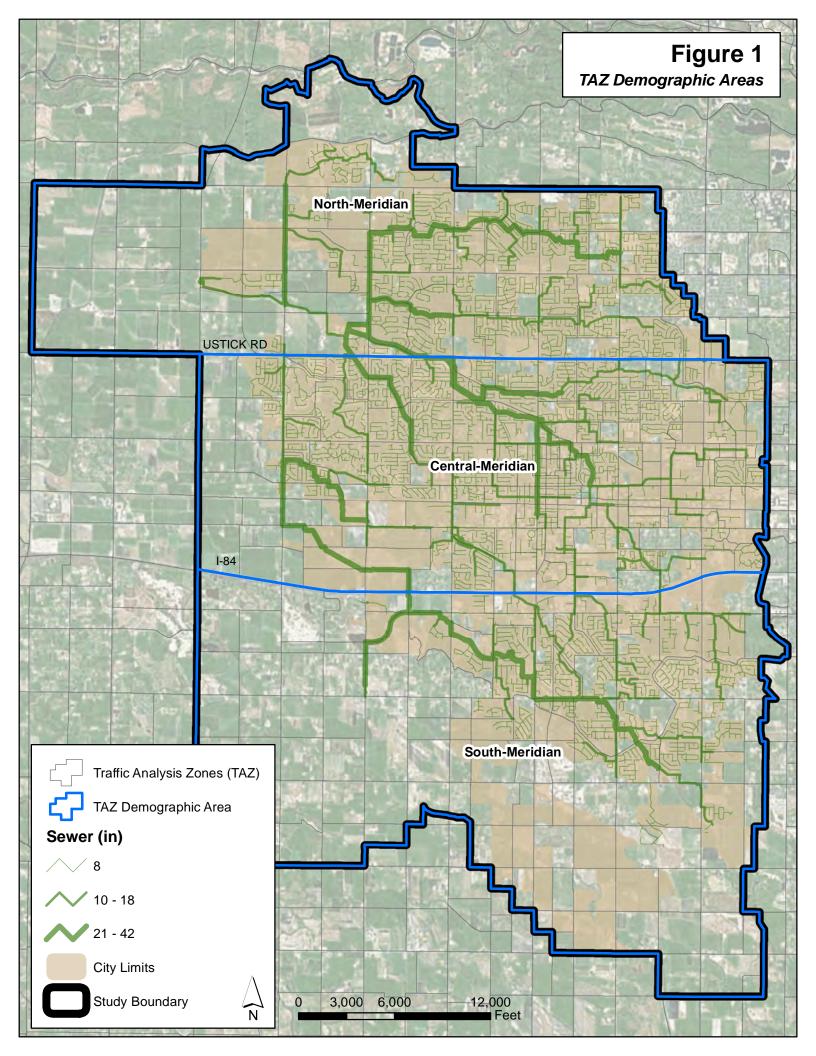
Term	Definition				
Average Day	Average flow/load in a 24-hour period				
Average Annual	Average flow/load for an entire calendar year (12 months)				
Peak Month	Highest 30-day average flow/load for an entire calendar year (12 months)				
Peak Week	Highest 7-day average flow/load for an entire calendar year (12 months)				
Peak Day	Highest 24-hour average flow/load for an entire calendar year (12 months)				
Peak Hour	Highest 1-hour average flow for an entire calendar year (12 months)				
MGD	Million gallons per day				
BOD	Biochemical oxygen demand				
TSS	Total suspended solids				
NH3	Ammonia as nitrogen				
TKN	Total Kjeldahl nitrogen				
TP	Total phosphorus				

II. Population & Employment Projections

Existing and future estimates for Treasure Valley population and employment are developed by the Community Planning Association (COMPASS) each year. Their current estimates are for 2016 and 2040. These population and employment estimates are broken down and summarized by geographic areas called Traffic Analysis Zones (TAZ). Meridian is divided into three TAZ demographic areas as shown in **Figure 1**. The population and employment estimates from COMPASS for 2016 and 2040 are summarized in **Table 2** for each demographic area.

TAZ Demographic	2016 CC	OMPASS	2040 COMPASS					
Areas	Population	Employment	Population	Employment				
North-Meridian	31,220	4,410	51,130	9,420				
Central-Meridian	46,500	29,080	67,720	48,550				
South-Meridian	21,440	10,120	42,750	16,330				
Total	99,160	43,610	161,600	74,300				

TABLE 2 – COMPASS POPULATION AND EMPLOYMENT ESTIMATES


The current SMP update focuses solely on the collection system and is being updated separately. It includes a demographics summary related to the three main modeling scenarios (existing, committed and buildout). **Table 3** provides a population and employment projection for each TAZ demographic area and each modeling scenario.

TAZ Demographic	Existing		Committed		Buildout	
Areas	Population	Employment	Population	Employment	Population	Employment
North-Meridian	31,700	3,980	46,230	8,520	96,770	17,830
Central-Meridian	49,670	28,230	65,530	46,980	85,900	61,580
South-Meridian	19,710	9,010	49,150	18,790	133,710	51,080
Total	101,080	41,220	160,910	74,290	316,380	130,490

TABLE 3 – SEWERED POPULATION AND EMPLOYMENT PROJECTIONS

The existing model scenario represents the areas currently sewered by the City. There are slight differences between the existing model estimates from the SMP and the 2016 COMPASS estimates, likely due to differences in methodology.

The committed model scenario represents everything the City has committed to serve. In most cases this corresponds to everything that has been annexed into the City. These projections closely match those from COMPASS for the year 2040 and represent an average annual growth rate of 2%.

The buildout scenario represents full buildout of the SMP study boundary. A continued 2% average annual growth rate reaches the buildout scenario population in approximately 2074. This study boundary is shown in **Figure 1** and closely matches the impact area for the City.

III. Historical Flows & Loads

The City provided historical WWTF data for most of the past 6 years. **Table 4** shows the average annual flow and the average annual load for each wastewater constituent. Annual average data for 2016 was determined using data from November 2015 through October 2016, since November and December 2016 data were not available. **Figure 2** shows the 2016 daily data for flow and each load constituent.

Year	Flow ¹ (MGD)	BOD (lb/day)	TSS (lb/day)	NH3 (lb/day)	TKN (lb/day)	TP (lb/day)
2011	5.6	12,700	12,480	1,380	2,200	300
2012	5.5	13,500	13,420	1,490	2,290	300
2013	5.5	14,520	14,210	1,560	2,400	320
2014	6.2	15,830	14,600	1,720	2,560	330
2015	6.1	15,040	13,780	1,780	2,590	340
2016	6.6	16,340	14,790	1,930	2,910	350

TABLE 4 - HISTORICAL FLOWS & LOADS (AVERAGE ANNUAL)

^{(1) –} Effluent flow data used. Influent flow data not available.

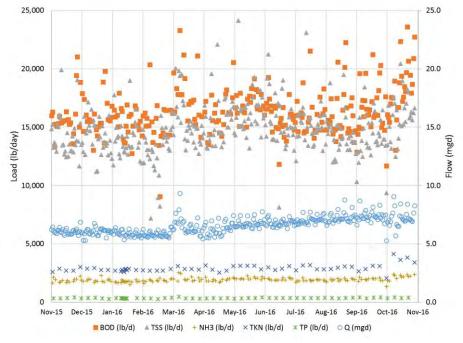


FIGURE 2 - 2016 DAILY FLOWS & LOADS

The data was analyzed to determine peaking factors for the average annual, peak month, peak week and peak day for each year of data provided. **Appendix A** contains a summary of the calculated peaking factors for each year. The City has experienced significant growth, especially in the last couple years. There are many factors that affect peaking factors, but generally peaking factors decrease as the service area, population, and/or flow increase. Due to the significant recent growth, peaking factors from 2016 are most representative of the current flow and load characteristics.

However, in order to provide conservative flow and load projections, 2016 peaking factors for each constituent were compared the average peaking factor over the past 6 years. In situations where the 2016 peaking factor was lower than the 6-year average, the 6-year average was used. The resulting recommended peaking factors are summarized in **Table 5.**

Description	Flow	BOD	TSS	NH3	TKN	TP
Average Annual	1.00	1.00	1.00	1.00	1.00	1.00
Peak Month	1.14	1.13	1.11	1.10	1.06	1.10
Peak Week	1.18	1.27	1.23	1.23	1.17	1.25
Peak Day	1.42	1.60	1.88	1.32	1.42	1.33
Peak Hour ¹	1.78	-	-	-	-	-

TABLE 5 - RECOMMENDED PEAKING FACTORS

IV. Unit Flows & Loads

An analysis of existing water usage data was completed as a part of the SMP to establish unit flows for use in projecting future flows. The average residential single family unit flow was determined to be 153 gallons per day (gpd). A summary of all the unit flows can be found in **Appendix A**.

Current wastewater loads can be summarized by various components that make up the total. These components can include sanitary loads (residential and non-residential), contracted loads from other utilities and loads from permitted significant industrial users (SIUs). Sanitary loads (residential and non-residential) are currently the only component for the City. An analysis of the existing sanitary loading data was completed to determine unit loads for each constituent for use in future load projections.

In the SMP sanitary flows were developed for each parcel connected to the sewer system based on winter water usage data (Dec 2015 – Feb 2016). Land use designations were also assigned to each parcel. Non-residential sanitary loads were estimated using this SMP information and the assumed non-residential sanitary unit loads listed in **Table 6**.

^{(1) –} Effluent peak hour flow data includes occasional recirculation flows that artificially increase the peak hour flow resulting in a peak hour peaking factor greater than 2.6. This is not representative of typical influent peak hour flows. The peaking factor listed above was determined by using the maximum effluent peak hour flow averaged over each week, rather than maximum effluent peak hour flow from each day.

Unit loads for mixed use land use types were determined in a similar manner to mixed use unit flows (see **Appendix A**).

TABLE 6 - ASSUMED UNIT LOADS - NON-RESIDENTIAL

Land Use	BOD (mg/L)	TSS (mg/L)	NH3 (mg/L)	TKN ¹ (mg/L)	TP (mg/L)	Source
Car Wash	315	62	3	5	6	B&V ²
Church, School	222	106	72	109	11	CT & Yelm ^{3, 4}
Commercial	442	157	51	77	7	СТ
Entertainment, Parks/Golf	77	166	27	41	6	Yelm
Hospital	350	156	82	124	12	Fairfax ⁵
Hotel	195	171	52	79	9	СТ
Office, Industrial, Public	195	63	112	170	12	СТ
Restaurant	781	193	36	55	11	CT & Yelm

^{(1) –} Assumed TKN unit loads based on current ratio of TKN/NH3 at WWTF

The average daily flow for each non-residential land use type from the SMP and the assumed unit loads were used to estimate an average daily load for each load constituent. A mass balance was used to then calculate the total residential sanitary loads as shown in **Table 7**. Residential unit loads, shown in **Table 8**, were then estimated for each constituent using the existing population from **Table 3**.

TABLE 7 – EXISTING FLOW & LOADS (WINTER LOWS)

Description	Flow ¹ (MGD)	BOD (lb/day)	TSS (lb/day)	NH3 (lb/day)	TKN (lb/day)	TP (lb/day)
Non-Residential	1.0	3,290	1,150	540	810	80
Residential	4.9	12,230	12,510	1,290	1,950	240
Total ²	5.9	15,520	13,660	1,830	2,760	320

^{(1) -} Does not include seasonal infiltration. The SMP estimates existing seasonal infiltration up to 1.42 MGD.

TABLE 8 - RECOMMENDED UNIT LOADS - RESIDENTIAL

Land Use	BOD	TSS	NH3	TKN	TP
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Residential	300	307	32	48	6

^{(2) -} B&V Study (Water Effluent and Solid Waste Characteristics in the Professional Car Wash Industry, International Carwash Association)

^{(3) –} CT Study (State of Connecticut, 2006 Design Manual, Water Regulations and Discharges)

^{(4) –} Yelm Study (City of Yelm General Sewer Plan)

^{(5) -} Fairfax Study (Commonwealth of Virginia, State Board of Health and Disposal, Sewage Health and Disposal Regulations, 2000)

^{(2) –} Based on wintertime data (Dec 2015 – Feb 2016), not annual averages.

V. Flow & Load Projections

Future average flows for the committed and buildout scenarios were developed based on the future land use assumptions in the SMP. Neither redevelopment nor reserve industrial flows were included in the base committed and buildout scenarios in the SMP. **Table 9** shows the projected peak month, peak week, peak day and peak hour flows at the WWTF based on the future flows from the SMP and the WWTF peaking factors listed in **Table 5**.

TABLE 9 - FLOW PROJECTIONS

Description	Existing	Committed	Buildout
Average Annual Flow (MGD)	6.6	12.5	23.6
Peak Month Flow (MGD)	7.5	14.2	26.8
Peak Week Flow (MGD)	7.8	14.8	27.9
Peak Day Flow (MGD)	9.3	17.7	33.4
Peak Hour Flow (MGD)	11.7	22.3	42.0

Future loads were developed using the future land use assumptions in the SMP, population projections and unit loads presented in **Table 6** and **Table 8**. Redevelopment was not included in the base committed and buildout scenarios in the SMP. These projections also do not include any reserve loads for future large scale industries. **Table 10** summarizes the resulting existing, committed and buildout loads for each loading constituent. **Appendix B** includes a summary of the flow and load projections broken down by TAZ demographic area.

TABLE 10 – LOAD PROJECTIONS

Constituent	Load Description	Existing	Committed	Buildout
BOD	Average Annual	16,340	27,960	50,790
	Peak Month	18,420	31,520	57,260
(lb/day)	Peak Week	20,760	35,520	64,520
	Peak Day	26,080	44,630	81,060
	Average Annual	14,790	24,230	46,140
TSS	Peak Month	16,390	26,840	51,100
(lb/day)	Peak Week	18,160	29,740	56,620
	Peak Day	27,760	45,470	86,580
	Average Annual	1,930	3,730	6,830
NH3	Peak Month	2,120	4,090	7,500
(lb/day)	Peak Week	2,380	4,590	8,400
	Peak Day	2,550	4,920	9,000
	Average Annual	2,910	5,620	10,300
TKN	Peak Month	3,090	5,960	10,920
(lb/day)	Peak Week	3,410	6,590	12,060
	Peak Day	4,130	7,970	14,580
	Average Annual	350	630	1,150
TP	Peak Month	390	690	1,260
(lb/day)	Peak Week	440	780	1,430
	Peak Day	470	840	1,530

Peaking Factors

Peaking factors for each wastewater constituent was calculated for each year from 2011 to 2016. A summary is included in **Table A-1**.

TABLE A-1 - HISTORICAL PEAKING FACTORS

		2011	2012	2013	2014	2015	2016	Min	Avg	Max
	Peak Month	1.15	1.12	1.15	1.18	1.10	1.12	1.10	1.14	1.18
Flow	Peak Week	1.18	1.15	1.20	1.28	1.13	1.16	1.13	1.18	1.28
	Peak Day	1.25	1.19	1.37	1.35	1.22	1.42	1.19	1.30	1.42
	Peak Month	1.17	1.12	1.13	1.18	1.06	1.10	1.06	1.13	1.18
BOD	Peak Week	1.32	1.19	1.18	1.42	1.15	1.27	1.15	1.26	1.42
	Peak Day	1.59	1.71	1.50	1.66	1.67	1.44	1.44	1.60	1.71
	Peak Month	1.17	1.09	1.10	1.14	1.03	1.11	1.03	1.10	1.17
TSS	Peak Week	1.29	1.27	1.24	1.21	1.13	1.22	1.13	1.23	1.29
	Peak Day	2.28	2.10	2.25	1.50	1.50	1.63	1.50	1.88	2.28
	Peak Month	1.06	1.10	1.11	1.11	1.05	1.10	1.05	1.09	1.11
NH3	Peak Week	1.12	1.17	1.19	1.18	1.11	1.23	1.11	1.17	1.23
	Peak Day	1.18	1.30	1.24	1.23	1.28	1.32	1.18	1.26	1.32
	Peak Month	1.05	1.04	1.09	1.03	1.04	1.06	1.03	1.05	1.09
TKN	Peak Week	1.17	1.13	1.15	1.06	1.07	1.17	1.06	1.13	1.17
	Peak Day	1.11	1.19	1.16	1.11	1.17	1.42	1.11	1.19	1.42
	Peak Month	1.11	1.10	1.08	1.03	1.07	1.10	1.03	1.08	1.11
TP	Peak Week	1.36	1.15	1.16	1.19	1.23	1.25	1.15	1.22	1.36
	Peak Day	1.43	1.16	1.19	1.27	1.27	1.33	1.16	1.28	1.43

Unit Flows

As part of the Collection System Sewer Master Plan existing water usage data was analyzed to determine unit flows for a variety of specific land use types. **Table A-2** summarizes the unit flows developed for non-residential land use types. All unit flows are based on the net area which excludes right-of-way, open space, roads etc. that get included when development occurs.

TABLE A-2 - UNIT FLOWS

Land Use Designation	Net Unit Flow (GPAD) ²
Assisted Living	850
Car Wash	10,520
Church	60
Commercial ⁽¹⁾	520
Entertainment	310
Employment – Low Density	540
Employment – Mixed	1,040
Employment – High Density	2,540
Hospital	850
Hotel	3,050
Industrial	190
Lifestyle Center	2,980
Mixed Use - Commercial	1,820
Mixed Use - Community	1,080
Mixed Use - Interchange	940
Mixed Use - Neighborhood	1,250
Mixed Use - Non-Residential	600
Mixed Use - Regional	820
Mixed Use - Residential	1,300
Office	270
Old Town	920
Open Space	0
Parks/Golf Courses	10
Public	130
Restaurant	1,880
School	120

⁽¹⁾ Commercial unit flow is a composite unit flow of Car Wash, Commercial-Retail, Entertainment, Hotel, Office, and Restaurant.

⁽²⁾ Gallons per acre per day

The City's future land use map (from the current comprehensive plan) has several different mixed use categories. Unit flows for these mixed use designations were developed using a mix of the following base uses: residential, office, commercial, public and industrial. **Table A-3** summarizes the percentages of each base use included in the mix use designation. A mixed use multiplier was applied to the resulting unit flow due to the increased density associated with mixed use.

TABLE A-3 - MIXED USE PERCENTAGES

Land Use	Residential %	Office %	Commercial %	Public %	Industrial %
Employment – High Density	0	80	20	0	0
Employment – Mixed	0	50	10	0	40
Employment – Low Density	0	100	0	0	0
Mixed Use - Commercial	20	25	50	5	0
Mixed Use - Community	35	25	30	10	0
Mixed Use - Interchange	30	30	20	20	0
Mixed Use - Neighborhood	50	30	10	10	0
Mixed Use - Non-Residential	0	40	55	5	0
Mixed Use - Regional	15	25	50	10	0
Mixed Use - Residential	50	25	20	5	0
Lifestyle Center	32	16	40	12	0
Old Town	25	25	35	15	0

Table A-4 summarizes the unit flows developed for residential land use types. Assumed residential densities are also listed. These densities were determined through an analysis of recent developments and discussion with the City.

TABLE A-4 - RESIDENTIAL UNIT FLOWS AND DENSITIES

Land Use Designation	Unit Flows (GPDU) ¹	Gross Densities (DU/AC) ²
Residential – Single Family Low	153	3.0
Residential – Single Family Medium	153	4.5
Residential – Multi-Family Medium-High	115	10.0
Residential – Multi-Family High	115	20.0

⁽¹⁾ Gallons per dwelling unit

⁽²⁾ Dwelling units per acre

Figure 1 shows the TAZ demographic areas developed by COMPASS. **Table B-1** shows the annual average flow projections for each of the TAZ demographic areas.

TABLE B-1 - FLOW PROJECTIONS BY AREA (AVERAGE ANNUAL)

TAZ Demographic Areas	Existing Flow (MGD)	Committed Flow (MGD)	Buildout Flow (MGD)
North-Meridian	1.7	3.0	6.4
Central-Meridian	3.7	5.8	7.6
South-Meridian	1.2	3.7	9.5
Total	6.6	12.5	23.6

Table B-2 shows the annual average load projections for each constituent by TAZ demographic areas.

TABLE B-2 – LOAD PROJECTIONS BY AREA (AVERAGE ANNUAL)

Constituent	TAZ Demographic Areas	Existing	Committed	Buildout
	North-Meridian	3,920	6,320	13,580
BOD (lb/day)	Central-Meridian	9,400	13,600	17,250
(ib) day)	South-Meridian	3,020	7,940	19,740
	North-Meridian	3,890	6,010	13,060
TSS (lb/day)	Central-Meridian	8,060	10,940	14,040
(ib) day)	South-Meridian	2,840	7,170	18,810
	North-Meridian	480	800	1,710
NH3 (lb/day)	Central-Meridian	1,090	1,840	2,520
(ib) day)	South-Meridian	360	1,080	2,570
	North-Meridian	720	1,200	2,580
TKN (lb/day)	Central-Meridian	1,640	2,780	3,800
(ib) day)	South-Meridian	550	1,630	3,880
	North-Meridian	90	140	300
TP (lb/day)	Central-Meridian	200	310	400
(ib) day)	South-Meridian	60	180	440

Appendix C: Secondary Treatment Alternatives Evaluation Report

Secondary Treatment Alternatives Evaluation

Prepared for City of Meridian, Idaho September 24, 2015

Secondary Treatment Alternatives Evaluation

Prepared for City of Meridian, Idaho September 24, 2015

Table of Contents

List	of Fig	ures		i\				
List	of Tal	oles		١				
List	of Abl	breviatio	ns	vii				
Exe	cutive	Summa	ry	ES-1				
			s Alternatives					
	Add-0	Add-On Process Alternatives						
	Final	Final Alternatives Evaluation and Recommendation						
1.	Intro	Introduction						
	1.1	Target Effluent Concentrations						
		1.1.1	Ammonia	1-2				
		1.1.2	Oxidized Nitrogen	1-2				
		1.1.3	Phosphorus	1-2				
	1.2	Input C	Characteristics for Modeling	1-2				
		1.2.1	Primary Effluent Characteristics	1-3				
		1.2.2	Centrate Characteristics	1-6				
	1.3	Summa	ary	1-9				
2.	Main Process Alternative Screening							
	2.1	Alterna	tive 1: Expansion of Existing System Using 5-Stage Bardenpho					
		2.1.1	BioWin Model Setup					
		2.1.2	Model Results for Winter Conditions					
		2.1.3	Preliminary Capital and Operating Cost Estimates					
	2.2	Alternative 2: Expansion for Nitrogen Removal Only (Groundwater Infiltration)						
		2.2.1	BioWin Model Setup					
		2.2.2	Model Results for Winter Conditions					
		2.2.3	Preliminary Capital and Operating Cost Estimates					
	2.3		tive 3: Simultaneous Nitrification/Denitrification with Chemical Phosphorus					
		2.3.1	BioWin Model Setup					
		2.3.2	Model Results for Winter Conditions					
		2.3.3	Preliminary Capital and Operating Cost Estimates					
	2.4		sions and Recommendations from Main Process Alternatives Screening					
		2.4.1	Conclusions					
		2.4.2	Recommendations					
3.	Add-0		ess Evaluations					
	3.1		y Phosphorus Removal Options					

		3.1.1	Kruger Actiflo and Discfilter System	3-2
		3.1.2	GE Tertiary Membrane System	3-3
		3.1.3	Tertiary P Removal Conclusions	3-5
	3.2	Sidestr	ream Phosphorus Removal Add-On Process	3-5
		3.2.1	Sidestream P Removal Add-On BioWin Model Setup	3-5
		3.2.2	Model Results for Winter Conditions	3-6
		3.2.3	Preliminary Capital and Operating Cost Estimates	3-7
	3.3	Influen	t Flow Equalization Options	3-9
		3.3.1	Influent Flow Equalization	3-9
		3.3.2	Influent Flow Equalization with Sidestream N Removal	3-14
		3.3.3	Influent Flow Equalization with Sidestream N and P Removal	3-18
	3.4	Centra	te Nitrogen Load Equalization	3-23
		3.4.1	BioWin Model Setup	3-23
		3.4.2	Model Results for Winter Conditions	3-25
		3.4.3	Preliminary Capital and Operating Cost Estimates	3-25
	3.5	Tertiary	y Nitrification and Denitrification Process	3-27
		3.5.1	BioWin Model Setup	3-27
		3.5.2	Model Results for Winter Conditions	3-27
		3.5.3	Preliminary Capital and Operating Cost Estimates	3-28
	3.6	BioMag	g Ballasted Activated Sludge System	3-30
		3.6.1	BioMag Add-On BioWin Model Setup	3-30
		3.6.2	Model Results for Winter Conditions	3-31
		3.6.3	Preliminary Capital and Operating Cost Estimates	3-32
	3.7	Membr	rane Bioreactor System	
		3.7.1	BioWin Model Setup	3-34
		3.7.2	Model Results for Winter Conditions	3-36
		3.7.3	Preliminary Capital and Operating Cost Estimates	
	3.8		Stage Bardenpho Process	
		3.8.1	Model Results for Winter Conditions	3-40
		3.8.2	Preliminary Capital and Operating Cost Estimates	
	3.9		sions and Recommendations	
		3.9.1	Conclusions	
		3.9.2	Recommendations	
4.			ives Evaluation	
	4.1		e Bardenpho with Sidestream P Removal	
		4.1.1	Layout	
		4.1.2	2030 Average Annual Operating Costs	
		4.1.3	Capital Cost	
		4.1.4	Estimated 20-Year Cost	
	4.2	5-Stage	e Bardenpho with Sidestream P Removal and Centrate Load Equalization	4-4

		4.2.1	Layout	4-5
		4.2.2	2030 Average Annual Operating Costs	4-7
		4.2.3	Capital Cost	4-7
		4.2.4	Estimated 20-Year Cost	4-8
	4.3	5-Stage	Bardenpho with MBR Solids Separation	4-8
		4.3.1	Layout	4-8
		4.3.2	2030 Average Annual Operating Costs	4-10
		4.3.3	Capital Cost	4-11
		4.3.4	Estimated 20-Year Cost	4-11
	4.4	Final Re	ecommendation	4-11
5.	Limita	ations		5-1
6.	Refer	ences		6-1
App	endix	A: BioWir	n Modeling Results from Main Process Alternatives Evaluation	A-1
App	endix	B: BioWi	n Modeling Results from Add-On Process Alternatives Evaluation	B-1
App	endix	C: BioWii	n Modeling Results from Final Alternatives Evaluation	
App	endix	D: Cost E	Stimates	D-1
		Figui Diurnal	variability of raw influent parameters	
Figi	ure 1-2	. 2030 s	summer maximum month model input parameters	1-6
			te input variability	
Fig			s flow schematic (A) and BioWin simulator schematic (B) for 5-stage	
Fig			s flow schematic (A) and BioWin simulator schematic (B) for 4-stage	•
Figi	ure 2-3	. Proces	s flow schematic in BioWin simulator for SND alternative	2-13
Fig	ure 3-1	Diagrai	n of Actiflo system	3-2
Fig			s flow schematic for 5-stage Bardenpho processes with sidestream s	
Fig			s flow schematic for 5-stage Bardenpho processes with influent flow	3-10
Fig			s flow schematic for 5-stage Bardenpho processes with influent flow n N removal	-
Fig			s flow schematic for 5-stage Bardenpho processes with influent flow n N and P removal processes	-
Fig			s flow schematic for 5-stage Bardenpho processes with centrate load	

Figure 3-7. PE and centrate nitrogen mass rates	3-24
Figure 3-8. Process flow schematic for A/O process use with tertiary nitrification and	
denitrification	
Figure 3-9. Process flow schematic for BioMag ballasted 5-stage Bardenpho process	
Figure 3-10. Process flow schematic for 5-stage Bardenpho process with MBR	3-35
Figure 3-11. Process flow schematic for IFAS 5-stage Bardenpho process	3-40
Figure 4-1. Plant layout for 5-stage Bardenpho with sidestream P removal	4-2
Figure 4-2. Plant layout for 5-stage Bardenpho with sidestream P removal and centrate load equalization	4-6
Figure 4-3. Plant layout for 5-stage Bardenpho with MBR	4-9
List of Tables	
Table ES-1. October 2014 Draft NPDES Permit (all values in mg/L)	ES-1
Table 1-1. October 2014 Draft NPDES Permit (all values in mg/L)	1-1
Table 1-2. Historical Raw Influent Data Analysis ^a	1-3
Table 1-3. 2012 Facilities Plan 2030 Residential/Commercial Flows and Loads ^a	1-3
Table 1-4. Primary Effluent Characteristics for each Model Scenario	1-4
Table 1-5. Facilities Plan Centrate Projections ^a	1-6
Table 1-6. Historical Centrate Data Analysisa	1-7
Table 1-7. Centrate Parameters	1-7
Table 2-1. 5-Stage Bardenpho Modeling Results	2-5
Table 2-2. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho Expansion	2-6
Table 2-3. Maximum Month Operating Costs for 5-Stage Bardenpho Alternative	2-7
Table 2-4. Target Effluent Concentrations (all values in mg/L)	2-9
Table 2-5. 4-Stage Bardenpho (N Removal Only) Modeling Results	2-10
Table 2-6. Planning-Level Comparative Capital Costs for 4-Stage Bardenpho (N Removal Only) Expansion	2-11
Table 2-7. Maximum Monthly Operating Costs for 4-Stage Bardenpho (N Removal Only) Alternative	2-12
Table 2-8. SND Modeling Changes to Switching Function	2-14
Table 2-9. Effluent Nitrogen	2-14
Table 2-10. SND Modeling Results	2-15
Table 2-11. Planning-Level Comparative Capital Costs for SND Expansion	2-16

Table 2-12. Maximum Month Operating Costs for SND Alternative	. 2-16
Table 2-13. Cost Comparison of Alternatives	. 2-17
Table 3-1. Planning-Level Comparative Capital Costs for Actiflo and Discfilter Tertiary Treatment	3-3
Table 3-2. Maximum Monthly Operating Costs for Tertiary Chemical Phosphorus Removal	3-3
Table 3-3. Planning-Level Comparative Costs for Tertiary Membrane System	3-4
Table 3-4. Maximum Month Operating Costs for Tertiary Membrane Alternative	3-4
Table 3-5. 5-Stage Bardenpho with Sidestream P Removal Modeling Results	3-6
Table 3-6. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho with Sidestream P Removal	3-8
Table 3-7. Maximum Monthly Winter Operating Costs for 5-Stage Bardenpho with Sidestream P Recovery	3-9
Table 3-8. 5-Stage Bardenpho with Influent EQ Modeling Results	. 3-11
Table 3-9. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho with Influent EQ	. 3-13
Table 3-10. Maximum Monthly Winter Operating Costs for 5-Stage Bardenpho with Influent EQ	. 3-14
Table 3-11. 5-Stage Bardenpho with Influent EQ and Sidestream N Removal Modeling Results	. 3-16
Table 3-12. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho with Influent EQ a Sidestream N Removal	
Table 3-13. Maximum Monthly Winter Operating Costs for 5-Stage Bardenpho with Influent EQ a Sidestream Anammox N Removal	
Table 3-14. 5-Stage Bardenpho with Influent EQ Modeling and Sidestream N and P Removal Results	. 3-20
Table 3-15. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho with Influent EQ a Sidestream N and P Removal	
Table 3-16. Maximum Monthly Winter Operating Costs for 5-Stage Bardenpho with Influent EQ a Sidestream N and P Removal	
Table 3-17. 5-Stage Bardenpho with Centrate Load EQ Modeling Results	. 3-25
Table 3-18. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho Expansion with Centrate Load Equalization	. 3-26
Table 3-19. Maximum Month Operating Costs for 5-Stage Bardenpho with Centrate Load Equalization	. 3-26
Table 3-20. Option 2 Modeling Results	. 3-28
Table 3-21. Planning-Level Comparative Capital Costs for Tertiary Nitrification/Denitrification	. 3-29
Table 3-22. Maximum Month Operating Costs for Tertiary Nitrification/Denitrification	. 3-30
Table 3-23. BioMag Ballasted 5-Stage Bardenpho Process Results	. 3-32
Table 3-24. Planning-Level Comparative Capital Costs for BioMag Ballasted 5-Stage Bardenpho	3-33

Table 3-25. Maximum Monthly Winter Operating Costs for BioMag Ballasted 5-Stage Bardenpho Process	3-34
Table 3-26. Target Effluent Concentrations for MBR Simulations (all values in mg/L)	. 3-36
Table 3-27. 5-Stage Bardenpho with MBR Modeling Results	. 3-36
Table 3-28. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho with MBR	. 3-38
Table 3-29. Maximum Month Operating Costs for 5-Stage Bardenpho with MBR	. 3-39
Table 3-30. 5-Stage Bardenpho with IFAS Modeling Results	. 3-40
Table 3-31. Planning-Level Comparative Capital Costs for IFAS 5-Stage Bardenpho	. 3-41
Table 3-32. Maximum Monthly Winter Operating Costs for IFAS 5-Stage Bardenpho	. 3-42
Table 3-33. Cost Comparison of Alternatives	. 3-42
Table 4-1. 2030 Average Monthly Operating Costs for 5-Stage Bardenpho with Sidestream P Removal	4-3
Table 4-2. Capital Construction Cost for 5-Stage Bardenpho with Sidestream P Removal	4-4
Table 4-3. 2030 Average Monthly Operating Costs for 5-Stage Bardenpho with Sidestream P Removal and Centrate Load Equalization	4-7
Table 4-4. Capital Construction Cost for 5-Stage Bardenpho with Sidestream P Removal and Cer Load Equalization	
Table 4-5. 2030 Average Annual Operating Costs for 5-Stage Bardenpho with MBR	. 4-10
Table 4-6. Capital Construction Cost for 5-Stage Bardenpho with MBR	. 4-11

List of Abbreviations

million gallon(s)

millimole(s)

nitrogen

million gallon(s) per day

mixed liquor suspended solids

milligram(s) per liter mixed liquor recycle

Mgal mgd

mg/L

MLR MLSS

mmol

Ν

AACE	Association for the Advancement of Cost Engineering	NH_3	ammonia
AOB	ammonia-oxidizing bacteria	NH ₄ -N	ammonia-nitrogen
A/O		NOB	nitrite-oxidizing bacteria
	anoxic/oxic	NOx-N	nitrate-nitrogen + nitrite-nitrogen
BAF	biological aerated filtration	NO ₂ -N	nitrite-nitrogen
BioP	biological phosphorus removal	NO ₃ -N	nitrate-nitrogen
°C	biochemical oxygen demand (5-day) degree(s) Celsius	NPDES	National Pollutant Discharge Elimination System
CaCO₃	calcium carbonate	ОНО	ordinary heterotrophic organism
CIP	clean-in-place	O&M	operations and maintenance
City	City of Meridian	OUR	oxygen uptake rate
COD	chemical oxygen demand	Р	phosphorus
d	day(s)	PE	primary effluent
DO	dissolved oxygen	PO ₄ -P	orthophosphate
EPA	Environmental Protection Agency	RAS	return activated sludge
EQ	equalization	RI	raw influent
ft	foot/feet	scfm	standard cubic foot/feet per minute
ft ²	square foot/feet	SE	secondary effluent
FTE	full-time equivalent	SND	simultaneous nitrification and
gal	gallon(s)		denitrification
GE	General Electric	SRT	solids retention time
gpd	gallon(s) per day	TKN	total Kjeldahl nitrogen
gpm	gallon(s) per minute	TM	technical memorandum
IDAPA	Idaho Administrative Procedures Act	TN	total nitrogen
IFAS	integrated fixed-film activated sludge	TP	total phosphorus
IMLR	internal mixed liquor recycle	TSS	total suspended solids
ISS	inert suspended solids	VFA	volatile fatty acid
kWh	kilowatt-hour(s)	VSS	volatile suspended solids
L	liter(s)	WAS	waste activated sludge
lb	pound(s)	WRRF	wastewater resource recovery facility
MBR	membrane bioreactor	WWTP	wastewater treatment plant
mg	milligram(s)		

Executive Summary

The City of Meridian (City) is in the process of receiving a new National Pollutant Discharge Elimination System (NPDES) permit. This new permit will contain very stringent limitations on effluent ammonia (NH₄) and phosphorus (P). The draft permit that the City has received from the Environmental Protection Agency (EPA) is presented in Table ES-1.

	Table ES-1. October 2014 Draft NPDES Permit (all values in mg/L)								
	Di	scharge Loca	ntion: Fivemi	ile Creek		Disch	arge Locatio	on: Boise Ri	ver
	Period	Season	Month	Week	Day	Period	Month	Week	Day
Summer	r								
BOD	May-Sept	-	20	30	-	May-Sept	30	45	-
TSS	May-Sept	-	20	30	-	May-Sept	30	45	-
TP	May-Sept	0.12	-	-		May-Sept	0.07	0.165	-
NH ₄ -N	May-Sept	-	0.405	-	1.65	July-Oct	0.242	-	1.06
Winter									
BOD	Oct-April	-	20	30	_	Oct-April	30	45	-
TSS	Oct-April	-	20	30	_	Oct-April	30	45	_
TP	Oct-April	-	_	_	_	Oct-April	_	_	_
NH ₄ -N	Oct-April	-	0.307	_	1.25	Nov-Jun	0.255	_	1.04

While the City had completed a Facilities Plan in 2012 to evaluate upgrade needs to meet growth, the new permit requirements were not known at that time and the proposed permit limits received in 2014 were far more restrictive with respect to ammonia than were anticipated in the 2012 Facilities Plan. Based on this new potential permit, the City was interested in determining the upgrades required for the treatment plant to meet these very restrictive limits. This project was initiated to meet this objective. In order to accomplish this objective, this project was laid out in three main stages:

- 1. Evaluate up to three main process alternatives for expansion and select the most appropriate based on capital and operating costs as well as ease of operation for further study.
- 2. Evaluate up to eight add-on processes to supplement the main process determined in stage 1 to reduce footprint and/or chemical use of the processes. Select three options for final evaluation.
- 3. Complete final review of options and complete an Association for the Advancement of Cost Engineering (AACE) Class 5 capital cost estimate for each of the three options. Recommend the most appropriate option for plant expansion.

Main Process Alternatives

The main process alternative evaluation used the calibrated BioWin model from the Capacity Assessment project to determine the sizing of three alternatives for biological phosphorus removal (BioP) and nitrogen removal. The alternatives evaluated were:

 expansion of the existing system using a 5-stage Bardenpho process (convertible to A20 per City request)

- expansion of the existing system by conversion to a 4-stage Bardenpho process for nitrogen (N) removal only, then discharge to groundwater to eliminate the need for biological P removal
- expansion of the existing system by conversion to a simultaneous nitrification and denitrification (SND) system with chemical P removal

The results of the sizing were then used to develop rough cost of construction and operating costs for non-common unit processes. Based on the results presented in Section 2 of this report, the 5-stage Bardenpho option was selected as the main process alternative to provide the basis of further evaluations. This option was selected because it presented a moderate capital cost and operating cost while also presenting the lowest risk and allowing for the greatest flexibility for future modifications to the process, should this be desired by the City.

Add-On Process Alternatives

Add-on processes were evaluated to determine if they were effective at reducing the footprint or chemical use of the selected 5-stage Bardenpho process. Several add-on alternatives were evaluated using the BioWin model developed for the 5-stage Bardenpho process. These alternatives included:

- adding sidestream P removal (e.g., OstaraTM) to reduce phosphorus in the recycle streams
- adding influent equalization (EQ) to reduce nutrient load peaks:
 - without any sidestream treatment
 - with sidestream Anammox treatment for N removal
 - with sidestream Anammox treatment and sidestream P removal
- adding centrate N load equalization
- eliminating denitrification and some nitrification in the main process (convert to anoxic/oxic [A/O] process) and use tertiary nitrification and denitrification technologies
- adding fixed-film media to aerated zone for conversion to integrated fixed-film activated sludge (IFAS) process to increase biomass without increasing mixed liquor suspended solids (MLSS) concentration
- adding BioMag ballasted secondary sludge process to improve sludge separation
- converting sludge separation to membrane bioreactor (MBR) process

Once these alternatives were evaluated for sizing, rough capital and operational costs were again developed to compare options. Based on these comparisons, the options with the lowest capital cost were determined to be the MBR option and the option of adding sidestream P removal to the main process. These two processes were carried forward for further evaluation and detailed cost estimation. In addition, a third alternative not evaluated here that combined adding sidestream P and centrate load equalization was added for further evaluation.

Final Alternatives Evaluation and Recommendation

The final alternatives evaluation confirmed the previous process sizing from the main process and add-on process evaluations for summer maximum month conditions. This evaluation also developed detailed AACE Class 5 cost estimates for comparison of the options, and determined the 20-year approximate operating costs for each option (differential operating costs only).

Based on the results of this evaluation, the MBR option remained the lowest capital cost option at \$44 million compared with \$57 million and \$58 million for the other two options. However, factoring in the estimates for annual operating cost differences between the options makes the MBR option

far more expensive over a 20-year life cycle compared with the other two options (\$141 million versus less than \$95 million, including capital and operating costs for 20 years).

Therefore, the recommendation is to upgrade the facility using the 5-stage Bardenpho process with sidestream P removal, according to the lowest capital and operating cost option presented above. This option also presents the most flexible option for operation of the facility, as it can be designed to operate as either a 5-stage Bardenpho process or an A2O process. It can also be designed to operate as a 4-stage Bardenpho or Modified Ludzack-Ettinger process, should the City decide to go to N removal only for groundwater recharge discharge.

If the City would like to replace or add redundancy for its currently aging centrate storage tank, we would recommend building a new centrate storage tank and sizing the centrate pumps for centrate load equalization, which adds approximately \$720,000 to the overall construction cost and provides the benefit of reducing peak month chemical use.

Section 1

Introduction

The City of Meridian (City) has received a preliminary draft of its new National Pollutant Discharge Elimination System (NPDES) permit, which calls for decreased wastewater resource recovery facility (WRRF) effluent limitations for ammonia-nitrogen (NH₄-N), total phosphorus (TP), and other constituents. These proposed permit limits are more stringent than were anticipated in the 2012 Facilities Plan prepared for the City. Therefore, to prepare for the new permit, the City requested help in determining the most appropriate alternatives for expanding the secondary treatment system to meet the new stringent permit.

This work was completed in three steps:

- 1. Evaluate alternatives for expanding the main secondary treatment process and make a recommendation for the appropriate process expansion based on planning-level capital and operations and maintenance (O&M) cost estimates
- Once the main treatment alternative has been selected, evaluate processes that can be added
 to this process to reduce footprint or increase efficiency of the system, narrowing down the
 potential for add-on processes to the top three selections based on preliminary capital and O&M
 cost estimates
- 3. Evaluate the top three alternatives in detail for appropriate sizing to meet all seasonal flow and load conditions and develop more detailed planning-level costs to determine the most cost-effective approach to expanding the facility

This section describes the background information required to complete each of the steps above, including the target effluent concentrations from the draft NPDES permit and the summary influent and centrate parameters used for biological modeling.

1.1 Target Effluent Concentrations

The goal of each modeling scenario was to generate effluent characteristics that conform to a set of target conditions. The target conditions were based on draft NPDES permit documents, as well as operational targets discussed with City staff prior to the modeling effort. Target conditions were developed for total ammonia nitrogen (NH₄-N), oxidized nitrogen (NOx-N), and orthophosphate (PO₄-P).

The draft NPDES permit includes limits for TP, biochemical oxygen demand (BOD), total suspended solids (TSS), ammonia, and a variety of other parameters, including metals and complex organic compounds. Table 1-2 summarizes the permit limits that relate directly to this evaluation.

	Table 1-1. October 2014 Draft NPDES Permit (all values in mg/L)									
	Di	Discharge Location: Fivemile Creek					Discharge Location: Boise River			
	Period	Season	Month	Week	Day	Period	Month	Week	Day	
Summe	r									
BOD	May-Sept	_	20	30	_	May-Sept	30	45	_	
TSS	May-Sept	_	20	30	_	May-Sept	30	45	_	
TP	May-Sept	0.12	-	-		May-Sept	0.07	0.165	-	

	Table 1-1. October 2014 Draft NPDES Permit (all values in mg/L)									
	Di	scharge Loca	ntion: Fivemi	ile Creek		Discharge Location: Boise River				
	Period	Season	Month	Week	Day	Period	Month	Week	Day	
NH ₄ -N	May-Sept	-	0.405	_	1.65	July-Oct	0.242	_	1.06	
Winter										
BOD	Oct-April	-	20	30	-	Oct-April	30	45	-	
TSS	Oct-April	-	20	30	_	Oct-April	30	45	-	
TP	Oct-April	-	-	-	-	Oct-April	-	-	-	
NH ₄ -N	Oct-April	-	0.307	-	1.25	Nov-Jun	0.255	-	1.04	

1.1.1 Ammonia

Draft NPDES permit documents specify maximum day ammonia limits for the summer and winter conditions. The limits for discharge location 001 (Fivemile Creek) have been used as the basis of this evaluation, as that is the primary discharge location and presents the most challenging limits to meet. Both maximum month and peak day ammonia limits were considered for this evaluation.

1.1.2 Oxidized Nitrogen

Oxidized nitrogen can denitrify within the secondary clarifier, resulting in bubbling of nitrogen gas, which can impair mixed liquor settleability. Further oxidized nitrogen comprises a portion of total nitrogen, which is regulated for production of reclaimed water. The City produces reclaimed water and has a seasonal total nitrogen (TN) limit for this permit of 15.5 milligrams per liter nitrogen (mg/L-N). Therefore, in order to comply with the reclaimed water nitrogen requirements and to reduce the risk of clarifier denitrification, the target effluent NOx-N concentration was set at 8.0 mg/L (monthly average).

1.1.3 Phosphorus

Draft NPDES permit documents specify restrictions on phosphorus in the effluent. This will likely require the plant to commence chemical addition to remove phosphorus. To reduce chemical demands, biological P removal should be maximized. The modeling effort aimed to minimize effluent orthophosphate, as much as reasonably possible, giving priority to meeting the above targets for ammonia and oxidized nitrogen. A PO₄-P concentration of less than 0.1 mg/L was used as a goal.

When evaluating chemical demands for the final permit limit, the more restrictive limit of 0.07 mg/L TP for the Boise River discharge was used for conservatism in sizing of equipment and storage tanks.

1.2 Input Characteristics for Modeling

For this evaluation, two model inputs were used for determining system sizing. One input was used to simulate the primary effluent (PE) and the other was used to simulate the centrate for the predicted design year 2030 conditions. Development of these inputs was completed as part of the Sidestream Nitrogen Evaluation study completed in January 2015. The inputs determined from that study for both summer and winter maximum month conditions and average annual conditions are summarized below.

1.2.1 Primary Effluent Characteristics

PE is defined as raw influent (RI) treated in the plant's primary clarifiers. The PE input files do not include contributions from the dewatering centrate, which is presented and discussed later in this section.

The present-day scenarios were developed based upon an assessment of historical RI flows and loadings. Data from 2009–14 were reviewed to determine current average loadings, along with peak month and peak day peaking factors, and day-to-day variability. These data are summarized in Table 1-2.

Table 1-2. Historical Raw Influent Data Analysis ^a								
Parameter	RI Flow, mgd	RI BOD, lb/d	RI TSS, lb/d	RI NH4-N, Ib/d	RI TP, lb/d			
Summerb								
Average	5.8	14,000	14,000	1,400	300			
Max month	6.6	16,250	17,300	1,700	350			
Max day	7.5	22,000	24,000	2,000	420			
Standard errorc	0.05	0.1	0.13	0.065	0.09			
Winterb								
Average	5.1	14,500	13,750	1,570	310			
Max month	5.7	16,500	16,250	1,800	345			
Max day	6.4	21,000	28,000	1,950	375			
Standard errorc	0.05	0.1	0.13	0.065	0.08			

a. The values in this table reflect averages over the period from 2009–14.

The 2030 scenarios were taken from the 2012 Facilities Plan (July 2012, CH2M Hill and HDR), and are summarized in Table 1-3.

Table 1-3. 2012 Facilities Plan 2030 Residential/Commercial Flows and Loads ^a							
Parameter	Unit	Average	Maximum Month	Maximum Week	Maximum Day		
Flow	mgd	12.2	14.2	15.5	17.2		
BOD	lb/d	27,100	34,900	42,900	46,500		
TSS	lb/d	26,700	34,500	41,700	45,900		
NH4-N	lb/d	3,200	3,900	4,200	4,900		
TKN	lb/d	4,900	5,500	5,800	6,400		
TP	lb/d	660	850	1070	1100		
PO ₄ -P	lb/d	330	430	500	580		

a. Table 3-4 of the 2012 Facilities Plan developed by CH2M Hill and HDR.

Influent loadings (Table 1-2) were used to develop the present-day scenarios, the 2012 Facilities Plan projections (Table 1-3) were used to develop 2030 scenarios, and other projections were based on linear extrapolation between those two data sets. Primary clarifier removal of TSS and BOD were

b. Summer data include May-September; winter data include November-March.

c. The standard error is calculated by dividing the standard deviation by the mean value. The values in the table represent the average variability in that data over a 30-day period.

estimated using a pair of empirical models, based on historical performance. These empirical models are described elsewhere (see Sidestream Nitrogen Evaluation, January 2015).

The primary clarifier performance models were used to translate RI BOD and TSS projections from Table 1-3 into PE loadings. RI total Kjeldahl nitrogen (TKN) and TP loadings were assumed to pass through the primary clarifiers unchanged. NH₄-N loadings based on Table 1-2 were translated into TKN loadings using the following ratio:

RI
$$NH_4$$
- $N/TKN = 0.65$

which is based on historical averages over the period 2009-14.

Other assumptions include the following:

- PE pH was 7.8 in the summer and 7.9 in the winter, based on historical RI data from 2009–14.
- PE alkalinity was 304 mg/L calcium carbonate (CaCO₃), based on data from the May 2011 wastewater characterization.
- PE volatile suspended solids (VSS):TSS ratio was 0.86, based on the May 2011 wastewater characterization.
- PE chemical oxygen demand (COD):BOD ratio was 2.10, based on the May 2011 wastewater characterization.

The PE inputs for each of the model scenarios are summarized in Table 1-4.

Table 1-4. Primary Effluent Characteristics for each Model Scenario							
Year	2030	2030	Current	Current	Midpoint	Midpoint	
Season	Summer	Winter	Summer	Winter	Summer	Winter	
Flow condition	Max month	Max month	Max month	Max month	Average day	Average day	
Load condition	Max month	Max month	Max month	Max month	Average day	Average day	
Raw Influent Loadings (from Tables	3 and 4)						
BOD lb/d	34,900	34,900	16,250	16,500	20,550	20,800	
TSS lb/d	34,500	34,500	17,300	16,250	20,350	20,225	
TKN lb/d	5,500	5,500	2,615	2,769	3,527	3,658	
TP lb/d	850	850	350	345	480	485	
Primary Clarifier Performance (from	empirical model	s)					
Primary TSS rem %	71.7%	74.6%	73.2%	74.8%	69.4%	72.0%	
Primary BOD rem %	34.9%	37.8%	34.4%	38.2%	32.6%	35.7%	
Primary Effluent Characteristics (Bio	Win inputs)						
Flow, mgd	14.2	12.3	6.6	5.7	9.3	8.2	
COD, mg/L	403	446	407	451	374	410	
TKN, mg/L	46.4	53.7	47.5	58.2	45.3	53.4	
TP, mg/L	7.2	8.3	6.4	7.3	6.2	7.1	
NOx, mg/L	0	0	0	0	0	0	
рН	7.8	7.9	7.8	7.9	7.8	7.9	
Alkalinity, mg/L CaCO3	304	304	304	304	304	304	
ISS, mg/L	11.3	11.8	11.5	11.8	11.0	11.4	

The PE characteristics were translated into 30-day, hourly model input files according to the following procedure.

Day-to-day variability in loadings was based on the standard errors presented in Table 1-2. It was assumed that the PE variability in flow, COD, TKN, TP, and inert suspended solids (ISS) would match the RI variability in flow, BOD, NH₄-N, TP, and TSS, respectively.

Maximum day loadings were incorporated into maximum month scenarios using peaking factors developed from the historical data (Table 1-2), or as presented in the 2012 Facilities Plan.

Diurnal variability was based on a diurnal normalization of key parameters developed during the May 2011 wastewater characterization. The values from the 2011 characterization are plotted on Figure 1-1. A repeat of the wastewater characterization was completed in January 2015, but was found to not significantly differ from that measured in 2011. Therefore, the 2011 wastewater characterization was used.

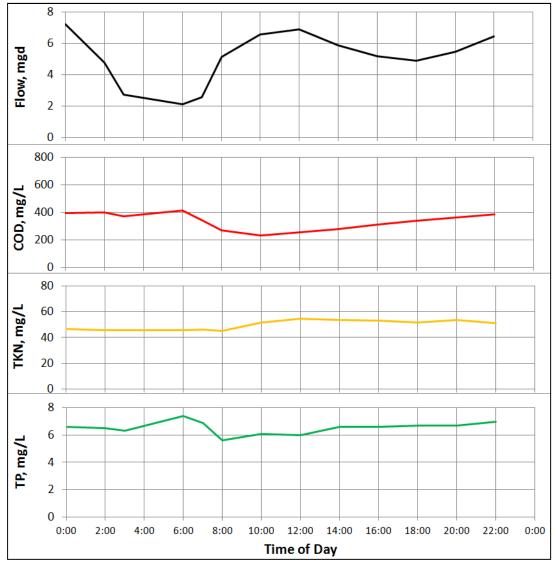


Figure 1-1. Diurnal variability of raw influent parameters

(from May 2011 wastewater characterization)

Figure 1-2 presents the randomized 30-day model input file for the 2030 summer maximum month condition. This input file includes a peak day flow of 16.9 mgd, which occurs on day 3 of the scenario, a peak day TKN load of 6,320 pounds (lb), which occurs on day 17 of the scenario, and a peak day TP load of 1,080 lb, which occurs on day 23 of the model. These values are all within 12 percent of Facilities Plan peak day projections (Table 1-2); the small deviation reflects the inherent randomization of the model file development.

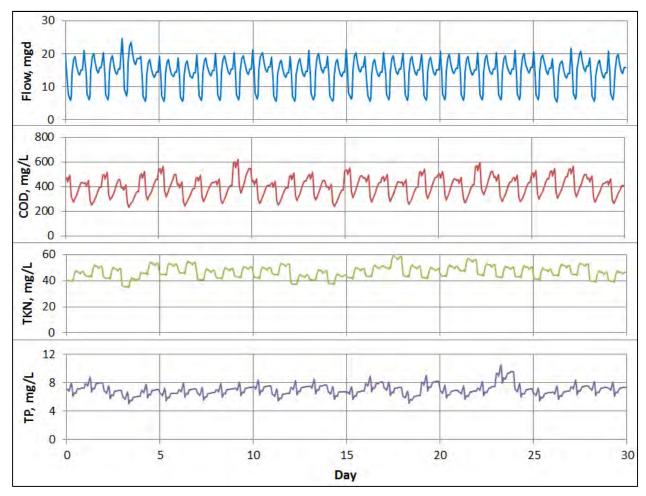


Figure 1-2. 2030 summer maximum month model input parameters

1.2.2 Centrate Characteristics

Centrate parameters were developed based on the following sources of information:

• Facilities Plan: Table 5-1 in the 2012 Facilities Plan summarizes projected centrate characteristics for the 2030 maximum month condition. The basis of these projections is not known. This table is reproduced below as Table 1-5.

Table 1-	Table 1-5. Facilities Plan Centrate Projections ^a								
Parameter	ter Unit 2010 2030								
Flow	mgd	0.045	0.103						
TKN	mg/L	1,108	960						
NH ₄ -N	mg/L	1,057	910						

Brown AND Caldwell

Table 1-5. Facilities Plan Centrate Projections ^a							
Parameter	Unit	2010	2030				
TP	mg/L	501	530				
PO ₄ -P	mg/L	489	520				
TSS	mg/L	711	640				
VSS	mg/L	522	455				
BOD	mg/L	173	315				
COD	mg/L	1,756	1,805				
Alkalinity	mg/L CaCO ₃	3,625	4,100				

a. Table 5-1 of the 2012 Facilities Plan.

• Historical plant data: The plant collects weekly data on centrate NH₄-N and TSS, and monthly data on centrate TP. These data were used to project the typical variability in centrate characteristics. As centrate flow is not actively metered, centrate flow was assumed to be equal to the "gallons dewatered," which is recorded in the plant's data historian. The historical data are summarized in Table 1-6.

Table 1-6. Historical Centrate Data Analysis ^a						
Parameter	NH4-N	TSS	TP	Gallons Dewatered		
Unit	mg/L	mg/L	mg/L	gpd		
Summerb						
Average	865	185	165	54,000		
Max month	945	270	_	68,000		
Standard errorc	0.050	0.36	_	0.185		
Winterb						
Average	850	145	170	59,000		
Max month	930	230	-	70,000		
Standard errorc	0.045	0.28	-	0.15		

- a. The values in this table reflect averages over the period from 2009–14.
- b. Summer data include May-September; winter data include November-March.
- c. The standard error is calculated by dividing the standard deviation by the mean value. The values in the table represent the average variability in that data over a 30-day period.
- Data from other plants: Detailed centrate characterization data from the Chambers Creek Regional Wastewater Treatment Plant (WWTP) in Pierce County, Washington, were used to define the input fractions when information on the Meridian centrate stream was not available. Table 1-7 summarizes the centrate input parameters.

Table 1-7. Centrate Parameters							
Parameter Value Source							
Total COD, mgCOD/L	1,802	2012 Facilities Plan					
Total Kjeldahl nitrogen, mgN/L	960	2012 Facilities Plan					
Total P, mgP/L	530	2012 Facilities Plan					

Table 1-7. Centrate Parameters						
Parameter	Value	Source				
Nitrate N, mgN/L	0	Chambers Creek				
рН	7.9	Chambers Creek				
Alkalinity, mmol/L	82	2012 Facilities Plan				
Inorganic S.S., mgISS/L	185	2012 Facilities Plan				
Calcium, mg/L	24.8	Chambers Creek				
Magnesium, mg/L	2.72	Chambers Creek				
Dissolved oxygen, mg/L	0	Chambers Creek				
Fractions						
Fbs: readily biodegradable	0.595	Calculated ^a				
Fac: acetate	0.039	Calculated ^a				
Fxsp: non-colloidal slowly biodegradable	0.993	Calculated ^a				
Fus: unbiodegradable soluble	0.0039	Calculated ^a				
Fup: unbiodegradable particulate	0.320	Calculated ^a				
Fna: ammonia	0.900	Calculateda				
Fnox: particulate organic nitrogen	0.509	Calculated ^a				
Fnus: soluble unbiodegradable TKN	0.015	Calculateda				
FupN: N:COD ratio for unbiodegradable part. COD	0.051	Calculateda				
Fpo4: phosphate	0.850	Calculated ^a				
FupP: P:COD ratio for unbiodegradable part. COD	0.064	Calculateda				

a. Fractions were calculated based on a combination of data from the Facilities Plan and Chambers Creek.

A 30-day randomized centrate itinerary was developed. Day-to-day variability (Figure 1-3) was based on historical data for flow, NH₄-N (used as surrogate for TKN), and TSS (used as surrogate for ISS). Other parameters were held constant over the 30 days. The centrate was assumed to be returned continuously over each 24-hour period. No diurnal variability in centrate flow was modeled.

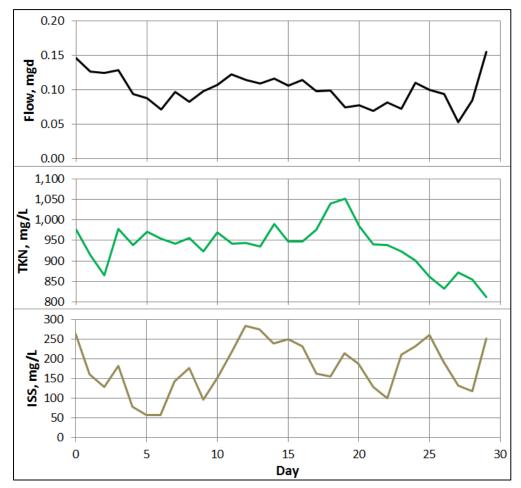


Figure 1-3. Centrate input variability

It is important to note that the centrate concentration for TP used for these analyses is very high compared with historical data and typical centrate from BioP facilities. The value used for this analysis was taken from the 2012 Facilities Plan. While this concentration is significantly higher than the highest ever recorded value for centrate TP as reported by plant staff (approximately 275 mg/L, as reported by Tracy Crane), it is unknown why the Facilities Plan predicts such a high concentration. Though this concentration is very high, it was used for this analysis because the reasoning behind development of this value is unknown and cannot be disputed and this high value will present a conservative result for both sizing of the system for full biological P removal and chemical addition systems (for supplemental carbon and chemical removal of phosphorus).

1.3 Summary

The required effluent characteristics presented in Table 1-1 were used to define the requirements for system performance for all subsequent evaluations presented in later sections. In addition, the PE and centrate 30-day flow and loading patterns presented in Section 1.2 made up the basis for influent loadings used for all subsequent modeling, with exceptions and changes as noted in later sections of this report.

Section 2

Main Process Alternative Screening

This section provides a summary of the preliminary evaluation for main stream processes, which included the following tasks:

- Using the calibrated BioWin model from the Capacity Assessment project to determine the necessary secondary treatment sizing and operating parameters for main stream process alternatives. The following three alternatives are to be evaluated:
 - expansion of the existing system using a 5-stage Bardenpho process (convertible to A20 per City request)
 - expansion of the existing system by conversion to a 4-stage Bardenpho process for N removal only, then discharging to groundwater to eliminate the need for biological P removal
 - expansion of the existing system by conversion to a simultaneous nitrification and denitrification (SND) system with chemical P removal
- Developing high-level cost estimates for each of the three alternatives evaluated for both capital expansion of non-common treatment processes and chemical usage rates.
- Recommending the most cost-effective of the three alternatives for further evaluation.

Following this introduction, this section is organized into four main parts. Sections 2.1 through 2.3 discuss the results of evaluations of each of the three alternatives discussed above. Section 2.4 includes the recommendations for follow-on evaluations.

2.1 Alternative 1: Expansion of Existing System Using 5-Stage Bardenpho

This section provides a description of the modeling, sizing, and cost estimate results for the A20/5-stage Bardenpho expansion alternative. This alternative was considered for expansion as a "base case" expansion of the existing system to provide both biological P and N removal, with tertiary chemical P removal needed for polishing to the final permit limit requirements. Addition of soluble carbon sources to drive the biological nutrient removal processes is also part of this alternative, as required to meet permitted effluent discharge limits. For evaluation of this alternative, as well as all other alternatives, the fermenter is not accounted for in the modeling to determine worst-case carbon addition needs.

2.1.1 BioWin Model Setup

The base model used for all BioWin simulations was developed and calibrated to plant operating conditions for the Capacity Assessment project that is currently ongoing with the City. This calibrated model was then modified to reflect the configuration changes necessary to operate in either A20 mode (current operating mode for the plant) or 5-stage Bardenpho mode (to achieve lower TP and TN concentrations with less chemical use).

Figure 2-1 presents the process flow schematic for the system that can operate in the 5-stage Bardenpho configuration, but can be easily reconfigured to operate as an A2O process. This figure also shows the process schematic for the configuration as constructed in BioWin. For the 5-stage Bardenpho process flow schematic, PE enters the first anaerobic zone, where it mixes with additional volatile fatty acids (VFAs) to promote biological P removal. Flow then moves to the first anoxic zone, where the initial stage of denitrification occurs. Flow then enters the first aerobic zone for nitrification, followed by the second anoxic zone, where additional denitrification occurs, with the help of methanol addition for a carbon source. Finally, flow enters the second aerobic stage for polishing and stripping of any N gas in solution before clarification. The mixed liquor recycle (MLR) in the 5-stage Bardenpho configuration returns nitrate-rich mixed liquor from the end of the first aerobic zone to the first anoxic zone for denitrification.

For the BioWin schematic, shown are the secondary pump station, the anaerobic zone (Ana 1), two first-stage anoxic zones (Anox 1a and 1b), the first swing zone (Swing 1), two aerated zones (Aer 1 and 2), the two second swing zones (Swing 2a and 2b), the final aerated zone (Aer 3), and the secondary clarifiers. Also shown are two internal mixed liquor recycle (IMLR) streams, depending on the mode of operation (A20 versus Bardenpho), the clarifier return activated sludge (RAS) and waste activated sludge (WAS) streams, the RAS denitrification basin (RAS Denit Basin), and the secondary effluent (SE). Feed to the system was the PE, as measured during the wastewater characterization period, and the dewatering centrate (Centrate). Chemical addition for enhancing biological P and N removal was achieved through addition of acetate, for phosphorus, and methanol, for TN removal. While the existing plant does have primary sludge fermentation to supplement carbon addition for improved biological N and P removal, because of a lack of information on the fermentate, it was left out of these simulations in lieu of direct chemical carbon supplementation. It is assumed that once additional data are gathered on the fermenter operation, the quantities of acetate and methanol can be refined and lowered at predesign during subsequent sizing and analyses of the selected expansion alternatives.

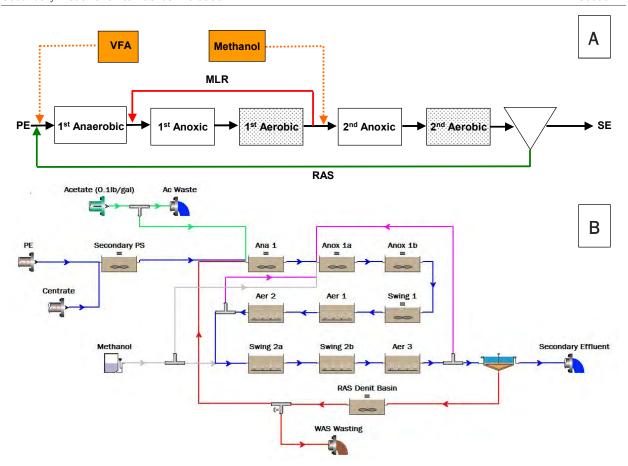


Figure 2-1. Process flow schematic (A) and BioWin simulator schematic (B) for 5-stage Bardenpho processes

Once this configuration was developed, it was used to optimally size the treatment system volume and determine operating parameters and chemical usage rates based on the process selected (A20 versus Bardenpho) at winter maximum month flows and loads. Winter conditions were chosen for this first screening-level evaluation because it presents the most restrictive seasonal condition. Summer and average annual conditions were modeled for the final selected alternatives presented later in this report.

The operating limitations for the plant included a maximum operating mixed liquor suspended solids (MLSS) concentration of 4,000 mg/L, assuming that at least one additional secondary clarifier is constructed (common to all alternatives), and operating dissolved oxygen (DO) concentrations of 2.0 mg/L for all aerated zones, with the exception of 1.0 mg/L for Aer 3.

Based on the mode of operation, the system was configured differently. For A2O mode operation, Swing 1 was left unaerated while Swing 2a and 2b were aerated to maintain a DO concentration of 2.0 mg/L. The first MLR was not used, but the MLR immediately after Aer 3 was turned on to recycle nitrate and nitrite for denitrification. Methanol was flow-paced to the PE flow and entered the process at Anox 1a only, as Swing 2a was aerated. Acetate was also flow-paced to the PE flow and entered the system at Ana 1. RAS recycle was set at 50 percent of the PE flow.

For the 5-stage Bardenpho configuration, Swing 1 was aerated to maintain a DO of 2.0 mg/L while Swing zones 2a and 2b were unaerated to set up the second-stage anoxic zone configuration common to the Bardenpho process. The second MLR was turned off and only the first MLR (located after Aer 2) was used. Methanol was flow-paced to PE flow and entered the process at Swing 2a,

while acetate was flow-paced to PE flow and entered the process at Ana 1. RAS recycle was set at 50 percent of the PE flow.

For both simulations, the secondary clarifiers were initially set to remove a constant value of 99.9 percent of incoming solids; this value was adjusted very slightly during the simulations to achieve effluent TSS concentrations between 5 and 10 mg/L. Further, it was assumed that a fourth secondary clarifier of equal diameter and volume to existing clarifiers 4 and 5 would be installed to allow for higher operating MLSS concentrations. The clarifier sludge blanket was assumed to be 7 percent of the settler height, and the clarifier solids underflow rate was paced at 50 percent of the PE. The WAS flow rate was adjusted automatically during modeling to regulate the solids retention time (SRT) of the process to maintain nitrification and meet the target effluent concentrations presented in Section 1.

Using these process and effluent constraints and the PE and Centrate influent concentrations discussed in Section 1, optimal system and chemical use sizing was completed for each alternative. The final results of basin sizing, optimum IMLR flow pacing, chemical use, air demand, and WAS production rates are presented in Section 2.1.2.

2.1.2 Model Results for Winter Conditions

The results of modeling showed that the 5-stage Bardenpho processes required approximately the same overall tank volume and operating SRT to achieve the effluent target concentrations presented in Table 2-1 as the A2O process. While the tank volumes were similar, the chemical usage rate for methanol was three times higher for the A2O process than for the 5-stage Bardenpho process. Conversely, the acetate requirements for the Bardenpho process were 1.3 times higher than for the A2O process. The airflow requirements and WAS production rates were higher for the A2O process because of greater overall supplemental carbon added and more aerated volume. The overall process sizing and monthly average air demands, WAS production, and chemical usage rates for the Bardenpho process configuration is presented in Table 2-1. Detailed model outputs from the BioWin modeling for each approach are presented in Appendix A of this report.

It is important to note that airflow requirements are estimated using BioWin modeling software and do not necessarily reflect the true airflow amounts that would be anticipated. However, they do allow for comparison of relative airflow needs among alternatives and can be used to estimate annual O&M costs on a relative order-of-magnitude basis.

WAS production estimates provided are for information only and for comparison among alternatives as expansion of solids handling facilities to meet increased solids needs are outside the scope of this study. The same holds for additional chemical sludge generated from tertiary chemical P removal and filtration necessary to achieve final effluent concentrations of 0.07 mg/L TP. It is assumed that the chemical removal of phosphorus is to remove the difference between the secondary effluent TP (as high as 0.5 mg/L) and the final effluent permit requirement of 0.07 mg/L TP, plus the amount of alum added to meet this requirement on a monthly average basis. These values are also provided in Table 2-1.

Table 2-1. 5-Stage Bardenpho Modeling Results					
Unit Process	Parameter/Unit	Value			
Required SRT for nitrification	-, days	12			
Activated sludge basin total	Volume, Mgal	7.25			
Anaerobic cell 1 (Ana 1)	Volume, Mgal	0.5			
Anoxic cell 1a (Anox 1a)	Volume, Mgal	0.375			
Anoxic cell 1b (Anox 1b)	Volume, Mgal	0.375			
Swing cell 1	Volume, Mgal	0.5			
Aerobic cell 1 (Aer 1)	Volume, Mgal	1.5			
Aerobic cell 2 (Aer 2)	Volume, Mgal	2.0			
Swing cell 2a (Swing 2a)	Volume, Mgal	0.75			
Swing cell 2b (Swing 2b)	Volume, Mgal	0.75			
Aerobic cell 3 (Aer 3)	Volume, Mgal	0.5			
MLR rate	Flow rate, percent of PE	200			
WAS production	Mass rate, lb/d	23,250			
Additional chemical sludge from P removal to 0.07 mg/L	Mass rate, lb/d	1,900			
Alum requirement for chemical P removal	Flow rate, gal/d	800			
Airflow requirement	Flow rate, scfm	20,510			
Acetate use	Flow rate, lb/d	9,230			
Methanol use	Flow rate, gal/d	615			

It is important to note that while the high chemical demand for acetate and methanol is driven by the effluent P and TN effluent requirements because of insufficient soluble carbon in the influent, the large increase in tank volume was mainly due to the high SRT required to maintain sufficient nitrification to meet very stringent effluent ammonia limits. This stringent limit is more difficult to meet because of the high variability in influent TKN and ammonia-nitrogen in the centrate recycle stream, as was also determined in the Sidestream Nitrogen Removal Evaluation. Alternative means of reducing this variability, and potentially SRT and basin volume, will be evaluated in more detail in the subsequent add-on processes evaluation.

These parameters are used in developing the preliminary capital and operating cost estimates presented in Section 2.1.3.

2.1.3 Preliminary Capital and Operating Cost Estimates

In order to meet the 2030 maximum month conditions, the main secondary treatment process will need to be expanded. The critical factor is maintaining a high enough SRT to ensure that the maximum monthly and daily ammonia concentrations are not exceeded. This results in a high MLSS concentration, which imposes a high solids loading to the secondary clarifiers. For the winter condition, with a maximum month flow of 12.3 million gallons per day (mgd) and a maximum day flow of 13.8 mgd, the maximum allowable MLSS concentration will be approximately 4,000 mg/L assuming that at least one new secondary clarifier matching dimensions of existing clarifiers 4 and 5 is constructed.

Using these criteria, the sizes of the aeration basins required to meet the effluent targets for the 2030 maximum month condition were 7.25 million gallons (Mgal). Given 2.4 Mgal of existing volume, the scope of the basin expansion would be 4.9 Mgal. The existing basins would also need to be retrofitted to accommodate the updated configuration, though these retrofits would be similar in cost and scope among all alternatives (move baffle walls, reconfigure aeration grids, add/move IMLR) and therefore are not considered in the cost comparison of alternatives provided in Section 5.

2.1.3.1 Capital Costs

The City of Nampa, Idaho, is currently expanding its aeration basins by 3.3 Mgal. Given the proximity to Meridian, and the similarity among projects, the costs from the Nampa expansion have been used to project relative costs of aeration basin expansion at Meridian. The Nampa aeration basin expansion is projected to have a direct cost of \$2.55 million, which computes to \$771,900/Mgal. Because of minor inflation and other factors that have occurred since the Nampa cost estimate was completed, this value should be inflated by about 10 percent, which brings the estimate to \$850,000/Mgal. Extrapolating to the scope of expansion for this alternative, the capital cost (without contractor markups) to expand just the aeration tanks is expected to be approximately \$4.17 million.

Additional facilities will need to be constructed as part of this alternative that are not common to the other alternatives and mainly consist of the acetate and methanol chemical handling and metering facilities. The estimated costs for these facilities, as well as the cost for expansion of the activated sludge basins, are summarized in Table 2-2. It is important to note that the costs provided on this table are preliminary planning-level costs that do not include contractor markups and special conditions like contingency, markups, engineering, tax, bonds, or insurance. In addition, these costs do not reflect costs for common expansion requirements among all alternatives, such as additional secondary clarifiers, solids system expansions, or construction of already planned facilities like the headworks or primary clarifiers. This means that these costs do not reflect the true cost for construction, but provide comparative costs for evaluating differences among the expansion alternatives only. Final Association for the Advancement of Cost Engineering (AACE) Class 5 construction cost estimates will be provided for the final recommended expansion alternatives associated with additional tasks for this work.

Table 2-2. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho Expansion					
Process	Quantity	Unit Cost	Total		
Greenfield aeration basin tank expansion	4.9 Mgal	\$850,000/Mgal	\$4,170,000		
Existing basin retrofit	Common to all alternatives				
New secondary clarifiers	Common to all alternatives				
Tertiary filtration (membranes)	Common to all alternatives				
Chemical P removal facilities	_	-	\$62,500		
Acetate addition facilities	_	_	\$106,500		
Methanol addition facilities	_	_	\$568,000		
Total	_	-	\$4,907,000		

Note: costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

2.1.3.2 Operating Costs

The modeling results in Table 2-2 translate into operating costs associated with acetate and methanol dosing, aeration demand, biosolids hauling, and chemical addition for P removal. The following assumptions were used to develop these costs:

- electricity: \$0.069 per kilowatt-hour (kWh)
- biosolids hauling and application: \$5.933 per wet ton (assuming 20 percent cake solids)
- methanol: \$2.25 per gallon (gal)
- acetate: \$0.74/lb
- aeration energy demand: 30 kWh per standard cubic foot per minute (scfm) per month
- chemical addition for P removal: \$1.22/gal of alum

The electric and biosolids costs come from the plant. The methanol cost is a long-term average value from Olympia, Washington. The price of methanol is unstable, and has varied from close to \$1.00 per gallon to over \$4.50 per gallon during the past 10 years. The cost for acetate is a single value obtained from a local chemical supplier to the Boise area. The aeration energy demand is based on data from other plants with similar process demands. The chemical addition cost for P removal is a cost for alum addition determined for the City of Nampa in 2013.

The annual operating costs are summarized in Table 2-3.

Table 2-3. Maximum Month Operating Costs for 5-Stage Bardenpho Alternative					
Parameter	Quantity	Unit Cost	Total per Month		
Methanol	18,450 gal	\$2.25/gal	\$42,000		
Acetate	173 tons	\$0.74/lb	\$260,000		
Process aeration	20,510 scfm	\$0.069/kWh	\$41,000		
Biosolids hauling	1,900 wet tons	\$5.933/wet ton	\$11,000		
P removal chemical	24,000 gal	\$1.22/gal	\$29,000		
Total			\$383,000		

The maximum month operating cost for carbon addition, aeration, biosolids disposal, and chemical P removal for the 5-stage Bardenpho system is approximately \$380,000. This cost represents the maximum monthly operating cost for this alternative. Other winter monthly operating costs will be less than this amount as they will be of lower flow and load.

2.2 Alternative 2: Expansion for Nitrogen Removal Only (Groundwater Infiltration)

This subsection provides a description of the modeling, sizing, and cost estimate results for the 4-stage Bardenpho expansion alternative, with discharge to groundwater. This alternative looks at a process that removes nitrogen only, with the intent of eliminating the current outfall discharge points to both Fivemile Creek and the Boise River, with an alternate discharge to groundwater. This alternative builds on the groundwater infiltration alternatives that the City is currently investigating in another project. Because phosphorus is not a regulated constituent in groundwater per the Idaho Ground Water Quality Rule (Idaho Administrative Procedures Act [IDAPA] 58, Title 01, Chapter 11), biological P removal is not necessary for this alternative. Nitrate-nitrogen and nitrite-nitrogen are the primary constituents of concern for groundwater discharge.

2.2.1 BioWin Model Setup

The calibrated base model used for all BioWin simulations was modified to reflect the configuration changes necessary to operate in 4-stage Bardenpho mode. Figure 2-2 presents the process flow schematic for the system as well as the BioWin process flow schematic. For the process flow schematic, the four stages that compose the 4-stage Bardenpho process include a first anoxic cell

for initial denitrification, a first aerobic cell for nitrification, a second-stage anoxic cell for further denitrification, and a final aerobic cell for air stripping of nitrogen gas and last-minute polishing of the wastewater prior to clarification. The methanol addition for carbon is to the second anoxic cell, while the MLR returns nitrate-rich mixed liquor to the first anoxic cell for denitrification.

For the BioWin process flow schematic, shown are the secondary pump station, a first-stage anoxic zone (Anox 1), two swing zones (Swing 1 and Aer 1/Swing 2), two aerated zones (Aer 2 and 3), two second-stage anoxic zones (Anox 2a and 2b), the final aerated zone (Post Aer), and the secondary clarifiers. An IMLR stream (from Aer 3 effluent to Anox 1 influent) is also shown, along with the RAS and WAS streams, the RAS denitrification basin (RAS Denit Basin), and the secondary effluent. Feed to the system was the PE, as measured during the wastewater characterization period, and the dewatering centrate (Centrate). Methanol addition was used to enhance biological N removal (denitrification). The existing plant has primary sludge fermentation to supplement carbon addition for improved biological N removal. However, because of a lack of information on the fermentate, it was left out of these simulations in lieu of direct chemical carbon supplementation. It is assumed that the quantities of methanol can be refined at predesign once additional data are gathered on the fermenter operation.

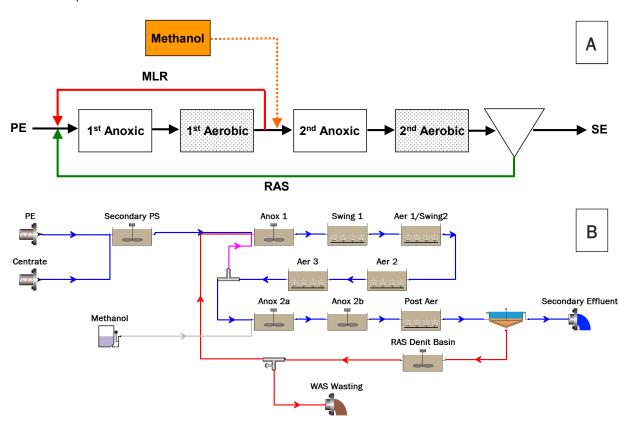


Figure 2-2. Process flow schematic (A) and BioWin simulator schematic (B) for 4-stage Bardenpho processes

This configuration was used to optimally size the treatment system volume and determine operating parameters and chemical usage rates at winter maximum month flows and loads. The operating limitations for the plant included a maximum operating MLSS concentration of 4,000 mg/L, assuming that a fourth secondary clarifier is constructed (common to all alternatives), and an operating DO concentration of 2.0 mg/L is used for all aerated zones (with the exception of 3.6 mg/L for Aer 1/Swing 2). Effluent limitations for BOD and TSS are the same as listed in Section 1.

However, as this option does not discharge to either Fivemile Creek or the Boise River, the surface water discharge requirements for nitrogen and phosphorus species no longer apply. Instead, nitrogen species effluent limits, listed in Table 2-4, were set by IDAPA 58.01.11 primary constituent standards. There are currently no limits for phosphorus for discharge to groundwater.

Table 2-4. Target Effluent Concentrations (all values in mg/L)		
Parameter Daily Maximum		
NO ₃ -N 10		
NO ₂ -N 1		
NOx-N	10	

The PE and centrate used for all simulations were discussed in Section 1 of this report. For preliminary evaluations discussed here, only winter conditions were evaluated. Summer conditions will be evaluated for final comparisons.

For the Alternative 2 simulations, the secondary clarifiers were set to remove a constant value of 99.9 percent of incoming solids. It was assumed that a fourth secondary clarifier of equal diameter and volume to existing clarifiers 4 and 5 would be installed to allow for higher operating MLSS concentrations. The clarifier sludge blanket was assumed to be 7 percent of the settler height, and the clarifier solids underflow rate was paced at 70 percent of the PE. The WAS flow rate was adjusted automatically during modeling to regulate the SRT of the process to maintain nitrification and meet the target effluent N concentrations presented in Table 2-4.

Using these process and effluent constraints and the PE and Centrate influent concentrations discussed here, optimal system and chemical use sizing was completed. The final results of basin sizing, optimum MLR flow pacing, chemical use, air demand, and WAS production rates are presented in Section 2.2.2.

2.2.2 Model Results for Winter Conditions

Table 2-5 shows the Alternative 2 process sizing and operating parameters required to achieve the effluent target concentrations listed in Table 2-4. With fewer effluent restrictions, overall tank volume was reduced by 1.5 MGal compared to Alternative 1. The Alternative 2 process also required less methanol addition (six times less than the A20/5-stage Bardenpho process) and no acetate addition. The airflow requirements and WAS production rates were also lower for Alternative 2 because of less aerated volume and less supplemental carbon added. Detailed model outputs from the BioWin modeling are presented in Appendix A of this report.

Airflow requirements were estimated using BioWin modeling software and do not necessarily reflect the true airflow amounts that would be anticipated. However, they do allow for comparison of relative airflow needs among alternatives and can be used to estimate annual O&M costs on a relative order-of-magnitude basis. Similarly, WAS production estimates are for information only and for comparison among alternatives as expansion of solids handling facilities to meet increased solids needs are outside the scope of this study.

Table 2-5. 4-Stage Bardenpho (N Removal Only) Modeling Results			
Unit Process	Parameter/Unit	Value	
Required SRT for nitrification	-, days	14	
Activated sludge basin total	Volume, Mgal	5.75	
Anoxic cell 1 (Anox 1)	Volume, Mgal	1.25	
Swing cell 1 (Swing 1)	Volume, Mgal	0.5	
Swing cell 2 (Aer 1/Swing 2)	Volume, Mgal	0.5	
Aerobic cell 2 (Aer 2)	Volume, Mgal	1.0	
Aerobic cell 3 (Aer 3)	Volume, Mgal	1.0	
Anoxic cell 2a (Anox 2a)	Volume, Mgal	0.5	
Anoxic cell 2b (Anox 2b)	Volume, Mgal	0.5	
Post-aerobic cell (Post Aer)	Volume, Mgal	0.5	
IMLR rate	Flow rate, percent of PE	400	
WAS production	Mass rate, lb/d	11,350	
Airflow requirement	Flow rate, scfm	17,780	
Acetate use	Flow rate, gal/d	0	
Methanol use	Flow rate, gal/d	310	
MLSS	Average conc., mg/L	3,270	

The effluent nitrite target (1.0 mg nitrite-nitrogen per liter [NO₂-N/L]) proved to be the limiting parameter while modeling Alternative 2. To achieve this target concentration (while limiting chemical addition), additional volume was provided in the first anoxic zone (to reach 1.25 MGal) and the IMLR rate was increased to 400 percent of the PE flow. The SRT was increased to 14 days to allow for more complete nitrification from ammonia-nitrogen to nitrate-nitrogen. Because of high variability in influent TKN and ammonia-nitrogen, methanol feed was flow-paced to the PE stream, with an average daily use of 310 gallons per day (gpd). Means for reducing the influent variability, and potentially SRT and basin volume, will be evaluated in more detail in the subsequent add-on processes evaluation. It is important to point out that the overall methanol usage rate dropped from the previous option. This is because the soluble BOD from the influent for Alternative 2 goes to offset the methanol demand as it can be used for denitrification, while for Alternative 1, all soluble BOD goes to the BioP process.

The modeling results were used to develop the preliminary capital and operating cost estimates presented in Section 2.2.3.

2.2.3 Preliminary Capital and Operating Cost Estimates

To treat the 2030 maximum month flow and loading conditions, the main secondary treatment process will need to be expanded. As discussed in Section 2.2.2, a high SRT is required to achieve low effluent nitrite concentrations. This results in a high MLSS concentration, which imposes a high solids loading to the secondary clarifiers. For the winter condition, with a maximum month flow of 12.3 mgd and a maximum day flow of 13.8 mgd, the maximum allowable MLSS concentration will be approximately 4,000 mg/L. This assumes that one new secondary clarifier matching the dimensions of clarifiers 4 and 5 is constructed (this assumption is common to all alternatives evaluated).

As shown in Table 2-5, 5.75 Mgal of activated sludge volume is required to meet effluent targets for the 2030 maximum month condition. Given 2.4 Mgal of existing volume, the scope of basin expansion would be 3.35 Mgal. The existing basins would also need to be retrofitted to accommodate the updated configuration, though these retrofits would be similar in cost and scope among all alternatives (e.g., move baffle walls, reconfigure aeration grids, and add/move MLR).

2.2.3.1 Capital Costs

Table 2-6 summarizes the capital costs expected for Alternative 2. The cost for the Nampa aeration basin expansion was used as a basis for greenfield basin expansion at Meridian. With a unit cost of \$850,000/Mgal, the capital cost to expand just the aeration tanks is expected to be approximately \$2.85 million. The retrofit of the existing activated sludge tanks (2.4 Mgal) is common to all alternatives.

This alternative requires a series of capital improvements to accommodate effluent discharge to groundwater through infiltration basins. These improvements include:

- purchase of land for the infiltration site (approximately 96 acres at \$16,000/acre)
- construction of earthen infiltration basins (five total at 15 acres each, plus buffer)
- construction of a large effluent pump station at the WRRF (1,320 horsepower)
- installation of 4.5 miles of 36-inch-diameter ductile iron pipe to reach the infiltration site
- construction of additional chlorine disinfection facilities to treat the effluent to Class A reuse standards

Brown and Caldwell previously developed technical memorandum (TM) T-01 ("Draft Business Case Evaluation," 2013) to investigate infiltration as a wastewater effluent management alternative for the City. The TM examined the capital and operating costs for Meridian to discharge to infiltration basins (Attachment C of that document). These planning-level costs were used as a basis for the infiltration-related costs in Table 2-6, with adjustments made for inflation (3 percent per year to reach 2015 dollars) and to account for new potential infiltration sites.

Table 2-6. Planning-Level Comparative Capital Costs for 4-Stage Bardenpho (N Removal Only) Expansion				
Process	Quantity	Unit Cost	Total	
Greenfield aeration basin tank expansion	3.35 Mgal	\$850,000/Mgal	\$2,850,000	
Existing basin retrofit	C	common to all alternatives	3	
Additional secondary clarifiers	C	Common to all alternatives		
Methanol addition facilities	-	-	\$281,000	
Additional chlorine chemical disinfection	-	-	\$1,736,000	
Effluent pump station	_	-	\$4,206,000	
Effluent pipeline	_	_	\$8,723,000	
Infiltration basins	-	_	\$5,903,000	
Land purchase ^a	_	_	\$1,530,000	
Total			\$25,228,000	

a. Assumes 96 acres at \$15,900 per acre.

Note: costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

It is important to note that the costs provided in Table 2-6 are preliminary planning-level costs that do not include contractor markups and special conditions. In addition, these costs do not reflect costs for common expansion requirements among all alternatives, such as additional secondary

clarifiers, solids system expansions, or construction of already-planned facilities like the headworks or primary clarifiers. This means that these costs do not reflect the true cost for construction, but provide comparative costs for evaluating differences among the expansion alternatives only. Final AACE Class 5 construction cost estimates will be provided for the final recommended expansion alternatives associated with additional tasks for this work.

2.2.3.2 Operating Costs

The modeling results in Table 2-5 translate into operating costs associated with methanol dosing, aeration demand, and biosolids hauling. Additional costs associated with discharge to infiltration basins must also be considered, including electrical costs for the effluent pump station and additional labor costs.

The following assumptions were used to develop these costs:

- electricity: \$0.069/kWh
- biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)
- methanol (99 percent solution): \$2.25/gal
- aeration energy demand: 30 kWh per standard cubic foot per minute (scfm) per month
- sodium hypochlorite: \$1.33/gal
- labor full-time equivalent (FTE): \$60,000

The electric and biosolids costs were provided by Meridian WRRF staff. The methanol cost is a long-term average value from Olympia, Washington. The price of methanol is unstable, and has varied from close to \$1.00 per gallon to over \$4.50 per gallon during the past 10 years. The aeration energy demand is based on data from other plants with similar process demands. The sodium hypochlorite cost is from TM T-01, inflated to 2015 dollars. It was assumed that \$40,000 per year would be required for maintenance and replacement parts for the infiltration components (pump station, pipeline, basins, etc.), per TM T-01.

The maximum monthly operating costs are summarized in Table 2-7. Based on the results of this table, the maximum monthly operating costs for the 4-stage Bardenpho alternative would be approximately \$107,000. This is the maximum month winter operating cost for this alternative. Other winter months with lower than maximum monthly loads will have lower operating costs for this option.

Table 2-7. Maximum Monthly Operating Costs for 4-Stage Bardenpho (N Removal Only) Alternative			
Parameter	Quantity	Unit Cost	Total
Methanol	9,500 gal	\$2.25/gal	\$21,000
Process aeration	533,400 kWh	\$0.069/kWh	\$37,000
Biosolids haulinga	860 wet tons	\$5.933/wet ton	\$5,000
Effluent pump station electrical cost	232,000 kWh	\$0.069/kWh	\$16,000
Additional chlorine disinfection ^b	13,000 gal	\$1.33/gal	\$17,000
Maintenance and replacement parts for groundwater discharge components ^a	-	-	\$11,000
Total			\$107,000

a. Estimated in TM T-01 "Draft Business Case Evaluation," October 21, 2013; includes labor (1.5 FTE at \$60,000 per FTE) and \$40,000 in yearly allowances for replacement parts.

b. Estimated in TM T-01 "Draft Business Case Evaluation," October 21, 2013; cost inflated to 2015 dollars.

2.3 Alternative 3: Simultaneous Nitrification/Denitrification with Chemical Phosphorus Removal

This section provides a description of the modeling, sizing, and cost estimate results for SND in a 4-stage Bardenpho configuration expansion alternative for intended discharge to Fivemile Creek. This alternative requires chemical P removal for all phosphorus in the effluent. SND requires strict control of DO in the aerated zones of the basin in order to force nitrification and denitrification to occur together in the aerated zones. This is done in order to shrink the size of the basins while also reducing soluble carbon needed to drive the denitrification processes.

2.3.1 BioWin Model Setup

The base model was developed and calibrated to plant operating conditions and modified to simulate the operation of a 4-stage Bardenpho configuration in a low DO SND mode. The flow schematic for the 4-stage Bardenpho process is presented and described in detail previously in Figure 2-3. The configuration as constructed in the BioWin simulator is presented in Figure 4-1. Shown are the first-stage anoxic zone (Anx 1), two aerated zones (Aer 1 and 2), the second anoxic zone (Anx 2), the final aerated zone (Aer 3), and the secondary clarifier. Also shown is the IMLR stream, the clarifier RAS and WAS streams, the RAS denitrification basin (RAS Denit Basin), and the secondary effluent. Feed to the system was the PE, as measured during the wastewater characterization period, and the dewatering centrate (Centrate). Methanol can be added to the second anoxic zone to enhance denitrification if necessary to meet the effluent TN limit. However, the successful operation in SND mode avoided the need of supplemental carbon addition as seen below.

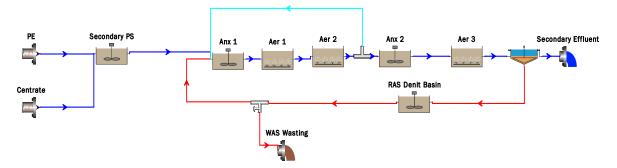


Figure 2-3. Process flow schematic in BioWin simulator for SND alternative

Once this configuration was developed, it was used to optimally size the treatment system volume and determine operating parameters at winter maximum month flows and loads. The operating limitations for the plant included a maximum operating MLSS concentration of 4,000 mg/L, assuming that a fourth secondary clarifier is constructed (common to all alternatives). The low DO SND was achieved by operating DO concentrations of 0.5 mg/L and 0.3 mg/L for the first aerated zone (Aer 1) and second aerated zone (Aer 2), respectively, with the exception of 2.0 mg/L for the third aerated zone (Aer 3), and effluent limitations according to Section 1. The monthly average values used to generate diurnal input for the model were also discussed in Section 1. For preliminary evaluations discussed here, only winter conditions were evaluated. Summer conditions will be evaluated for final comparisons.

The clarifier sludge blanket was assumed to be 7 percent of the settler height, and the clarifier solids underflow rate was paced at 50 percent of the PE. The WAS flow rate was adjusted automatically

during modeling to regulate the SRT of the process to maintain nitrification and meet the target effluent ammonia concentrations presented in Section 1.

Using these process and effluent constraints and the PE and Centrate influent concentrations, an optimal system was completed for the SND alternative. The final results of basin sizing, optimum IMLR flow pacing, air demand, and WAS production rates are presented in Section 2.3.2.

2.3.2 Model Results for Winter Conditions

The low DO operation results in the adaptation of microbial population, especially ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) and ordinary heterotrophic organisms (OHO) to new redox conditions. In order to simulate these adaptions and resulting SND, key BioWin default kinetic parameters are changed to SND calibrated values as seen in the Table 2-8.

Table 2-8. SND Modeling Changes to Switching Function			
Parameter	BioWin Default	Manipulated	
Anoxic/aerobic DO half saturation (mg O ₂ /L)	0.05	0.3	
AOB DO half saturation (mg O ₂ /L)	0.25	0.15	
NOB DO half saturation (mg O_2/L)	0.5	0.15	
Anoxic NO ₂ -N half saturation (mg N/L)	0.01	0.02	

The model was optimized to meet effluent criteria as seen by the effluent nitrogen in Table 2-9.

Table 2-9. Effluent Nitrogen				
Parameter Average Peak Day				
Effluent NH ₄ -N (mg/L)	0.26	0.74		
Effluent NO ₃ -N (mg/L)	2.48	7.25		
Effluent NO ₂ -N (mg/L)	0.11	0.44		
Effluent NO _x -N (mg/L)	2.60	7.63		
Effluent TN (mg/L)	5.42	10.85		

The low DO SND applied in the 4-stage Bardenpho configuration proved highly efficient in terms of volumetric and carbon requirement for N removal. The low DO operation resulted in less influent carbon being oxidized aerobically, which allowed better denitrification at low DO. Further, biological P removal was not a requirement for this alternative as it was assumed to be completed through tertiary chemical removal; therefore, acetate was not required. The added benefit of not requiring acetate addition was a smaller volumetric requirement to meet effluent N limits because of lower carbon and biomass concentrations. In fact, this configuration required the smallest volume among all alternatives. Supplemental carbon usage, aeration demand, and WAS production were also lowest among all alternatives. However, as this alternative requires chemical P removal, the chemical usage rates are highest for this alternative because of the large quantity of alum required, and the amount of caustic soda needed to maintain pH because of alum addition, which reduces alkalinity. These findings are summarized in Table 2-10. Detailed model outputs from the BioWin modeling for this approach are presented in Appendix A of this report.

Table 2-10. SND Modeling Results			
Unit Process	Value		
Required SRT for nitrification	-, days	13	
Activated sludge basin total	Volume, Mgal	5	
Anoxic cell 1 (Anx 1)	Volume, Mgal	0.5	
Anoxic cell 2 (Anx 2)	Volume, Mgal	1.0	
Aerobic cell 1 (Aer 1)	Volume, Mgal	1.5	
Aerobic cell 2 (Aer 2)	Volume, Mgal	1.5	
Aerobic cell 3 (Aer 3)	Volume, Mgal	0.5	
MLR rate	Flow rate, percent of PE	300	
WAS production	Mass rate, lb/d	10,772	
Airflow requirement	Flow rate, scfm	11,516	
MLSS	Average conc., mg/L	3,395	
Alum requirement for chemical P removal	Flow rate, gal/d	11,340	
Additional chemical sludge from chemical P removal	Mass rate, lb/d	40,500	
Caustic soda requirement for pH control because of alum addition (50% solution)	Mass rate, lb/d Flow rate, gal/d	8,500 1,340	

The increase in tank volume relative to current volume was mainly due to the high SRT required to maintain sufficient nitrification to meet very stringent effluent ammonia limits. This stringent limit is more difficult to meet because of the high variability in influent TKN and ammonia-nitrogen in the centrate recycle stream and the variability in the plant influent diurnal flows and loads, as was also determined in the Sidestream Nitrogen Removal Evaluation. Alternative means of reducing this variability, and potentially SRT and basin volume, will be evaluated in more detail in the subsequent add-on processes evaluation.

The modeling results were used to develop the preliminary capital and operating cost estimates presented in Section 2.3.3.

2.3.3 Preliminary Capital and Operating Cost Estimates

This section presents preliminary capital and operating cost estimates for Alternative 3.

2.3.3.1 Capital Costs

In order to meet the 2030 maximum month conditions, the main secondary treatment process will need to be expanded. The sizes of the aeration basins required to meet the effluent targets for the 2030 maximum month condition were 5 Mgal. Given 2.4 Mgal of existing volume, the scope of the basin expansion would be 2.6 Mgal. The existing basins would also need to be retrofitted to accommodate the updated configuration, though these retrofits would be similar in cost and scope among all alternatives (move baffle walls, reconfigure aeration grids, add/move MLR) and therefore are not considered in the cost comparison of alternatives provided in Section 5. The capital cost (without contractor markups) of the tankage expansion for this alternative is expected to be approximately \$2.2 million (based on nearby Nampa aeration basin expansion).

Additional facilities will need to be constructed as part of this alternative that mainly consists of chemical handling and metering facilities for chemical P removal. In addition, cost for a methanol addition facility is provided, as there may be methanol requirements if DO control is not maintained to the precise levels required for SND. Further, because of the large quantities of alum required for chemical P removal, alkalinity addition to maintain effluent pH within permit limits will be required prior to the outfall. This can consist of a caustic soda storage tank and metering pump, which will minimize cost. The estimated costs for these facilities as well as the cost for expansion of the activated sludge basins are summarized in Table 2-11.

Table 2-11. Planning-Level Comparative Capital Costs for SND Expansion				
Facility	Quantity	Unit Cost	Total	
Greenfield aeration basin tank expansion	2.6 Mgal	\$850,000/Mgal	\$2,210,000	
Existing basin retrofit		Common to all alternatives		
Additional secondary clarifiers		Common to all alternatives		
Chemical P removal facilities	\$300,00			
Methanol addition facilities	-	-	\$280,000	
Alkalinity addition facilities	-	-	\$100,000	
Total			\$2,890,000	

2.3.3.2 Operating Costs

The modeling results in Table 2-12 translate into operating costs associated with aeration demand, biosolids hauling, and chemical addition for P removal. The following assumptions were used to develop these costs:

electricity: \$0.069/kWh

biosolids hauling and application: \$5.933/wet ton

aeration energy demand: 30 kWh/scfm/month

methanol addition: \$2.25/gal

alum addition for chemical P removal: \$1.22/gal

caustic soda addition for pH control: \$1.89/gal

The annual operating costs are summarized in Table 4-5.

Table 2-12. Maximum Month Operating Costs for SND Alternative			
Parameter	Quantity	Unit Cost	Total
Process aeration	345,500 kWh	\$0.069/kWh	\$23,800
Biosolids haulinga	4,600 wet tons	\$5.933/wet ton	\$27,300
Methanol additionb	1,250 gal	\$2.25/gal	\$2,800
Alum addition	345,000 gal	\$1.22/gal	\$421,000
Alkalinity addition	40,200 gal	\$1.89/gal	\$76,000
Total			\$551,000

a. Includes solids from chemical P removal.

Note: costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

Estimated at 1,250 gal/month as conservative estimate for methanol; modeling showed no methanol required.

Based on the results, the costs associated with operation of Alternative 3 are \$551,000 for the winter maximum month load. Other months with lower loadings will have lower operating costs for this option.

2.4 Conclusions and Recommendations from Main Process Alternatives Screening

The results of this evaluation offer the following conclusions and recommendations.

2.4.1 Conclusions

Table 2-13 provides a capital and operating cost comparison of the three alternatives.

Table 2-13. Cost Comparison of Alternatives			
Cost Alternative 1 Alternative 2 Alternative 3			
Capital	\$4,907,000	\$25,228,000	\$2,890,000
Operating (maximum monthly cost)	\$383,000	\$107,000	\$551,000

Note: costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

- 1. The approximate cost of Alternative 1 (5-stage Bardenpho) is \$4.9 million capital and \$0.38 million/month operating costs (maximum month load). This is the median operating and capital cost alternative.
- 2. The approximate cost of Alternative 2 (4-stage Bardenpho) is \$25.3 million capital and \$0.11 million/month operating costs (maximum month load). This is the highest capital cost alternative, but the lowest operating cost alternative.
- 3. The approximate cost of Alternative 3 (SND) is \$2.9 million capital and \$0.55 million/month operating costs (maximum month load). This is the highest operating cost alternative, but the lowest capital cost alternative.
- 4. Alternatives 1 and 2 can be configured such that the system can operate in either a 4-stage or 5-stage Bardenpho mode, so selecting one alternative does not preclude use of the other alternative at a future time.

2.4.2 Recommendations

While Alternative 3 provides the lowest capital cost, the operating costs are significant. Further, this alternative presents the highest potential operational issues because of the need for tight DO control and the potential for filamentous growth and associated bulking because of low DO conditions that may occur. For these reasons, Alternative 3 is not recommended for further evaluation.

Alternative 1 presents a lower capital cost compared with Alternative 2. As the City is still unsure if it is willing to go to groundwater infiltration as the sole discharge for the plant, and because Alternative 1 can be configured to operate for N removal only (like alternative 2), we recommend carrying Alternative 1 (5-stage Bardenpho) forward for further evaluation for add-on technologies. Therefore, for subsequent evaluations in Sections 3 and 4 of this report, the main process alternative is the 5-stage Bardenpho configuration.

Section 3

Add-On Process Evaluations

This section provides a summary of the evaluation for add-on processes, which included the following tasks:

- 1. Evaluate tertiary treatment technologies for chemical P removal down to 0.07 mg/L TP.
- 2. Use the BioWin model developed for the 5-stage Bardenpho process, which was the main process alternative selected for further study, to determine the necessary secondary treatment sizing and operating parameters for the various add-on process alternatives. The following add-on alternatives were evaluated:
 - adding sidestream P removal (e.g., Ostara[™]) to reduce phosphorus in the recycle streams
 - adding influent equalization (EQ) to reduce nutrient load peaks:
 - without any sidestream treatment
 - with sidestream Anammox treatment for N removal
 - with sidestream Anammox treatment and sidestream P removal
 - adding centrate N load equalization
 - eliminating denitrification and some nitrification in the main process (convert to anoxic/oxic
 [A/O] process) and use tertiary nitrification and denitrification technologies
 - adding fixed-film media to aerated zone for conversion to integrated fixed-film activated sludge (IFAS) process to increase biomass without increasing MLSS concentration
 - adding BioMag ballasted secondary sludge process to improve sludge separation
 - converting sludge separation to membrane bioreactor (MBR) process
- 3. Develop high-level cost estimates for each of the add-on alternatives evaluated for both capital expansion of non-common treatment processes and chemical usage rates.
- 4. Recommend the three most cost-effective alternatives for further evaluation.

The remainder of this section discusses the tertiary P removal alternatives, the results of evaluations of each of the add-on alternatives listed above, and the summary and recommendations for the three options to be carried through for further evaluation.

3.1 Tertiary Phosphorus Removal Options

This section provides sizes and cost estimates for two P removal and tertiary filtration systems. Tertiary chemical P removal and filtration is required to meet the ultralow effluent TP limit of 0.07 mg/L. When investigating options for meeting these limits, it was determined that the existing tertiary Discfilters were not capable of meeting the 0.07 mg/L TP limit set forward in this project. Therefore, alternative filtration technologies were investigated to meet these limits. Two options were evaluated: the first is a proprietary ballasted flocculation system called Actiflo followed by Kruger Discfilters. The second option is a standard flocculation system followed by General Electric (GE) tertiary filtration membranes.

3.1.1 Kruger Actiflo and Discfilter System

The Kruger Actiflo system is a proprietary coagulation, flocculation, and ballasted sedimentation process that is capable of achieving very low effluent reactive phosphorus and effluent with very low TSS. The process is diagrammed in Figure 3-1; the first stage of the system is a coagulation tank for rapid mixing of secondary effluent water and coagulation chemicals. This is followed by a flocculation tank, which introduces Microsand ballast and supplemental polymer if required. Large floc is expected to form around the ballast material to create a dense floc particle that settles quickly. The final phase is sedimentation in a lamellar plate clarifier. Effluent would continue to existing Kruger Discfilters while sludge is passed to a hydrocyclone for ballast recovery. Kruger guarantees effluent phosphorus less than 0.07 mg/L of TP with this system and all effluent passed through the Discfilters can meet Title 22 reclaimed water standards.

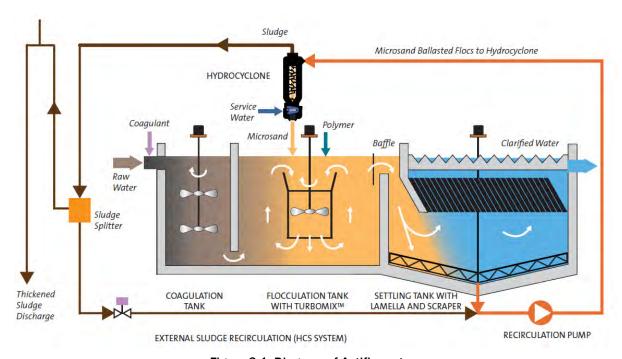


Figure 3-1. Diagram of Actiflo system

Source: Actiflo brochure, 2015

3.1.1.1 Preliminary Capital and Operating Costs

The Actiflo/Discfilter system is designed to meet the 2030 peak hour flow of 28.0 mgd; it uses two Actiflo systems, each capable of treating 14.0 mgd. This configuration allows treatment of maximum month flows with full redundancy of systems. The filter design uses existing Kruger Discfilters and assumes the Aqua-diamond filter will be out of service by 2030, requiring additional Discfilter units. The system was sized to treat the 2030 peak flow of 28.0 mgd operating at a maximum flux rate (6.0 gallons per minute per square foot [gpm/ft²]) and 14.0 mgd operating at a typical flux rate (4.0 gpm/ft²).

3.1.1.1.1 Capital Cost

Kruger provided capital costs for both the Actiflo and supplemental Discfilter systems. These costs include only the equipment and do not include support structures (i.e., tankage), influent pumping, or chemical supply pumping. Table 3-1 provides the Kruger cost estimates and costs for additional equipment and support structures.

Table 3-1. Planning-Level Comparative Capital Costs for Actiflo and Discfilter Tertiary Treatment			
Process	Quantity	Unit Cost	Total
Actiflo Kruger cost estimate	2	\$1,150,000/unit	\$2,300,000
Actiflo tankage	0.3 Mgal	\$850,000/Mgal	\$255,000
Coagulation chemical storage	1	\$21,000/tank	\$21,000
Coagulation chemical pumping	2	\$11,000/pump	\$22,000
Discfilter Kruger cost estimate	2	\$257,500/filter	\$515,000
Discfilter support structures (building, tanks, etc.)	_	-	\$1,000,000
Total			\$4,113,000

3.1.1.1.2 Operating Costs

The maximum monthly operation cost estimates are provided in Table 3-2. Kruger provided operating cost estimates for the systems listed above. The coagulation chemical was assumed to be alum and the dose required was approximated based on an empirical data set (S. Hermanowicz, 2006). Based on the data, a metal ion to phosphorus molar ratio of 10 to 1 is required. The high ratio is necessary because of a competing metal hydroxide reaction and the low influent P concentration. Influent TP was assumed to be 0.5 mg/L and effluent concentration of 0.07 mg/L TP. This approximation is acceptable for a comparative analysis; however, jar testing should be performed to verify dosages prior to completing design of upgrades. Chemical sludge production estimates are based on an ideal model that assumes only metal hydroxides or metal phosphates will form. The electric and biosolids costs were provided by Meridian WRRF staff; it was assumed that chemical sludge hauling costs will be the same as for biosolids.

The following assumptions were used to develop these costs:

- electricity: \$0.069/kWh
- alum addition for chemical P removal: \$1.22/gal
- solids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)

Table 3-2. Maximum Monthly Operating Costs for Tertiary Chemical Phosphorus Removal			
Parameter	Quantity	Unit Cost	Total
Coagulant (alum)	28,500 gal	\$1.22/gal	\$34,800
Polymer	0.89 ton	\$4,500/ton	\$4,000
Solids hauling	162 ton	\$5.933/wet ton	\$960
Sand loss	3.6 ton	\$200/ton	\$720
Power consumption	19,000 kWh	\$0.069/kWh	\$1,300
Total	_	-	\$41,800

3.1.2 GE Tertiary Membrane System

The second tertiary P removal system is an ultrafiltration membrane filtration unit. Ultrafiltration systems consist of membrane cartridges with ultrafine pore sizes (<0.04 microns). An ultrafiltration unit removes all particulate and some colloidal matter from the treatment stream. Soluble phosphorus will pass through the membrane. Therefore, to achieve effluent less than 0.07 mg/L, chemical P removal will also be required. The tertiary membranes will take the place of the existing Discfilter system. An additional benefit provided by this system is compliance with Title 22 reclaimed water requirements for all of the flow.

3.1.2.1 Preliminary Capital and Operating Costs

GE supplied a cost estimate based on the ZeeWeed 1000 system designed to treat 2030 peak hour flow of 28 mgd with all units operational and the 2030 max month flow of 14.2 mgd with one unit out of service. This system will include chemical P removal equipment similar to the system described above as well as equipment unique to membrane systems. The ZeeWeed 1000 will require additional membrane tanks, clean-in-place (CIP) tankage equipment, and a 500-micron prescreen system.

3.1.2.1.1 Capital Costs

GE provided preliminary capital costs for the ZeeWeed system. Additional equipment including tanks and the pre-screen were estimated based on previous work.

Table 3-3. Planning-Level Comparative Costs for Tertiary Membrane System			
Process	Quantity	Unit Cost	Total
Coagulation chemical storage	1	\$21,000/tank	\$21,000
Coagulation chemical pumping	2	\$11,000/pump	\$22,000
Inlet strainers (500-micron screens)	-	-	\$288,000
Membrane system	-	-	\$5,919,000
Membrane tanks	0.112 Mgal	\$850,000/Mgal	\$95,000
CIP tank	0.019 Mgal	\$850,000/Mgal	\$16,000
Total	_	_	\$6,318,000

Note: Costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

3.1.2.1.2 Operating Costs

The estimates for max month flow operating cost are provided in Table 3-4. Chemical requirements shown on this table are based on maintenance schedules provided by GE. Auxiliary power requirements are based on the listed horsepower of the manufacturer-supplied pumps and blower units.

Table 3-4. Maximum Month Operating Costs for Tertiary Membrane Alternative			
Parameter	Quantity	Unit Cost	Total per Month
Coagulant (alum)	28,500 gal	\$1.22/gal	\$34,800
Sodium hypochlorite	2,692 gal	\$1.33/gal	\$3,500
Citric acid	317 gal	\$5.49/gal	\$1,700
Hydrochloric acid	158 gal	\$1.20/gal	\$200
Sodium bisulfite	650 gal	\$2.92/gal	\$1,900
Solids hauling	162 ton	\$5.933/wet ton	\$960
Sodium hydroxide	333 gal	\$2.67/gal	\$900
Membrane replacement costa	2835 modules	\$1,040/module	\$25,000
Membrane auxiliary system ^b	51,667 kWh	\$0.069/kWh	\$3,600
Total			\$72,560

Membrane life assumed to be 10 years. Monthly replacement cost is averaged over the 10-year period.

b. Power requirements for scour air blowers, permeate pumps, backwash pumps, and air compressor.

3.1.3 Tertiary P Removal Conclusions

Because the tertiary membrane system presents the highest potential capital and operating cost option when compared with the Actiflo/Discfilter option, tertiary membranes were carried through as the tertiary treatment system for all subsequent add-on processes requiring tertiary treatment to present the most conservative approach.

For all subsequent add-on option evaluations, costs for coagulant chemical storage and monthly usage requirements, as well as biosolids generation due to coagulant chemical, are estimated separate from the tertiary membrane P removal systems.

3.2 Sidestream Phosphorus Removal Add-On Process

This section provides a description of the modeling, sizing, and cost estimate results for the 5-stage Bardenpho expansion alternative, with the addition of an Ostara[™]-like struvite recovery system for sidestream P removal. This add-on alternative was evaluated to determine if removal of phosphorus from the centrate prior to discharge to the main stream treatment process would result in savings in ultimate tank size and/or chemical use within the main treatment process. As described in TM 1, the assumptions from the 2012 Facilities Plan showed that the TP in the centrate makes up more than 35 percent of the TP load to the aeration basins (sidestream TP + raw influent TP). Because centrate struvite recovery systems, like Ostara[™], can remove between 80 and 90 percent of the sidestream P load, it was assumed that this would help to reduce overall chemical carbon requirements and potentially lead to footprint savings for the main treatment process (5-stage Bardenpho).

3.2.1 Sidestream P Removal Add-On BioWin Model Setup

The base model used for all BioWin simulations conducted as part of TM 2 was the final model developed for the 5-stage Bardenpho alternative described in detail in Section 2 of TM 1. The only modification made to this model was to alter the input for the centrate to reduce the P load in the recycle by 80 percent and the TKN was reduced by 15 percent, assuming that this much phosphate and ammonia was removed through a sidestream struvite recovery process. The general process flow schematic for this process is shown in Figure 3-2.

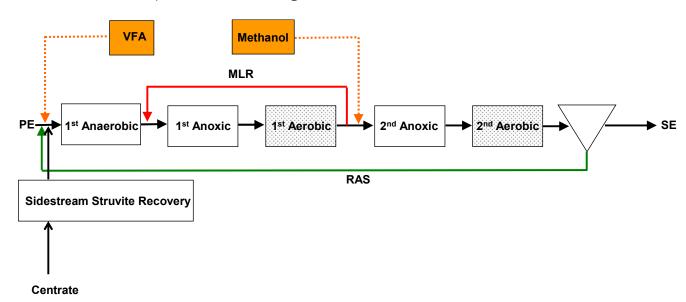


Figure 3-2. Process flow schematic for 5-stage Bardenpho processes with sidestream struvite recovery

This configuration was used to optimally size the treatment system volume and determine operating parameters and chemical usage rates at winter maximum month flows and loads. The operating limitations for the plant included a maximum operating MLSS concentration of 4,000 mg/L, assuming that a fourth secondary clarifier is constructed, and an operating DO concentration of 2.0 mg/L is used for all aerated zones. The effluent limitations for this process did not change from those presented in Section 1.

The PE concentrations used for all simulations, which were developed during the Sidestream Nitrogen Removal Evaluation project from the 2012 Facilities Plan, reflect a 30-day hourly diurnal model. The monthly average values used to generate this diurnal input model were summarized in Section 1. For preliminary evaluations discussed here, only winter conditions were evaluated. Summer conditions will be evaluated for final comparisons. Centrate data, also developed during the Sidestream Nitrogen Removal Evaluation project from the 2012 Facilities Plan reported values, are summarized in Table 1-7, with the exception of TP, which was reduced by 80 percent, and TKN, which was reduced by 15 percent to account for the sidestream struvite recovery process.

For the Sidestream P Add-On simulations, the secondary clarifiers were set to remove a constant value of 99.9 percent of incoming solids. It was assumed that a fourth secondary clarifier of equal diameter and volume to existing clarifiers 4 and 5 would be installed to allow for higher operating MLSS concentrations. The clarifier sludge blanket was assumed to be 7 percent of the settler height, and the clarifier solids underflow rate was paced at 50 percent of the PE. The WAS flow rate was adjusted automatically during modeling to regulate the SRT of the process to maintain nitrification and meet the target effluent N concentrations presented in Section 1.

Using these process and effluent constraints and the PE and modified centrate influent concentrations discussed here, optimal system and chemical use sizing was completed. The final results of basin sizing, optimum MLR flow pacing, chemical use, air demand, and WAS production rates are presented in Section 3.2.2.

3.2.2 Model Results for Winter Conditions

Table 3-5 shows the process sizing and operating parameters required to achieve the effluent target concentrations for the 5-stage Bardenpho process with sidestream struvite recovery. With reduced phosphate in the centrate recycle stream, the biggest change from the 5-stage Bardenpho process was the significant reduction in supplemental carbon (acetate) addition. This also allowed for a reduction in the overall tank volume, WAS production, and air demand of the system. Detailed model outputs from the BioWin modeling are presented in Appendix B of this report.

Airflow requirements were estimated using BioWin modeling software and do not necessarily reflect the true airflow amounts that would be anticipated. However, they do allow for comparison of relative airflow needs among alternatives and can be used to estimate annual O&M costs on a relative order-of-magnitude basis. Similarly, WAS production estimates are for information only and for comparison among alternatives as expansion of solids handling facilities to meet increased solids needs are outside the scope of this study.

Table 3-5. 5-Stage Bardenpho with Sidestream P Removal Modeling Results				
Unit Process Parameter/Unit Value				
Required SRT for nitrification	-, days	12		
Activated sludge basin total	Volume, Mgal	6.0		
Anaerobic cell 1	Volume, Mgal	0.4		

Brown AND Caldwell

Table 3-5. 5-Stage Bardenpho with Sidestream P Removal Modeling Results			
Unit Process	Parameter/Unit Value		
Anoxic cell 1a	Volume, Mgal	0.3	
Anoxic cell 1b	Volume, Mgal	0.3	
Swing cell 1	Volume, Mgal	0.4	
Aerobic cell 1a	Volume, Mgal	1.4	
Aerobic cell 1b	Volume, Mgal	1.5	
Swing/anoxic cell 2a	Volume, Mgal	0.6	
Swing/anoxic cell 2b	Volume, Mgal	0.6	
Post-aerobic cell	Volume, Mgal	0.5	
MLR rate	Flow rate, percent of PE	200	
WAS production	Mass rate, lb/d	20,800	
Additional chemical sludge from tertiary P removal	Mass rate, lb/d	1,900	
Airflow requirement	Flow rate, scfm	16,725	
Acetate use	Mass rate, lb/d	3,420	
Methanol use	Flow rate, gpd	615	

As previously found, the effluent ammonia target (0.307 mg ammonia-nitrogen per liter [mg-NH₄-N/L]) proved to be the limiting parameter while modeling this option. However, with reduced phosphorus and TKN entering the main stream process, the acetate use was reduced significantly as less acetate was needed to support the phosphate release in the anaerobic zones (3,400 lb/d versus over 9,000 lb/d for 5-stage Bardenpho without sidestream P removal).

The modeling results were used to develop the preliminary capital and operating cost estimates presented in Section 3.3.

3.2.3 Preliminary Capital and Operating Cost Estimates

To treat the 2030 maximum month flow and loading conditions, the main secondary treatment process will need to be expanded. As discussed above, a high SRT is required to achieve low effluent ammonia concentrations. This results in a high MLSS concentration, which imposes a high solids loading to the secondary clarifiers. For the winter condition, with a maximum month flow of 12.3 mgd and a maximum day flow of 13.8 mgd, the maximum allowable MLSS concentration will be approximately 4,000 mg/L. This assumes that one new secondary clarifier matching the dimensions of clarifiers 4 and 5 is constructed. While previous analyses for main stream process alternatives assumed that this clarifier would be common to all alternatives evaluated, this is not the case for the add-on alternatives evaluation. The same holds for tertiary P removal filtration processes. Therefore, these costs are now included in all options, including the sidestream struvite recovery add-on process presented in Table 3-6 below.

As shown in Table 3-6, 6.0 Mgal of activated sludge volume is required to meet effluent targets for the 2030 maximum month condition. Given 2.4 Mgal of existing volume, the scope of basin expansion would be 3.6 Mgal. The existing basins would also need to be retrofitted to accommodate the updated configuration, with these costs also developed for each option.

3.2.3.1 Capital Costs

Table 3-6 summarizes the capital costs expected for the 5-stage Bardenpho process with sidestream P removal/recovery. The assumptions made for costs developed for this estimate include the following:

- greenfield basin expansion and existing basin retrofit costs per Mgal were developed using estimates for the City of Nampa's current plant expansion
- costs for additional secondary clarifiers were taken from estimates completed for similar-sized clarifiers at the Pierce County Chambers Creek WASTEWATER TREATMENT PLANT expansion currently in construction
- tertiary membrane costs were taken from a vendor quote obtained from GE Zenon
- costs for chemical facilities were developed using costs for tanks and pump equipment obtained from equipment vendors
- P recovery facilities (sidestream P removal) were obtained from the 2012 Facilities Plan, and reduced by 50 percent to eliminate contractor markups and estimators' contingencies

Table 3-6. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho with Sidestream P Removal			
Process	Quantity	Unit Cost	Total
Greenfield aeration basin tank expansion	3.6 Mgal	\$850,000/Mgal	\$3,060,000
Existing basin retrofit	2.4 Mgal	\$400,000/Mgal	\$960,000
Additional secondary clarifiers	1	\$2,000,000	\$2,000,000
Tertiary filtration for P removal (membranes)	-	_	\$6,320,000
P recovery facilities	-	-	\$2,000,000
Chemical P removal facilities	-	-	\$62,500
Acetate addition facilities	_	-	\$106,500
Methanol addition facilities	-	_	\$568,000
Total	_	_	\$15,080,000

Note: Costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

It is important to note that the costs provided in Table 3-2 are preliminary planning-level costs that do not include contractor markups and special conditions. In addition, these costs do not reflect costs for common expansion requirements among all alternatives, such as additional secondary clarifiers, solids system expansions, or construction of already-planned facilities like the headworks or primary clarifiers. This means that these costs do not reflect the true cost for construction, but provide comparative costs for evaluating differences among the expansion alternatives only. Final AACE Class 5 construction cost estimates will be provided for the final recommended expansion alternatives associated with additional tasks for this work.

3.2.3.2 Operating Costs

The modeling results in Table 3-5 translate into operating costs associated with alum, acetate, and methanol dosing; aeration demand; and biosolids hauling. Additional costs associated with operation of the tertiary membrane system and sidestream struvite recovery system must also be considered.

The following assumptions were used to develop these costs:

- electricity: \$0.069/kWh
- biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)

- methanol (99 percent solution): \$2.25/gal
- aeration energy demand: 30 kWh/scfm/month
- alum (P removal chemical): \$1.22/gal
- tertiary filtration operating costs: \$36,800/maximum month
- operation of struvite recovery facility: \$20,000/maximum month

The electric and biosolids costs were provided by Meridian WRRF staff. The methanol cost is a long-term average value from Olympia, Washington. The price of methanol is unstable, and has varied from close to \$1.00 per gallon to over \$4.50 per gallon during the past 10 years. The aeration energy demand is based on data from other plants with similar process demands. The tertiary filtration operating cost is from GE Zenon as shown in Table 3-4, but with the cost for alum taken out of the system, since this cost is accounted for separately in the table below. The operating costs for the struvite recovery facility are a conservative estimate from other facilities operating struvite recovery systems.

The maximum monthly operating costs are summarized in Table 3-7. Based on the results of this table, the maximum monthly operating costs for the 5-stage Bardenpho with sidestream P removal would be approximately \$268,000. This is the highest anticipated winter monthly operating cost for the parameters provided in Table 3-7 below. Operating the system during other winter months will cost less than this amount.

Table 3-7. Maximum Monthly Winter Operating Costs for 5-Stage Bardenpho with Sidestream P Recovery			
Parameter	Quantity	Unit Cost	Total
Methanol	18,450 gal	\$2.25/gal	\$41,500
Acetate (80% solution of acetic acid)	64 ton	\$0.74/lb	\$95,000
Tertiary filtration chemical/operating cost	-	-	\$36,800
Struvite recovery facility chemical/operating cost	-	-	\$20,000
Process aeration	501,800 kWh	\$0.069/kWh	\$35,000
Biosolids hauling	1,700 wet ton	\$5.933/wet ton	\$10,000
P removal chemical	24,000 gal	\$1.22/gal	\$29,000
Total	_	_	\$268,000

3.3 Influent Flow Equalization Options

This section provides a description of the modeling, sizing, and cost estimate results for the 5-stage Bardenpho expansion alternative, with the addition of influent EQ and sidestream treatment options with influent EQ. This add-on alternative was evaluated to determine if equalizing influent flow to reduce minimum and maximum daily loadings would result in savings in ultimate tank size and/or chemical use within the main treatment process. Sidestream N and P treatment options were also evaluated in conjunction with the influent flow EQ to determine if there was benefit to be gained from reducing nutrient loads in the recycle streams. Each of the three options (influent EQ, influent EQ with sidestream N removal, influent EQ with sidestream N and P removal) are discussed in detail in the subsections below.

3.3.1 Influent Flow Equalization

This section presents the add-on BioWin model setup, model results for winter conditions, and preliminary capital and operating costs for the influent flow EQ option.

3.3.1.1 Add-On BioWin Model Setup

The base model used for all BioWin simulations conducted as part of this evaluation was the final model developed for the 5-stage Bardenpho alternative described in detail in Section 2. The only modification made to this model was to include a flow EQ tank of 2.4 Mgal capacity (equal to the existing aeration tank capacity) to equalize flows throughout the day. The general process flow schematic for this process is shown in Figure 3-3.

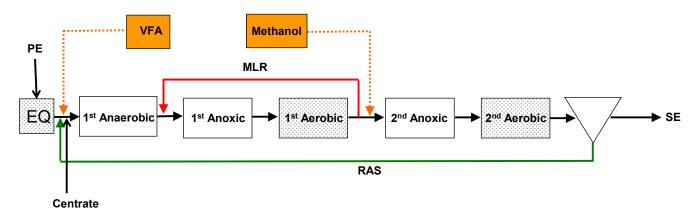


Figure 3-3. Process flow schematic for 5-stage Bardenpho processes with influent flow equalization

This configuration was used to optimally size the treatment system volume and determine operating parameters and chemical usage rates at winter maximum month flows and loads. The operating limitations for the plant included a maximum operating MLSS concentration of 4,000 mg/L, assuming that a fourth secondary clarifier is constructed, and an operating DO concentration of 2.0 mg/L is used for all aerated zones. The effluent limitations for this process did not change from those presented in Section 1.

The PE concentrations used for all simulations, which were developed during the Sidestream Nitrogen Removal Evaluation project from the 2012 Facilities Plan, reflect a 30-day hourly diurnal model. The monthly average values used to generate this diurnal input model were summarized in Section 1. For preliminary evaluations discussed here, only winter conditions were evaluated. Summer conditions will be evaluated for final comparisons. Centrate data, also developed during the Sidestream Nitrogen Removal Evaluation project from the 2012 Facilities Plan reported values, are summarized in Section 1.

As with the Sidestream P Add-On simulations, the secondary clarifiers were set to remove a constant value of 99.9 percent of incoming solids. It was assumed that a fourth secondary clarifier of equal diameter and volume to existing clarifiers 4 and 5 would be installed to allow for higher operating MLSS concentrations. The clarifier sludge blanket was assumed to be 7 percent of the settler height, and the clarifier solids underflow rate was paced at 50 percent of the PE. The WAS flow rate was adjusted automatically during modeling to regulate the SRT of the process to maintain nitrification and meet the target effluent N concentrations presented above.

The EQ basin was modeled as a variable volume tank without biological activity. The volume of the EQ basin was set at 2.3 Mgal (volume of existing tanks), and the base outflow from the EQ basin was set at 12.2 mgd, which was the average maximum monthly flow for the winter simulation period. The tank was set up so that if influent flow exceeded 12.2 mgd, the tank would fill if partially empty while the outflow remained at 12.2 mgd. If the tank was full and flow exceeded 12.2 mgd, then the outflow would equal the inflow. If the inflow was less than 12.2 mgd, then the outflow would remain at 12.2

mgd until the tank was completely drained, at which point the outflow equaled the reduced inflow rate.

Using these process and effluent constraints and the PE and modified centrate influent concentrations discussed here, optimal system and chemical use sizing was completed. The final results of basin sizing, optimum MLR flow pacing, chemical use, air demand, and WAS production rates are presented in Section 3.3.1.2.

3.3.1.2 Model Results for Winter Conditions

Table 3-8 shows the process sizing and operating parameters required to achieve the effluent target concentrations for the 5-stage Bardenpho process with influent flow EQ. With reduced peak N and P loads to the plant, a reduction in the operating SRT was required for nitrification under winter conditions, as the peak loads were reduced to the facility. This also allowed for a reduction in the amount of acetate and methanol required to meet the target effluent conditions. Together, these allowed for a small reduction in the activated sludge basin volume (to 7.0 Mgal from 7.25 Mgal). This modest decrease in size is due to the fact that the influent flow equalization, while good at dampening flows, does not affect the diurnal loading of nitrogen and phosphorus enough to provide significant load equalization to the system. Influent and centrate load equalization would likely result in a greater overall reduction in tank volume than influent flow equalization alone. However, influent load equalization would likely require a greater volume of equalization than is available using existing tankage alone and would require a very complex flow regime to implement. Centrate load equalization was also analyzed as a separate option reported below.

As existing tankage would be needed for equalization for this option, this resulted in more greenfield aeration basin construction than for the option of 5-stage Bardenpho without any equalization. Also, as the SRT was reduced, the WAS production rate increased, though the air demands did decrease because of lowered MLSS concentrations. Detailed model outputs from the BioWin modeling are presented in Appendix B of this report.

Airflow requirements were estimated using BioWin modeling software and do not necessarily reflect the true airflow amounts that would be anticipated. However, they do allow for comparison of relative airflow needs among alternatives and can be used to estimate annual O&M costs on a relative order-of-magnitude basis. Similarly, WAS production estimates are for information only and for comparison among alternatives as expansion of solids handling facilities to meet increased solids needs are outside the scope of this study.

Table 3-8. 5-Stage Bardenpho with Influent EQ Modeling Results				
Unit Process	Parameter/Unit Value			
Required SRT for nitrification	-, days	11		
Influent EQ basin total	Volume, Mgal	2.4		
Activated sludge basin total	Volume, Mgal	7.0		
Anaerobic cell 1	Volume, Mgal	0.5		
Anoxic cell 1a	Volume, Mgal	0.375		
Anoxic cell 1b	Volume, Mgal	0.375		
Swing cell 1	Volume, Mgal	0.5		
Aerobic cell 1a	Volume, Mgal	1.5		
Aerobic cell 1b	Volume, Mgal	1.75		
Swing/anoxic cell 2a	Volume, Mgal	0.75		

Table 3-8. 5-Stage Bardenpho with Influent EQ Modeling Results				
Unit Process Parameter/Unit Value				
Swing/anoxic cell 2b	Volume, Mgal	0.75		
Post-aerobic cell	Volume, Mgal	0.5		
MLR rate	Flow rate, percent of PE	200		
WAS production	Mass rate, lb/d	23,050		
Additional chemical sludge from tertiary P removal	Mass rate, lb/d	1,900		
Airflow requirement	Flow rate, scfm	16,630		
Acetate use	Flow rate, gpd	5,600		
Methanol use	Flow rate, gpd	550		

As previously found and described in Section 2, the effluent ammonia target (0.307 mg NH₄-N/L) proved to be the limiting parameter while modeling this option. However, with more equalized P and TKN loads entering the main stream process, the acetate and methanol use was reduced.

The modeling results were used to develop the preliminary capital and operating cost estimates presented below.

3.3.1.3 Preliminary Capital and Operating Cost Estimates

To treat the 2030 maximum month flow and loading conditions, the main secondary treatment process will need to be expanded. As discussed previously, a high SRT is required to achieve low effluent ammonia concentrations. This results in a high MLSS concentration, which imposes a high solids loading to the secondary clarifiers. For the winter condition, with a maximum month flow of 12.3 mgd and a maximum day flow of 13.8 mgd, the maximum allowable MLSS concentration will be approximately 4,000 mg/L. This assumes that one new secondary clarifier matching the dimensions of clarifiers 4 and 5 is constructed. While previous analyses for main stream process alternatives assumed that this clarifier would be common to all alternatives evaluated, this is not the case for the add-on alternatives evaluation. The same holds for tertiary P removal filtration processes. Therefore, these costs are now included in all options, including the influent EQ add-on process presented in Table 3-10 below.

As shown in Table 3-8, 7.0 Mgal of activated sludge volume is required to meet effluent targets for the 2030 maximum month condition. Given that 2.4 Mgal of existing volume would be used for influent EQ, the scope of basin expansion would be 7.0 Mgal. The existing basins would also need to be retrofitted to accommodate the updated EQ configuration, with these costs also developed below.

3.3.1.3.1 Capital Costs

Table 3-9 summarizes the capital costs expected for the 5-stage Bardenpho process with sidestream P removal/recovery. The assumptions made for costs developed for this estimate include the following:

- greenfield basin expansion and existing basin retrofit costs per Mgal were developed using estimates for the City of Nampa's current plant expansion
- costs for additional secondary clarifiers were taken from estimates completed for similar-sized clarifiers at the Pierce County Chambers Creek WWTP expansion currently in construction
- tertiary membrane costs were taken from a vendor quote obtained from GE Zenon

- costs for chemical facilities were developed using costs for tanks and pump equipment obtained from equipment vendors
- cost for retrofit of existing basin to EQ tanks was estimated from planning work completed for Pierce County, Washington

Table 3-9. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho with Influent EQ			
Process	Quantity	Unit Cost	Total
Greenfield aeration basin tank expansion	7.0 Mgal	\$850,000/Mgal	\$5,950,000
Existing basin retrofit to EQ tank	2.4 Mgal	\$700,000/Mgal	\$1,680,000
New secondary clarifiers (100 ft dia.)	1	\$ 2,000,000	\$2,000,000
Tertiary filtration (membranes)	_	-	\$6,320,000
Chemical P removal facilities	-	-	\$62,500
Acetate addition facilities	_	-	\$106,500
Methanol addition facilities	-	-	\$568,000
Total	-	-	\$16,690,000

Note: Costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

It is important to note that the costs provided in Table 3-10 are preliminary planning-level costs that do not include contractor markups and special conditions. In addition, these costs do not reflect costs for common expansion requirements among all alternatives, such as additional secondary clarifiers, solids system expansions, or construction of already-planned facilities like the headworks or primary clarifiers. This means that these costs do not reflect the true cost for construction, but provide comparative costs for evaluating differences among the expansion alternatives only. Final AACE Class 5 construction cost estimates will be provided for the final recommended expansion alternatives associated with additional tasks for this work.

3.3.1.3.2 Operating Costs

The modeling results in Table 3-8 translate into operating costs associated with alum, acetate, and methanol dosing; aeration demand; and biosolids hauling. Additional costs associated with operation of the tertiary membrane system must also be considered.

The following assumptions were used to develop these costs:

- electricity: \$0.069/kWh
- biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)
- methanol (99 percent solution): \$2.25/gal
- aeration energy demand: 30 kWh/scfm/month
- alum (P removal chemical): \$1.22/gal
- tertiary filtration operating costs: \$36,800/maximum month

The electric and biosolids costs were provided by Meridian WRRF staff. The methanol cost is a long-term average value from Olympia, Washington. The price of methanol is unstable, and has varied from close to \$1.00 per gallon to over \$4.50 per gallon during the past 10 years. The aeration energy demand is based on data from other plants with similar process demands. The tertiary filtration operating cost is from GE Zenon.

The maximum monthly operating costs are summarized in Table 3-9. Based on the results of this table, the maximum monthly operating costs for the 5-stage Bardenpho with influent EQ removal

would be approximately \$304,000. This is the highest anticipated winter monthly operating cost for the parameters provided in Table 3-10 below. Operating the system during other winter months will cost less than this amount.

Table 3-10. Maximum Monthly Winter Operating Costs for 5-Stage Bardenpho with Influent EQ			
Parameter	Quantity	Unit Cost	Total
Methanol	16,500 gal	\$2.25/gal	\$37,100
Acetate (80% solution of acetic acid)	105 ton	\$0.74/lb	\$155,000
Tertiary filtration chemical/operating cost	-	_	\$36,800
Process aeration	498,900 kWh	\$0.069/kWh	\$34,500
Biosolids hauling	1,900 wet ton	\$5.933/wet ton	\$11,300
P removal chemical	24,000 gal	\$1.22/gal	\$29,000
Total	_	_	\$304,000

3.3.2 Influent Flow Equalization with Sidestream N Removal

This section presents the add-on BioWin model setup, model results for winter conditions, and preliminary capital and operating costs for the influent flow EQ with sidestream N removal option.

3.3.2.1 Add-On BioWin Model Setup

The base model used for all BioWin simulations conducted as part of this evaluation was the final model developed for the 5-stage Bardenpho alternative described in detail in Section 2. The only modification made to this model was to include a flow EQ tank of 2.4 Mgal capacity (equal to the existing aeration tank capacity) to equalize flows throughout the day and a reduction in the centrate concentrations for TKN, as described previously in the Sidestream Nitrogen Removal Evaluation project. The general process flow schematic for this process is shown in Figure 3-4.

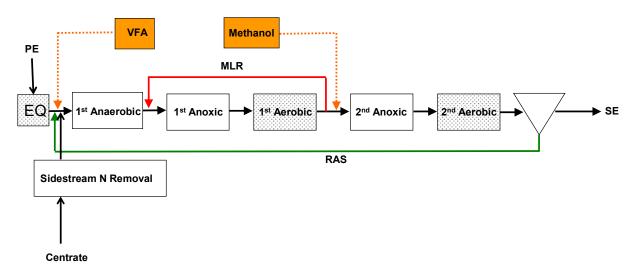


Figure 3-4. Process flow schematic for 5-stage Bardenpho processes with influent flow equalization and sidestream N removal

This configuration was used to optimally size the treatment system volume and determine operating parameters and chemical usage rates at winter maximum month flows and loads. The operating limitations for the plant included a maximum operating MLSS concentration of 4,000 mg/L, assuming that a fourth secondary clarifier is constructed, and an operating DO concentration of 2.0

mg/L is used for all aerated zones. The effluent limitations for this process did not change from those presented in Section 1.

The PE concentrations used for all simulations, which were developed during the Sidestream Nitrogen Removal Evaluation project from the 2012 Facilities Plan, reflect a 30-day hourly diurnal model. The monthly average values used to generate this diurnal input model were summarized in Section 1. For preliminary evaluations discussed here, only winter conditions were evaluated. Summer conditions will be evaluated for final comparisons. Centrate data after undergoing sidestream treatment for N removal with an Anammox-type process was developed during the Sidestream Nitrogen Removal Evaluation project from the 2012 Facilities Plan reported values and is reported elsewhere.

The secondary clarifiers were set to remove a constant value of 99.9 percent of incoming solids. It was assumed that a fourth secondary clarifier of equal diameter and volume to existing clarifiers 4 and 5 would be installed to allow for higher operating MLSS concentrations. The clarifier sludge blanket was assumed to be 7 percent of the settler height, and the clarifier solids underflow rate was paced at 50 percent of the PE. The WAS flow rate was adjusted automatically during modeling to regulate the SRT of the process to maintain nitrification and meet the target effluent N concentrations presented in Section 1.

Using these process and effluent constraints and the PE and modified centrate influent concentrations discussed here, optimal system and chemical use sizing was completed. The final results of basin sizing, optimum MLR flow pacing, chemical use, air demand, and WAS production rates are presented below.

3.3.2.2 Model Results for Winter Conditions

Table 3-11 shows the process sizing and operating parameters required to achieve the effluent target concentrations for the 5-stage Bardenpho process with influent flow EQ and sidestream N removal. Influent EQ reduced peak N and P loads to the plant and sidestream N removal using an Anammox-type process reduced the centrate N loads recycled to the main process by 80 percent. Together, the influent EQ and centrate N removal allowed for a reduction in the amount of acetate and methanol required to meet the target effluent conditions, though acetate use was slightly higher than with influent EQ alone. This, along with the equalized loads, allowed for a small reduction in the activated sludge basin volume in the aerated cells (to 6.5 Mgal from 7.0 Mgal with influent EQ alone). However, as existing tankage would be needed for equalization for this option, this resulted in more greenfield aeration basin construction than for the option of 5-stage Bardenpho without any equalization or sidestream treatment. Detailed model outputs from the BioWin modeling are presented in Appendix B of this report.

Airflow requirements were estimated using BioWin modeling software and do not necessarily reflect the true airflow amounts that would be anticipated. However, they do allow for comparison of relative airflow needs among alternatives and can be used to estimate annual O&M costs on a relative order-of-magnitude basis. Similarly, WAS production estimates are for information only and for comparison among alternatives as expansion of solids handling facilities to meet increased solids needs are outside the scope of this study.

Table 3-11. 5-Stage Bardenpho with Influent EQ and Sidestream N Removal Modeling Results			
Unit Process	Parameter/Unit	Value	
Required SRT for nitrification	-, days	12	
Influent EQ basin total	Volume, Mgal	2.4	
Activated sludge basin total	Volume, Mgal	6.5	
Anaerobic cell 1	Volume, Mgal	0.5	
Anoxic cell 1a	Volume, Mgal	0.375	
Anoxic cell 1b	Volume, Mgal	0.375	
Swing cell 1	Volume, Mgal	0.5	
Aerobic cell 1a	Volume, Mgal 1.5		
Aerobic cell 1b	Volume, Mgal 1.25		
Swing/anoxic cell 2a	Volume, Mgal	0.75	
Swing/anoxic cell 2b	Volume, Mgal	0.75	
Post-aerobic cell	Volume, Mgal	0.5	
MLR rate	Flow rate, percent of PE	200	
WAS production	Mass rate, lb/d	21,400	
Additional chemical sludge from tertiary P removal	Mass rate, lb/d	1,900	
Airflow requirement	Flow rate, scfm	15,770	
Acetate use	Flow rate, gpd	6,040	
Methanol use	Flow rate, gpd	310	

As previously found, the effluent ammonia target (0.307 mg NH $_4$ -N/L) proved to be the limiting parameter while modeling this option. However, with more equalized P and TKN loads entering the main stream process, the acetate and methanol use was reduced.

The modeling results were used to develop the preliminary capital and operating cost estimates presented in Section 3.3.2.3.

3.3.2.3 Preliminary Capital and Operating Cost Estimates

To treat the 2030 maximum month flow and loading conditions, the main secondary treatment process will need to be expanded. As discussed previously, a high SRT is required to achieve low effluent ammonia concentrations. This results in a high MLSS concentration, which imposes a high solids loading to the secondary clarifiers. For the winter condition, with a maximum month flow of 12.3 mgd and a maximum day flow of 13.8 mgd, the maximum allowable MLSS concentration will be approximately 4,000 mg/L. This assumes that one new secondary clarifier matching the dimensions of clarifiers 4 and 5 is constructed. While previous analyses for main stream process alternatives assumed that this clarifier would be common to all alternatives evaluated, this is not the case for the add-on alternatives evaluation. The same holds for tertiary P removal filtration processes. Therefore, these costs are now included in all options, including the influent EQ tanks and sidestream Anammox-type N removal add-on processes presented in Table 3-12 below.

As shown in Table 3-11, 7.0 Mgal of activated sludge volume is required to meet effluent targets for the 2030 maximum month condition. Given that 2.4 Mgal of existing volume would be used for

influent EQ, the scope of basin expansion would be 7.0 Mgal. The existing basins would also need to be retrofitted to accommodate the updated EQ configuration, with these costs also developed below.

3.3.2.3.1 Capital Costs

Table 3-12 summarizes the capital costs expected for the 5-stage Bardenpho process with sidestream Anammox. The assumptions made for costs developed for this estimate include the following:

- greenfield basin expansion and existing basin retrofit costs per Mgal were developed using estimates for the City of Nampa's current plant expansion
- costs for additional secondary clarifiers were taken from estimates completed for similar-sized clarifiers at the Pierce County Chambers Creek WWTP expansion currently in construction
- tertiary membrane costs were taken from a vendor quote obtained from GE Zenon
- costs for chemical facilities were developed using costs for tanks and pump equipment obtained from equipment vendors
- cost for retrofit of existing basin to EQ tanks was estimated from planning work completed for Pierce County, Washington
- cost for DEMON™ Anammox process for sidestream treatment was obtained from the vendor during the Sidestream Nitrogen Removal Evaluation project

Table 3-12. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho with Influent EQ and Sidestream N Removal				
Process	Quantity	Unit Cost	Total	
Greenfield aeration basin tank expansion	6.5 Mgal	\$850,000/Mgal	\$5,525,000	
Existing basin conversion to EQ tank	2.4 Mgal	\$700,000/Mgal	\$1,680,000	
New secondary clarifiers	1	\$ 2,000,000	\$2,000,000	
Tertiary filtration (membranes)	-	-	\$6,320,000	
DEMON™ Anammox facilities	-	-	\$3,600,000	
Chemical P removal facilities	_	-	\$62,500	
Acetate addition facilities	-	-	\$106,500	
Methanol addition facilities	-	-	\$568,000	
Total \$19,870,000				

Note: Costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

It is important to note that the costs provided in Table 3-12 are preliminary planning-level costs that do not include contractor markups and special conditions. In addition, these costs do not reflect costs for common expansion requirements among all alternatives, such as additional secondary clarifiers, solids system expansions, or construction of already-planned facilities like the headworks or primary clarifiers. This means that these costs do not reflect the true cost for construction, but provide comparative costs for evaluating differences among the expansion alternatives only. Final AACE Class 5 construction cost estimates will be provided for the final recommended expansion alternatives associated with additional tasks for this work.

3.3.2.3.2 Operating Costs

The modeling results in Table 3-11 translate into operating costs associated with alum, acetate, and methanol dosing; aeration demand; and biosolids hauling. Additional costs associated with operation of the tertiary membrane system must also be considered.

The following assumptions were used to develop these costs:

- electricity: \$0.069/kWh
- biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)
- methanol (99 percent solution): \$2.25/gal
- aeration energy demand: 30 kWh/scfm/month
- alum (P removal chemical): \$1.22/gal
- tertiary filtration operating costs: \$36,800/maximum month
- sidestream N removal operating costs: \$8,500/maximum month (from Sidestream Evaluation TM annual cost/12 with a 1.3 peaking factor for maximum month operation)

The electric and biosolids costs were provided by Meridian WRRF staff. The methanol cost is a long-term average value from Olympia, Washington. The price of methanol is unstable, and has varied from close to \$1.00 per gallon to over \$4.50 per gallon during the past 10 years. The aeration energy demand is based on data from other plants with similar process demands. The tertiary filtration operating cost is from GE Zenon.

The maximum monthly operating costs are summarized in Table 3-13. Based on the results of this table, the maximum monthly operating costs for the 5-stage Bardenpho with influent EQ and sidestream N removal would be approximately \$306,000. This is the highest anticipated winter monthly operating cost for the parameters provided in Table 3-13 below. Operating the system during other winter months will cost less than this amount.

Table 3-13. Maximum Monthly Winter Operating Costs for 5-Stage Bardenpho with Influent EQ and Sidestream Anammox N Removal					
Parameter Quantity Unit Cost Total					
Methanol	9,300 gal	\$2.25/gal	\$21,000		
Acetate (80% solution of acetic acid)	113 ton	\$0.74/lb	\$167,000		
Tertiary filtration chemical/operating cost	-	-	\$36,800		
Process aeration	473,100 kWh	\$0.069/kWh	\$33,000		
Biosolids hauling	1,750 wet ton	\$5.933/wet ton	\$10,400		
P removal chemical	24,000 gal	\$1.22/gal	\$29,000		
DEMON monthly operating cost	-	-	\$8,500		
Total			\$306,000		

3.3.3 Influent Flow Equalization with Sidestream N and P Removal

This section presents the add-on BioWin model setup, model results for winter conditions, and preliminary capital and operating costs for the influent flow EQ with sidestream N and P removal option.

3.3.3.1 Add-On BioWin Model Setup

The base model used for all BioWin simulations conducted as part of this subsection was the final model developed for the 5-stage Bardenpho alternative described in detail in Section 2. The only modification made to this model was to include a flow EQ tank of 2.4 Mgal capacity (equal to the existing aeration tank capacity) to equalize flows throughout the day and modifications to the centrate to account for addition of sidestream N and P removal processes. The general process flow schematic for this process is shown in Figure 3-5.

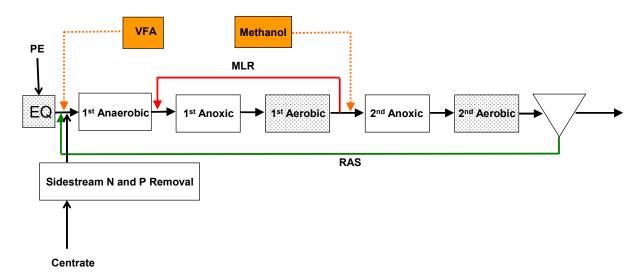


Figure 3-5. Process flow schematic for 5-stage Bardenpho processes with influent flow equalization and sidestream N and P removal processes

This configuration was used to optimally size the treatment system volume and determine operating parameters and chemical usage rates at winter maximum month flows and loads. The operating limitations for the plant included a maximum operating MLSS concentration of 4,000 mg/L, assuming that a fourth secondary clarifier is constructed, and an operating DO concentration of 2.0 mg/L is used for all aerated zones. The effluent limitations for this process did not change from those presented in Section 1.

The PE concentrations used for all simulations, which were developed during the Sidestream Nitrogen Removal Evaluation project from the 2012 Facilities Plan, reflect a 30-day hourly diurnal model. The monthly average values used to generate this diurnal input model were summarized in Section 1. For preliminary evaluations discussed here, only winter conditions were evaluated. Summer conditions will be evaluated for final comparisons. Centrate data were also developed during the Sidestream Nitrogen Removal Evaluation project from the 2012 Facilities Plan reported values, but were modified to reduce TN and TP concentrations in the centrate according to the typical reductions observed from sidestream Anammox-type N removal and struvite recovery P removal processes (85 percent N removal and 80 percent P removal).

The secondary clarifiers were set to remove a constant value of 99.9 percent of incoming solids. It was assumed that a fourth secondary clarifier of equal diameter and volume to existing clarifiers 4 and 5 would be installed to allow for higher operating MLSS concentrations. The clarifier sludge blanket was assumed to be 7 percent of the settler height, and the clarifier solids underflow rate was paced at 50 percent of the PE. The WAS flow rate was adjusted automatically during modeling to regulate the SRT of the process to maintain nitrification and meet the target effluent N concentrations presented in TM 1.

Using these process and effluent constraints and the PE and modified centrate influent concentrations discussed here, optimal system and chemical use sizing was completed. The final results of basin sizing, optimum MLR flow pacing, chemical use, air demand, and WAS production rates are presented in Section 3.3.3.2.

3.3.3.2 Model Results for Winter Conditions

Table 3-14 shows the process sizing and operating parameters required to achieve the effluent target concentrations for the 5-stage Bardenpho process with influent flow EQ and sidestream N and

P removal. With reduced peak N and P loads to the plant, and reduction in the N and P loads from the centrate, there was a significant reduction in the amount of acetate and methanol required to meet the target effluent conditions for P and N, respectively. The reduction of these supplemental carbon additions allowed for a significant reduction in the activated sludge basin volume (to 5.3 Mgal from 6.5 Mgal for influent EQ with sidestream N alone). However, as existing tankage would be needed for equalization for this option, this resulted in more greenfield aeration basin construction than for the option of 5-stage Bardenpho without any equalization or sidestream treatment. Detailed model outputs from the BioWin modeling are presented in Appendix B of this report.

Airflow requirements were estimated using BioWin modeling software and do not necessarily reflect the true airflow amounts that would be anticipated. However, they do allow for comparison of relative airflow needs among alternatives and can be used to estimate annual O&M costs on a relative order-of-magnitude basis. Similarly, WAS production estimates are for information only and for comparison among alternatives as expansion of solids handling facilities to meet increased solids needs are outside the scope of this study.

Table 3-14. 5-Stage Bardenpho with Influent EQ Modeling and Sidestream N and P Removal Results			
Unit Process	Parameter/Unit	Value	
Required SRT for nitrification	-, days	11	
Influent EQ basin total	Volume, Mgal	2.4	
Activated sludge basin total	Volume, Mgal	5.3	
Anaerobic cell 1	Volume, Mgal	0.5	
Anoxic cell 1a	Volume, Mgal	0.35	
Anoxic cell 1b	Volume, Mgal	0.35	
Swing cell 1	Volume, Mgal	0.5	
Aerobic cell 1a	Volume, Mgal	1.0	
Aerobic cell 1b	Volume, Mgal	1.0	
Swing/anoxic cell 2a	Volume, Mgal	0.6	
Swing/anoxic cell 2b	Volume, Mgal	0.5	
Post-aerobic cell	Volume, Mgal	0.5	
MLR rate	Flow rate, percent of PE	200	
WAS production	Mass rate, lb/d	23,050	
Additional chemical sludge from tertiary P removal	Mass rate, lb/d	1,900	
Airflow requirement	Flow rate, scfm	16,630	
Acetate use	Flow rate, gpd 3,420		
Methanol use	Flow rate, gpd	280	

As previously found, the effluent ammonia target (0.307 mg NH₄-N/L) proved to be the limiting parameter while modeling this option. However, with more equalized P and TKN loads entering the main stream process, the acetate and methanol use was reduced, which allowed for shrinking of the aerobic volume while still maintaining an MLSS concentration below 4,000 mg/L.

The modeling results were used to develop the preliminary capital and operating cost estimates presented in Section 3.3.3.3.

3.3.3.3 Preliminary Capital and Operating Cost Estimates

To treat the 2030 maximum month flow and loading conditions, the main secondary treatment process will need to be expanded. As discussed previously, a high SRT is required to achieve low effluent ammonia concentrations. This results in a high MLSS concentration, which imposes a high solids loading to the secondary clarifiers. For the winter condition, with a maximum month flow of 12.3 mgd and a maximum day flow of 13.8 mgd, the maximum allowable MLSS concentration will be approximately 4,000 mg/L. This assumes that one new secondary clarifier matching the dimensions of clarifiers 4 and 5 is constructed. While previous analyses for main stream process alternatives assumed that this clarifier would be common to all alternatives evaluated, this is not the case for the add-on alternatives evaluation. The same holds for tertiary P removal filtration processes. Therefore, these costs are now included in all options, including the influent EQ, sidestream Anammox, and struvite recovery add-on processes presented in Table 3-16 below.

As shown in Table 3-14, 5.3 Mgal of activated sludge volume is required to meet effluent targets for the 2030 maximum month condition. Given that 2.4 Mgal of existing volume would be used for influent EQ, the scope of basin expansion would be 5.3 Mgal. The existing basins would also need to be retrofitted to accommodate the updated EQ configuration, with these costs also developed below.

3.3.3.3.1 Capital Costs

Table 3-15 summarizes the capital costs expected for the 5-stage Bardenpho process with sidestream P removal/recovery. The assumptions made for costs developed for this estimate include the following:

- greenfield basin expansion and existing basin retrofit costs per Mgal were developed using estimates for the City of Nampa's current plant expansion
- costs for additional secondary clarifiers were taken from estimates completed for similar-sized clarifiers at the Pierce County Chambers Creek WWTP expansion currently in construction
- tertiary membrane costs were taken from a vendor quote obtained from GE Zenon
- costs for chemical facilities were developed using costs for tanks and pump equipment obtained from equipment vendors
- cost for DEMON™ Anammox process for sidestream treatment was obtained from the vendor during the Sidestream Nitrogen Removal Evaluation project
- P recovery facilities (sidestream P removal) were obtained from the 2012 Facilities Plan, and reduced by 50 percent to eliminate contractor markups and estimators' contingencies
- cost for retrofit of existing basin to EQ tanks was estimated from planning work completed for Pierce County, Washington

Table 3-15. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho with Influent EQ and Sidestream N and P Removal			
Process	Quantity	Unit Cost	Total
Greenfield aeration basin tank expansion	5.3 Mgal	\$850,000/Mgal	\$4,505,000
Existing basin retrofit to EQ tank	2.4 Mgal	\$700,000/Mgal	\$1,680,000
DEMON Anammox facilities	_	-	\$3,600,000
Struvite recovery facilities	_	-	\$2,000,000
New secondary clarifiers	1	\$ 2,000,000	\$2,000,000
Tertiary filtration (membranes)	_	_	\$6,320,000

Brown AND Caldwell

Table 3-15. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho with Influent EQ and Sidestream N and P Removal				
Process Quantity Unit Cost Total				
Chemical P removal facilities	-	-	\$62,500	
Acetate addition facilities	-	-	\$106,500	
Methanol addition facilities	-	-	\$568,000	
Total	_	_	\$20,840,000	

Note: Costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

It is important to note that the costs provided in Table 3-15 are preliminary planning-level costs that do not include contractor markups and special conditions. In addition, these costs do not reflect costs for common expansion requirements among all alternatives, such as additional secondary clarifiers, solids system expansions, or construction of already-planned facilities like the headworks or primary clarifiers. This means that these costs do not reflect the true cost for construction, but provide comparative costs for evaluating differences among the expansion alternatives only. Final AACE Class 5 construction cost estimates will be provided for the final recommended expansion alternatives associated with additional tasks for this work.

3.3.3.3. Operating Costs

The modeling results in Table 3-14 translate into operating costs associated with alum, acetate, and methanol dosing; aeration demand; and biosolids hauling. Additional costs associated with operation of the tertiary membrane system must also be considered.

The following assumptions were used to develop these costs:

- electricity: \$0.069/kWh
- biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)
- methanol (99 percent solution): \$2.25/gal
- aeration energy demand: 30 kWh/scfm/month
- alum (P removal chemical): \$1.22/gal
- tertiary filtration operating costs: \$36,800/maximum month
- sidestream N removal operating costs: \$8,500/maximum month (from Sidestream Evaluation TM annual cost/12 with a 1.3 peaking factor for maximum month operation)
- operation of struvite recovery facility: \$20,000/maximum month

The electric and biosolids costs were provided by Meridian WRRF staff. The methanol cost is a long-term average value from Olympia, Washington. The price of methanol is unstable, and has varied from close to \$1.00 per gallon to over \$4.50 per gallon during the past 10 years. The aeration energy demand is based on data from other plants with similar process demands. The tertiary filtration operating cost is from GE Zenon. The operating costs for the struvite recovery facility are a conservative estimate from other facilities operating struvite recovery systems.

The maximum monthly operating costs are summarized in Table 3-16. Based on the results of this table, the maximum monthly operating costs for the 5-stage Bardenpho with influent EQ and sidestream N and P removal would be approximately \$248,000. This is the highest anticipated winter monthly operating cost for the parameters provided in Table 3-16 below. Operating the system during other winter months will cost less than this amount.

Table 3-16. Maximum Monthly Winter Operating Costs for 5-Stage Bardenpho with Influent EQ and Sidestream N and P Removal			
Parameter	Quantity	Unit Cost	Total
Methanol	8,400 gal	\$2.25/gal	\$19,000
Acetate (80% solution of acetic acid)	64 ton	\$0.74/lb	\$95,000
Tertiary filtration chemical/operating cost	-	-	\$36,800
Process aeration	440,700 kWh	\$0.069/kWh	\$30,400
Biosolids hauling	1,575 wet ton	\$5.933/wet ton	\$9,300
P removal chemical	24,000 gal	\$1.22/gal	\$29,000
DEMON monthly operating cost	_	-	\$8,500
Struvite recovery facility monthly operating cost	_	-	\$20,000
Total			\$248,000

3.4 Centrate Nitrogen Load Equalization

This section provides a description of the modeling, sizing, and cost estimate results for the 5-stage Bardenpho expansion alternative with equalized centrate N load. The current plant operation is to equalize the flow of the centrate stream on a daily basis, which means the centrate flow to the main stream process is consistently the same each hour of the day. This alternative looked at distributing the centrate equally over certain hours of the day when the PE ammonia loads were low and the COD:TKN ratios were highest. The objective is to provide a more equalized ammonia load to the biological process during the day to reduce ammonia loading "peaks and valleys," which typically improves performance of nitrification and reduces breakthrough of ammonia during peak loading periods. With this type of N loading EQ operation it is possible to optimize the main stream treatment process and potentially reduce the sizing of the 5-stage Bardenpho process.

3.4.1 BioWin Model Setup

For this alternative, a new diurnal centrate itinerary was prepared based on the winter PE diurnal schedule and daily centrate data (Section 1). The daily average centrate ammonia load was distributed equally from 12 a.m. to 7 a.m. to fill in the low PE ammonia loading and high COD:TKN ratio time periods. The calibrated base model of the 5-stage Bardenpho process was used for the simulation, as represented by the process flow diagram shown in Figure 3-6.

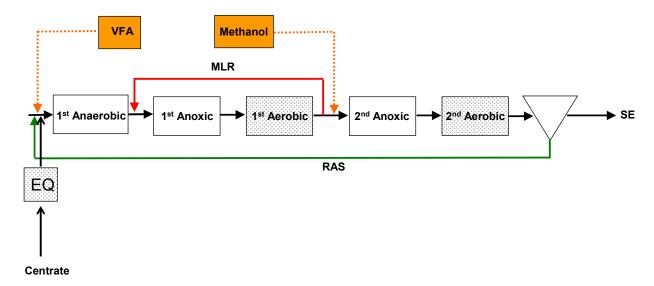


Figure 3-6. Process flow schematic for 5-stage Bardenpho processes with centrate load equalization

As discussed previously, the centrate load was returned during the minimum PE ammonia load period of each day. Figure 3-7 from the BioWin simulation shows how the centrate ammonia load was distributed throughout the 30-day simulation period.

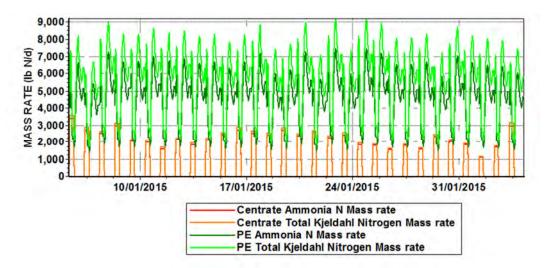


Figure 3-7. PE and centrate nitrogen mass rates

Once the centrate itinerary was developed, the model was simulated to optimally size the treatment system volume and determine operating parameters under winter maximum month flows and loads. The centrate equalizing schedule described above and a 12-day SRT were the basis for the following optimization runs. The BioWin simulation outputs were evaluated in terms of the effluent permit values provided in Section 1. Outputs that met the permitted values were selected and are described below:

- Reduce aeration basin volume: The aerated zone volumes were reduced. The optimum sizing
 was reducing the aerated zone volume by 0.75 Mgal.
- Reduce chemical use: Methanol feed can be reduced from 615 to 560 gpd.

3.4.2 Model Results for Winter Conditions

Table 3-17 shows the alternative process sizing and operating parameters required to achieve the effluent target concentrations listed in Section 1. The simulation shows an approximate 16 percent reduction in airflow from the 5-stage Bardenpho process without centrate N loading equalization.

Table 3-17. 5-Stage Bardenpho with Centrate Load EQ Modeling Results			
Unit Process	Parameter/Unit	Value	
Required SRT for nitrification	-, days	12	
Activated sludge basin total	Volume, Mgal	6.5	
Anaerobic cell 1 (Ana 1)	Volume, Mgal	0.5	
Anoxic cell 1a (Anox 1a)	Volume, Mgal	0.375	
Anoxic cell 1b (Anox 1b)	Volume, Mgal	0.375	
Swing cell 1	Volume, Mgal	0.5	
Aerobic cell 1 (Aer 1)	Volume, Mgal	1.5	
Aerobic cell 2 (Aer 2)	Volume, Mgal	1.25	
Swing cell 2a (Swing 2a)	Volume, Mgal	0.75	
Swing cell 2b (Swing 2b)	Volume, Mgal	0.75	
Aerobic cell 3 (Aer 3)	Volume, Mgal	0.5	
IMLR rate	Flow rate, percent of PE	200	
WAS production	Mass rate, lb/d	23,310	
Additional chemical sludge from P removal to 0.07 mg/L	Mass rate, lb/d	1,900	
Airflow requirement	Flow rate, scfm	17,250	
Acetate use	Flow rate, lb/d	9,110	
Methanol use	Flow rate, gpd	560	

An important item to note is that the current centrate EQ tank is 105,000 gallons. Based on the information available, it appears that this volume would be sufficient for the centrate ammonia load EQ scenario proposed, but further evaluation would be recommended to determine if the tank volume and pump capacities are adequate if this option is selected for design.

3.4.3 Preliminary Capital and Operating Cost Estimates

The total size of the aeration basins to meet the maximum month condition is 6.5 Mgal. Given 2.4 Mgal of existing volume, the basin expansion would be only 4.15 Mgal. As discussed in Section 2, the existing basins would need to be retrofitted to accommodate the updated configuration.

3.4.3.1 Capital Costs

Table 3-18 presents the capital cost for the centrate N load EQ alternative. For this alternative, the aeration basin quantity and total cost was modified to reflect the savings in aeration basin volume (0.75 MGal) with centrate N loading equalization. The chemical facilities sizes estimated for the 5-stage Bardenpho process were not adjusted for this alternative because the chemical quantities are the same or similar.

Table 3-18. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho Expansion with Centrate Load Equalization			
Process	Quantity	Unit Cost	Total
Greenfield aeration basin tank expansion	4.15 Mgal	\$850,000/Mgal	\$3,530,000
Existing basin retrofit	2.4 Mgal	\$400,000/Mgal	\$960,000
Centrate EQ tank modifications	_	-	\$50,000
New secondary clarifiers (100 ft dia.)	1	\$ 2,000,000	\$ 2,000,000
Tertiary filtration (membranes)	_	_	\$6,320,000
Chemical P removal facilities	-	-	\$62,500
Acetate addition facilities	-	-	\$106,500
Methanol addition facilities	-	-	\$568,000
Total	_	-	\$13,595,000

Note: Costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

3.4.3.2 Operating Costs

The modeling results in Table 3-17 translate into operating costs associated with acetate and methanol dosing, aeration demand, biosolids hauling, and chemical addition for P removal. The following assumptions were used to develop these costs:

electricity: \$0.069/kWh

biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)

methanol: \$2.25/galacetate: \$0.74/lb

aeration energy demand: 30 kWh/scfm/month

chemical addition for P removal: \$1.22/gal of alum

The electric and biosolids costs come from the plant. The methanol cost is a long-term average value from Olympia, Washington. The price of methanol is unstable, and has varied from close to \$1.00 per gallon to over \$4.50 per gallon during the past 10 years. The cost for acetate is a single value obtained from a local chemical supplier to the Boise area. The aeration energy demand is based on data from other plants with similar process demands. The chemical addition cost for P removal is a cost for alum addition determined for the City of Nampa in 2013.

The annual operating costs are summarized in Table 3-19.

Table 3-19. Maximum Month Operating Costs for 5-Stage Bardenpho with Centrate Load Equalization			
Parameter	Quantity	Unit Cost	Total per Month
Methanol	16,820 gal	\$2.25/gal	\$38,000
Acetate	173 tons	\$0.74/lb	\$260,000
Tertiary filtration chemical/operating cost	_	-	\$36,800
Process aeration	517,500 kWh	\$0.069/kWh	\$35,700
Biosolids hauling	1,890 wet tons	\$5.933/wet ton	\$11,200
P removal chemical	24,000 gal	\$1.22/gal	\$29,000
Total			\$411.000

The maximum month operating cost for carbon addition, aeration, biosolids disposal, and chemical P removal for the 5-stage Bardenpho system with centrate load equalization is approximately \$411,000. This is the highest anticipated monthly cost for winter operating conditions. Operating the system during other winter months will cost less than this amount.

3.5 Tertiary Nitrification and Denitrification Process

This section provides a description of the modeling, sizing, and cost estimate results for tertiary nitrification and denitrification. Tertiary nitrification and denitrification filtration systems would be provided after the secondary clarifiers. The objective of this alternative is to focus on denitrification in a tertiary process and provide only partial nitrification and complete biological P removal in the main stream process. As complete nitrification in the main stream process has been the size-limiting factor for upgrades with this system, it was thought that completing nitrification and denitrification in tertiary processes may present some main stream basin size and cost advantages to completing these processes all in the main aeration tankage.

3.5.1 BioWin Model Setup

For this scenario, the main stream 5-stage Bardenpho configuration was simplified to an A/O process configuration with one anaerobic zone followed by two aerobic zones, as shown in the process flow diagram in Figure 3-8. Methanol addition and IMLR were eliminated from the treatment process but acetate was fed to support P removal in the biological reactors. The BioWin influent and centrate flow and load itinerary for the 5-stage Bardenpho process (refer to TM 1) was used for the simulation. Although they were not modeled in BioWin, the tertiary processes include a BIOFOR®N (Infilco Degremont) biological aerated filtration (BAF) system to provide post-nitrification followed by Denite® filters (Severn Trent) for post-denitrification.

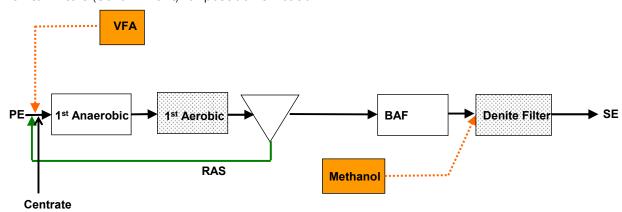


Figure 3-8. Process flow schematic for A/O process use with tertiary nitrification and denitrification

3.5.2 Model Results for Winter Conditions

Two modeling scenarios were identified for this alternative to understand and compare the sizing and cost implications if only some or all nitrification would take place in the tertiary process. Option 1 assumes that most of the influent ammonia is treated in the tertiary process (approximately 40 mg/L) and little to no nitrification takes place in the main stream process. Option 2 assumes that some nitrification does take place in the main stream process but about 25 percent (10 mg/L) of the remaining influent ammonia is nitrified in the tertiary process. The treatment goal for each of these options was to maintain less than 0.5 mg/L as TP in the secondary effluent and meet the N permit limits following tertiary treatment for denitrification. When completing the evaluations of these two

options, it was determined that there was minimal difference in sizing of the main A/O process tanks for meeting either 40 mg NH₄-N/L effluent ammonia or 10 mg NH₄-N/L effluent ammonia, but there was a very large difference in costs of the tertiary treatment processes (40 mg NH₄-N/L ammonia BAFs were much larger and more expensive). Therefore, as the 10 mg NH₄-N/L option (Option 2) presented the lowest overall capital and operating cost, only this option is presented in this section. Based on the analysis for meeting a main stream effluent ammonia concentration of 10 mg NH₄-N/L, Table 3-20 presents the process assumptions and sizing for the winter flow and loading conditions.

Table 3-20. Option 2 Modeling Results			
Unit Process	Parameter/Unit	Value	
Required SRT for nitrification	-, days	4	
Activated sludge basin total	Volume, Mgal	3.75	
Anaerobic cell 1 (Ana 1)	Volume, Mgal	0.5	
Anoxic cell 1a (Anox 1a)	Volume, Mgal	0	
Anoxic cell 1b (Anox 1b)	Volume, Mgal	0	
Swing cell 1	Volume, Mgal	0	
Aerobic cell 1 (Aer 1)	Volume, Mgal	1.25	
Aerobic cell 2 (Aer 2)	Volume, Mgal	2.0	
Swing cell 2a (Swing 2a)	Volume, Mgal	0	
Swing cell 2b (Swing 2b)	Volume, Mgal	0	
Aerobic cell 3 (Aer 3)	Volume, Mgal	0	
IMLR rate	Flow rate, percent of PE	0	
WAS production	Mass rate, lb/d	26,420	
Additional chemical sludge from P removal to 0.07 mg/L	Mass rate, lb/d	1,900	
Airflow requirementa	Flow rate, scfm	16,000	
Acetate use	Flow rate, lb/d	9,110	
Methanol use	Flow rate, gpd	1,500	

a. BioWin air required = 12,990 scfm, BIOFOR®N air required = 3,010 scfm.

From these data, it can be observed that there is a significant reduction in the SRT relative to the 5-stage Bardenpho process presented in TM 1, which is a result of not having to complete nitrification in the main treatment process. Along with that is a reduction in the tank sizes and airflow requirements. However, the WAS production rates increase because of the lower SRT. Further, because all denitrification is now completed in the tertiary denitrification process, no soluble BOD from the influent waste stream is available for denitrification. Therefore, additional methanol is required to complete denitrification compared to when denitrification is completed as part of the main stream treatment process.

3.5.3 Preliminary Capital and Operating Cost Estimates

The total size of the aeration basins to meet the maximum month condition is 3.75 Mgal. Given 2.4 Mgal of existing volume, the basin expansion would be only 1.35 Mgal. As discussed in TM 1, the

existing basins would need to be retrofitted to accommodate the updated configuration. Capital costs to accommodate these changes are listed below.

3.5.3.1 Capital Costs

Vendor proposals were requested for the BAF and denitrifying filter equipment presented here. The costs for the tertiary filter processes include the following:

- 1. vendor-provided equipment budgetary prices (Infilco Degremont and Severn Trent)
 - a. Eight 11' 8" x 100' Severn Trent Denite® filters: \$5.4 million
 - b. Six 27' x 31.5' IDI BIOFOR®N filters @ 10 mg/L-N influent NH₄-N: \$3.9 million
- 2. mechanical allowance of 15 percent
- 3. equipment installation allowance of 10 percent
- 4. estimated construction costs for tanks, influent and effluent channels, gallery, and electrical support buildings based on Brown and Caldwell's Littleton/Englewood WWTP Denite® facility footprint and construction costs:
 - a. building = $$250/\text{ft}^2$
 - b. building foundation = $$350/ft^2$
 - c. similar-sized Denite® filter facility for both options

Methanol addition facility costs were increased proportionately based on comparing the methanol flow rates to the 5-stage Bardenpho main stream option in TM1.

The overall capital cost is presented in Table 3-21.

Table 3-21. Planning-Level Comparative Capital Costs for Tertiary Nitrification/Denitrification			
Process	Quantity	Unit Cost	Total
Greenfield aeration basin tank expansion	1.4 Mgal	\$850,000/Mgal	\$1,190,000
Existing basin retrofit	2.4 Mgal	\$400,000/Mgal	\$960,000
New secondary clarifiers (100 ft dia.)	1	\$ 2,000,000	\$2,000,000
Tertiary nitrification (BAF)	-	-	\$7,700,000
Tertiary denitrification (Denite filter)	-	-	\$11,500,000
Tertiary filtration (membranes)	_	-	\$6,320,000
Chemical P removal facilities	-	-	\$62,500
Acetate addition facilities	-	-	\$106,500
Methanol addition facilities	-	-	\$1,034,000
Total	-	-	\$30,870,000

Note: Costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

3.5.3.2 Operating Costs

The modeling results in Table 3-22 translate into operating costs associated with acetate and methanol dosing, aeration demand, and biosolids hauling. The following assumptions were used to develop these costs:

electricity: \$0.069/kWh

biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)

methanol: \$2.25/galacetate: \$0.74/lb

aeration energy demand: 30 kWh/scfm/month

The electric and biosolids costs come from the plant. The methanol cost is a long-term average value from Olympia, Washington. The price of methanol is unstable, and has varied from close to \$1.00 per gallon to over \$4.50 per gallon during the past 10 years. The cost for acetate is a single value obtained from a local chemical supplier to the Boise area. The aeration energy demand is based on data from other plants with similar process demands.

Table 3-22. Maximum Month Operating Costs for Tertiary Nitrification/Denitrification			
Parameter	Quantity	Unit Cost	Total per Month
Methanol	33,600 gal	\$2.25/gal	\$75,600
Acetate	173 tons	\$0.74/lb	\$260,000
Tertiary filtration chemical/operating cost	-	-	\$36,800
Process aeration a	480,000 kWh	\$0.069/kWh	\$33,100
Biosolids hauling	2,470 wet tons	\$5.933/wet ton	\$14,700
P removal chemical	24,000 gal	\$1.22/gal	\$29,000
Total			\$449,000

a. Includes A/O and tertiary nitrification filter aeration requirements.

The maximum winter monthly operating cost is \$449,000. This is the highest anticipated monthly cost for winter operating conditions. Operating the system during other winter months will cost less than this amount.

3.6 BioMag Ballasted Activated Sludge System

This section provides a description of the modeling, sizing, and cost estimate results for the BioMag ballasted activated sludge system. The BioMag system uses magnetite addition to the mixed liquor to increase its specific gravity and allow for improved settleability in conventional secondary clarifiers. Magnetite is recovered from the WAS via shearing of the flocs in a shear mill, followed by magnetic drum separation of the magnetite from the biological floc. This system is considered an alternative to MBRs because of its ability to operate at very high mixed liquor concentrations, but while still using conventional secondary clarifiers. BioMag was evaluated to determine if the savings in tank size, because of its ability to operate at high MLSS concentrations, would result in overall cost savings in addition to footprint savings.

3.6.1 BioMag Add-On BioWin Model Setup

The base model used for all BioWin simulations conducted as part of this section was the final model developed for the 5-stage Bardenpho alternative described in detail in Section 2. The only modification made to this model was to modify the activated sludge system by increasing the mixed liquor concentration to reflect the use of magnetite as a ballast to assist mixed liquor settling in secondary clarifiers. The general process flow schematic for this process is shown in Figure 3-9.

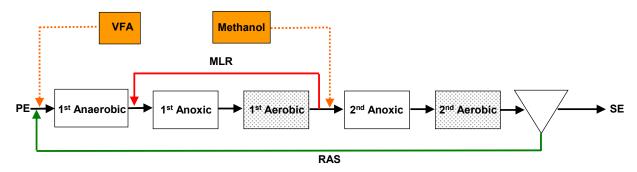


Figure 3-9. Process flow schematic for BioMag ballasted 5-stage Bardenpho process

This configuration was used to optimally size the treatment system volume and determine operating parameters and chemical usage rates at winter maximum month flows and loads. In this case, the operating MLSS concentration was not restricted because of the use of the magnetite ballasting agent. It was assumed that a fourth secondary clarifier is constructed, and an operating DO concentration of 2.0 mg/L is used for all aerated zones. The effluent limitations for this process did not change from those presented in Section 1.

The PE concentrations used for all simulations, which were developed during the Sidestream Nitrogen Removal Evaluation project from the 2012 Facilities Plan, reflect a 30-day hourly diurnal model. The monthly average values used to generate this diurnal input model were summarized in Section 1. For preliminary evaluations discussed here, only winter conditions were evaluated. Summer conditions will be evaluated for final comparisons. Centrate data were also developed during the Sidestream Nitrogen Removal Evaluation project from the 2012 Facilities Plan reported values.

The secondary clarifiers were set to remove a constant value of 99.9 percent of incoming solids. It was assumed that a fourth secondary clarifier of equal diameter and volume to existing clarifiers 4 and 5 would be installed to allow for higher operating MLSS concentrations. The clarifier sludge blanket was assumed to be 7 percent of the settler height, and the clarifier solids underflow rate was paced at 50 percent of the PE. The WAS flow rate was adjusted automatically during modeling to regulate the SRT of the process to maintain nitrification and meet the target effluent N concentrations presented in Section 1.

Using these process and effluent constraints and the PE and modified centrate influent concentrations discussed here, optimal system and chemical use sizing was completed. The final results of basin sizing, optimum MLR flow pacing, chemical use, air demand, and WAS production rates are presented in Section 3.6.2.

3.6.2 Model Results for Winter Conditions

Table 3-23 shows the process sizing and operating parameters required to achieve the effluent target concentrations for the BioMag ballasted 5-stage Bardenpho process. With no change to the peak N and P loads to the plant, there was no change to the amount of acetate and methanol required to meet the target effluent conditions for P and N, respectively. The ballast used with the BioMag process allows for higher MLSS concentrations to be carried in the system. While there was no change to the anaerobic volume required to achieve the desired effluent P concentration, the use of the ballast allowed for a significant reduction in the non-aerobic volume such that the overall activated sludge basin volume was reduced to 4.19 Mgal. Detailed model outputs from the BioWin modeling are presented in Appendix B of this report.

Airflow requirements were estimated using BioWin modeling software and do not necessarily reflect the true airflow amounts that would be anticipated. However, they do allow for comparison of relative airflow needs among alternatives and can be used to estimate annual O&M costs on a relative order-of-magnitude basis. Similarly, WAS production estimates are for information only and for comparison among alternatives as expansion of solids handling facilities to meet increased solids needs are outside the scope of this study.

Table 3-23. BioMag Ballasted 5-Stage Bardenpho Process Results			
Unit Process	Parameter/Unit	Value	
Required SRT for nitrification	-, days	17.3	
Activated sludge basin total	Volume, Mgal	4.19	
Anaerobic cell 1	Volume, Mgal	0.50	
Anoxic cell 1a	Volume, Mgal	0.19	
Anoxic cell 1b	Volume, Mgal	0.19	
Swing cell 1	Volume, Mgal	0.27	
Aerobic cell 1a	Volume, Mgal	0.82	
Aerobic cell 1b	Volume, Mgal	1.1	
Swing/anoxic cell 2a	Volume, Mgal	0.42	
Swing/anoxic cell 2b	Volume, Mgal	0.42	
Post-aerobic cell	Volume, Mgal	0.28	
MLR rate	Flow rate, percent of PE	200	
WAS production	Mass rate, lb/d	15,350	
Airflow requirement	Flow rate, scfm	25,750	
Acetate use	Flow rate, gpd	9,110	
Methanol use	Flow rate, gpd	615	

As previously found, the effluent ammonia target (0.307 mg NH₄-N/L) proved to be the limiting parameter while modeling this option. This resulted in the SRT being increased to 17.3 days and the MLSS concentration to 7,610 mg/L. The higher MLSS concentration was manageable because of the use of the magnetite ballast. However, the higher sludge inventory increased the maintenance aeration requirement such that the overall airflow requirement increased to 25,750 scfm. The demand for acetate and methanol were the same as for the base 5-stage Bardenpho case.

The modeling results were used to develop the preliminary capital and operating cost estimates presented in Section 3.6.3.

3.6.3 Preliminary Capital and Operating Cost Estimates

To treat the 2030 maximum month flow and loading conditions, the main secondary treatment process will need to be expanded. As discussed previously, a high SRT is required to achieve low effluent ammonia concentrations. This results in a high MLSS concentration, which imposes a high solids loading to the secondary clarifiers. With the use of the ballast, a higher clarifier solids loading can be tolerated than with conventional activated sludge systems. However, at the estimated MLSS concentration of 7,610 mg/L, one new secondary clarifier matching the dimensions of clarifiers 4 and 5 is constructed for the winter condition modeled. While previous analyses for main stream process alternatives assumed that this clarifier would be common to all alternatives evaluated, this

is not the case for the add-on alternatives evaluation. The same holds for tertiary P removal filtration processes. Therefore, these costs are now included in Table 3-23.

As shown in Table 3-24, 4.19 Mgal of activated sludge volume is required to meet effluent targets for the 2030 maximum month condition. This represents a significant savings over the 7.25 Mgal required for the base 5-stage Bardenpho case defined in Section 2.

3.6.3.1 Capital Costs

Table 3-24 summarizes the capital costs expected for the BioMag ballasted 5-stage Bardenpho process. The assumptions made for costs developed for this estimate include the following:

- greenfield basin expansion and existing basin retrofit costs per Mgal were developed using estimates for the City of Nampa's current plant expansion
- costs for additional secondary clarifiers were taken from estimates completed for similar-sized clarifiers at the Pierce County Chambers Creek WWTP expansion currently in construction
- tertiary membrane costs were taken from a vendor quote obtained from GE Zenon
- costs for chemical facilities were developed using costs for tanks and pump equipment obtained from equipment vendors
- cost for BioMag process requirements was obtained from the vendor

Table 3-24. Planning-Level Comparative Capital Costs for BioMag Ballasted 5-Stage Bardenpho Process			
Process	Quantity	Unit Cost	Total
Greenfield aeration basin tank expansion	1.8 Mgal	\$850,000/Mgal	\$1,530,000
Existing basin retrofit	2.4 Mgal	\$400,000/Mgal	\$960,000
BioMag process facilities	-	-	\$2,850,000
New secondary clarifiers	2	\$ 2,000,000	\$4,000,000
Tertiary filtration (membranes)	-	-	\$6,320,000
Chemical P removal facilities	-	-	\$62,500
Acetate addition facilities	-	-	\$106,500
Methanol addition facilities	_	-	\$568,000
Total			\$16,400,000

Note: Costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

It is important to note that the costs provided in Table 3-24 are preliminary planning-level costs that do not include contractor markups and special conditions. In addition, these costs do not reflect costs for common expansion requirements among all alternatives, such as additional secondary clarifiers, solids system expansions, or construction of already-planned facilities like the headworks or primary clarifiers. This means that these costs do not reflect the true cost for construction, but provide comparative costs for evaluating differences among the expansion alternatives only. Final AACE Class 5 construction cost estimates will be provided for the final recommended expansion alternatives associated with additional tasks for this work.

3.6.3.2 Operating Costs

The modeling results in Table 3-23 translate into operating costs associated with alum, acetate, and methanol dosing; aeration demand; biosolids hauling; ballast makeup; and supplementary power requirements for the BioMag equipment. Additional costs associated with operation of the tertiary membrane system must also be considered.

The following assumptions were used to develop these costs:

electricity: \$0.069/kWh

• biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)

methanol (99 percent solution): \$2.25/gal

aeration energy demand: 30 kWh/scfm/month

alum (P removal chemical): \$1.22/gal

• tertiary filtration operating costs: \$36,800/maximum month

The electric and biosolids costs were provided by Meridian WWTP staff. The methanol cost is a long-term average value from Olympia, Washington. The price of methanol is unstable, and has varied from close to \$1.00 per gallon to over \$4.50 per gallon during the past 10 years. The aeration energy demand is based on data from other plants with similar process demands. The tertiary filtration operating cost is from GE Zenon.

The maximum monthly operating costs are summarized in Table 3-25. Based on the results of this table, the maximum monthly operating costs for the BioMag ballasted 5-stage Bardenpho process would be approximately \$457,000. This is the highest anticipated winter monthly operating cost for the parameters provided in Table 7-3. Operating the system during other winter months will cost less than this amount.

Table 3-25. Maximum Monthly Winter Operating Costs for BioMag Ballasted 5-Stage Bardenpho Process			
Parameter	Quantity	Unit Cost	Total
Methanol	18,450 gal	\$2.25/gal	\$42,000
Acetate (80% solution of acetic acid)	173 ton	\$0.74/lb	\$260,000
Tertiary filtration chemical/operating cost	-	-	\$36,800
Process aeration	772,500 kWh	\$0.069/kWh	\$53,300
Biosolids hauling	1,290 wet ton	\$5.933/wet ton	\$7,700
P removal chemical	24,000 gal	\$1.22/gal	\$29,000
Magnetite	66,000 lb	\$0.35/lb	\$23,100
BioMag power consumption	78,000 kWh	\$0.069/kWh	\$5,400
Total			\$457,000

3.7 Membrane Bioreactor System

This section provides a description of the modeling, sizing, and cost estimate results for the MBR alternative. This alternative is a variation of Alternative 1 of the main stream alternatives. The existing conventional activated sludge system would be converted to an MBR system to provide both biological P and N removal, with tertiary chemical P removal needed for polishing to the final permit limit requirements. Addition of soluble carbon sources to drive the biological nutrient removal processes is also part of this alternative, as required to meet permitted effluent discharge limits. For evaluation of this alternative, as well as all other alternatives, the fermenter is not accounted for in the modeling to determine worst-case carbon addition needs.

3.7.1 BioWin Model Setup

The BioWin model used for the 5-stage Bardenpho conventional activated sludge system was modified to reflect the configuration for an MBR system. The secondary clarifiers are replaced by membrane tanks for solids separation. Sizing of the membrane tanks and membrane cassette displacement volume in the tanks are based on a budgetary proposal from an MBR manufacturer

using hollow-fiber ultrafiltration membranes. The MBR system can also be designed using flat platetype membranes.

Figure 3-10 presents a process flow schematic for the MBR system. Similar to the conventional activated sludge system alternative, the MBR system can be configured to operate as either a 5-stage Bardenpho or A2O process, depending on whether a second anoxic stage is included and where the MLR stream is routed from. In an MBR system, mixed liquor from the aeration basins either flows by gravity or is pumped to the membrane tanks. Membrane cassettes are submerged in the mixed liquor. Permeate is drawn through the membrane and out of the tanks via permeate pumps. Mixed liquor is returned from the membrane tanks to the aeration basins as RAS. Typically, a RAS flow ratio of about 300 to 400 percent is used to prevent accumulation of solids in the membrane tanks and minimize the difference in mixed liquor solids concentrations between the aeration basins and the membrane tanks. Other ancillary equipment for an MBR system includes coarse-bubble diffusers and blowers to provide scouring air for the membranes, chemical cleaning systems, backpulse/CIP tank, air compressors for the instrument air, and a control panel.

Similar to the flow sheet for the conventional activated sludge system, supplemental carbon is added for biological nutrient removal, including acetate for P removal and methanol for TN removal. Fermentate from the existing primary sludge fermenter is not included in the MBR simulations. Addition of fermentate will be included at predesign when finalizing the sizing of the selected expansion alternative and will reduce the dosing rates for acetate and methanol as determined in this analysis. With the ultrafiltration membranes in an MBR system, a separate tertiary filtration process will not be needed. To meet the stringent effluent P requirement, alum will be added as a coagulant just upstream of the membrane tanks.

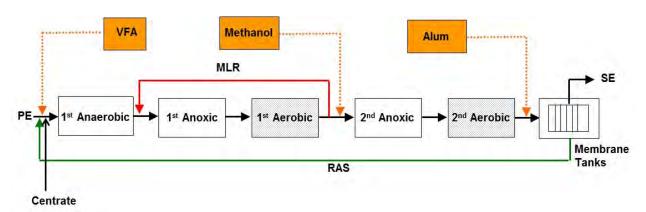


Figure 3-10. Process flow schematic for 5-stage Bardenpho process with MBR

Once this configuration was developed, it was used to optimally size the treatment system volume and determine operating parameters at winter maximum month flows and loads. The operating limitations for this alternative included a maximum operating MLSS concentration of 10,000 mg/L in the membrane tanks, on a monthly average basis. Because of the high MLSS concentration in an MBR system, the alpha (α) factor, which is a parameter used to describe oxygen transfer rate in process water in relation to that in clean water, is reduced by 20 percent as it has been found that oxygen transfer efficiency drops at higher MLSS concentrations. The operating DO concentration is set at 2.0 mg/L in all aerated zones, and is assumed to be 6 mg/L in the membrane tanks because of the scouring air supplied to those tanks. The target effluent concentrations, as shown in Table 3-26, are similar to those used for the 5-stage Bardenpho conventional activated sludge process alternative, except that an effluent PO₄-P limit of 0.1 mg/L was first used to run an initial simulation

without alum addition, and then a lower limit of 0.07 mg/L was used in a subsequent simulation with alum addition.

Table 3-26. 1	Table 3-26. Target Effluent Concentrations for MBR Simulations (all values in mg/L)				
Parameter Monthly Weekly Daily Average Maximum Maximum					
BOD	2	-	-		
TSS	1	-	-		
PO ₄ -P	0.1/0.07a	-	-		
NH ₄ -N	0.307	-	1.25		
NOx-N	8	-	-		
TN	10	_	_		

a. A target effluent concentration of 0.1 mg/L was first used in a simulation without alum addition; then a target effluent concentration of 0.07 mg/L was subsequently used in a simulation with alum addition.

Using these process and effluent constraints and the PE and centrate influent concentrations, an optimal system was completed for the SND alternative. The final results of basin sizing, optimum MLR flow pacing, air demand, and WAS production rates are presented in Section 3.7.2.

3.7.2 Model Results for Winter Conditions

The results of modeling showed that with the ability to accommodate high MLSS concentrations (more than twice of that for the conventional process), the MBR process would require half of the aeration basin volume that is required by the conventional process to achieve the effluent target concentrations presented in Table 8-1. While the tank volumes were smaller, the chemical usage rate for acetate was 50 percent higher than that for the conventional activated sludge process. A high acetate dosing rate was found to be required to meet the target effluent PO₄-P concentrations at the higher MLSS concentrations in an MBR system. It is suspected that the more concentrated biomass allows more organisms, including the ordinary heterotrophs that do not accumulate polyphosphate, to use the added acetate, thus resulting in a higher acetate requirement to achieve the same effluent P level. The airflow requirements and WAS production rates were also higher for the MBR process because of the lower alpha factor and greater amount of acetate added. The overall process sizing and monthly average air demands, WAS production, and chemical usage rates for the MBR process configuration are presented in Table 3-27. Detailed model outputs from the BioWin modeling for each approach are presented in Appendix B of this report.

The biosolids production estimate given in Table 3-27 was derived from the sludge production rate predicted in the BioWin simulation without alum addition for P removal, plus the calculated chemical sludge generated by alum addition to remove the difference between a secondary effluent TP concentration of 0.5 mg/L and the final effluent permit requirement of 0.07 mg/L TP. This method provides a consistent basis for comparing total sludge production rates among alternatives.

Table 3-27. 5-Stage Bardenpho with MBR Modeling Results				
Unit Process Parameter/Unit Value				
Required SRT for nitrification	-, days	12		
Activated sludge basin total	Volume, Mgal	3.63		
Anaerobic cell 1 (Ana 1)	Volume, Mgal	0.25		

Table 3-27. 5-Stage Bardenpho with MBR Modeling Results			
Unit Process	Parameter/Unit	Value	
Anoxic cell 1a (Anox 1a)	Volume, Mgal	0.187	
Anoxic cell 1b (Anox 1b)	Volume, Mgal	0.187	
Swing cell 1	Volume, Mgal	0.25	
Aerobic cell 1 (Aer 1)	Volume, Mgal	0.75	
Aerobic cell 2 (Aer 2)	Volume, Mgal	1.0	
Swing cell 2a (Swing 2a)	Volume, Mgal	0.375	
Swing cell 2b (Swing 2b)	Volume, Mgal	0.375	
Aerobic cell 3 (Aer 3)	Volume, Mgal	0.25	
Membrane basins, total	Volume, Mgal	0.285	
IMLR rate	Flow rate, percent of PE	200	
WAS production (including alum sludge for P removal to 0.07 mg/L)	Mass rate, lb/d	27,700	
Alum requirement for chemical P removal	Flow rate, gpd	800	
Airflow requirement	Flow rate, scfm	24,520	
Acetate use	Flow rate, lb/d	13,790	
Methanol use	Flow rate, gpd	615	

It should be noted that while the maximum MLSS concentration of 10,000 mg/L in the membrane tanks is more than twice the maximum MLSS concentration of 4,000 mg/L in the aeration basins assumed in this alternatives evaluation for a conventional activated sludge system, the total basin volume is not reduced by the same ratio for a number of reasons:

- the aeration basin MLSS concentration is lower than the membrane tank MLSS concentration (20 percent lower when the RAS flow is 400 percent of the PE flow)
- the MBR system requires more acetate for P removal, which generates more biomass and thus higher MLSS concentrations
- the aeration basin volume, and thus the MLSS concentration, is limited by the diffuser air supply capacity in the basins

It was found that the oxygen uptake rates (OURs), especially in swing cell 1, were very high under the 2030 winter maximum month condition. If one basin is out of service in the summer, the corresponding OURs would be even higher. In order to meet the high oxygen demands, full floor coverage of panel-type high-efficiency diffusers would be required.

Results from the BioWin simulations are used in developing the preliminary capital and operating cost estimates presented below.

3.7.3 Preliminary Capital and Operating Cost Estimates

This section presents preliminary capital and operating cost estimates for the MBR system option.

3.7.3.1 Capital Costs

In order to meet the 2030 maximum month conditions, the main secondary treatment process will need to be expanded. For the MBR alternative, the total volume of the aeration basins required to

meet the effluent targets for the 2030 maximum month condition is 3.6 Mgal. Given 2.4 Mgal of existing volume, the scope of the basin expansion would be 1.2 Mgal. The capital cost (without contractor markups) of the tankage expansion for this alternative is expected to be approximately \$1 million (based on nearby Nampa aeration basin expansion).

Additional facilities will need to be constructed as part of this alternative that are not common to the other alternatives. These consist of the membrane tanks; membrane filtration system (vendor package); PE fine screens; and chemical handling and metering facilities for methanol, acetate, and alum. The estimated costs for these facilities as well as the cost for expansion of the activated sludge basins are summarized in Table 3-28.

Table 3-28. Planning-Level Comparative Capital Costs for 5-Stage Bardenpho with MBR			
Process	Quantity	Unit Cost	Total
Greenfield aeration basin tank expansion	1.2 Mgal	\$850,000/Mgal	\$1,040,000
Existing basin retrofit	2.4 Mgal	\$400,000/Mgal	\$960,000
PE fine screens	-	_	\$980,000
Membrane system	_	_	\$6,200,000
Membrane tanks	0.285 Mgal	\$850,000/Mgal	\$242,000
Chemical P removal facilities	_	-	\$62,500
Acetate addition facilities	_	-	\$106,500
Methanol addition facilities	_	-	\$568,000
Total			\$10,120,000

Note: Costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

3.7.3.2 Operating Costs

The modeling results in Table 3-27 translate into operating costs associated with acetate and methanol dosing, aeration demand, biosolids hauling, and chemical addition for P removal. Furthermore, operation of the membrane system is associated with additional energy and chemical costs, as well as membrane replacement costs. The following assumptions were used to develop these costs:

electricity: \$0.069/kWh

biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)

methanol: \$2.25/galacetate: \$0.74/lb

aeration energy demand: 30 kWh/scfm/month

chemical addition for P removal: \$1.22/gal of alum

sodium hypochlorite for membrane cleaning: \$1.54/gal (10.3 percent by weight solution)

citric acid for membrane cleaning: \$5.49/gal (50 percent by weight solution)

• membrane replacement: \$1,050 per module

The electric and biosolids costs come from the plant. The methanol cost is a long-term average value from Olympia, Washington. The price of methanol is unstable, and has varied from close to \$1.00 per gallon to over \$4.50 per gallon during the past 10 years. The costs for acetate, sodium hypochlorite, and citric acid are obtained from a local chemical supplier to the Boise area. The aeration energy demand is based on data from other plants with similar process demands. The chemical addition cost for P removal is a cost for alum addition determined for the City of Nampa in

2013. The cost for the replacement membrane module was provided by the same MBR manufacturer that provided the budgetary cost for the system.

The annual operating costs are summarized in Table 3-29.

Table 3-29. Maximum Month Operating Costs for 5-Stage Bardenpho with MBR			
Parameter	Quantity	Unit Cost	Total per Month
Methanol	18,450 gal	\$2.25/gal	\$42,000
Acetate	258 tons	\$0.74/lb	\$383,000
Sodium hypochlorite	886 gal	\$1.54/gal	\$1,400
Citric acid	693 gal	\$5.49/gal	\$3,800
Membrane replacement cost ^a	2,688 modules	\$1,050/module	\$24,000
Membrane auxiliary system b	83,417 kWh	\$0.069/kWh	\$5,800
Process aeration	735,600 kWh	\$0.069/kWh	\$51,000
Biosolids hauling	2,080 wet tons	\$5.933/wet ton	\$12,000
P removal chemical	24,000 gal	\$1.22/gal	\$29,000
Total			\$552,000

Membrane life assumed to be 10 years. Monthly replacement cost is averaged over the 10-year period.

The winter maximum month operating cost for the MBR alternative is approximately \$552,000. This is the highest anticipated monthly cost for winter operating conditions. Operating the system during other winter months will cost less than this amount.

3.8 IFAS 5-Stage Bardenpho Process

This section provides a description of the modeling, sizing, and cost estimate results for IFAS within the 5-stage Bardenpho expansion alternative. Specifically designed media is added to the aeration process to increase the surface area for biological activity. The IFAS process is considered for upgrading existing systems to expand capacity within existing tankage to meet new nitrifying requirements.

The Kruger AnoxKaldnes IFAS system is a proprietary system and the proposed design consists of four process trains, each comprising the following reactors:

- two anaerobic selectors
- one pre-anoxic reactor for denitrification
- two aerobic IFAS reactors for nitrification
- one deoxygenation reactor (to reduce high oxygen from aerobic zones prior to anoxic zones)
- one post-anoxic reactor
- one post-aeration reactor

Figure 3-11 is a process flow diagram for the Kruger AnoxKaldnes IFAS system.

Power requirements for scour air blowers, permeate pumps, backwash pumps, and air compressor.

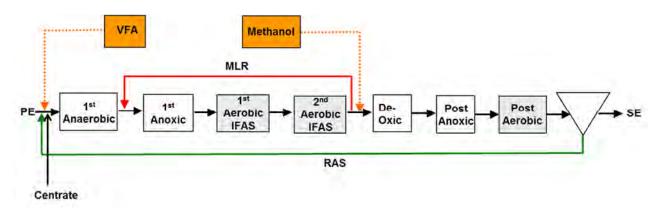


Figure 3-11. Process flow schematic for IFAS 5-stage Bardenpho process

3.8.1 Model Results for Winter Conditions

For modeling of the IFAS system, a BioWin model was developed using a fixed-film media add-in to simulate the effect of the media on the process. This was then compared with the sizing quote provided by the manufacturer of the IFAS system, in this case a Kruger AnoxKaldnes system. When the results of the BioWin model were compared with those provided by the manufacturer, the BioWin sizing proved to be significantly larger than the quote provided by Kruger, though Kruger did not provide estimates for chemical needs. Therefore, to stay within the sizing provided by the manufacturer, the tank sizing, MLR rates, and estimated WAS production rates were taken from the Kruger quote while all chemical needs were not changed from the 5-stage Bardenpho system (acetate, methanol, alum). In addition, airflow requirements were estimated by using the original 5-stage Bardenpho airflow quantities and increasing this by 50 percent to account for the need to aerate the system to a DO of between 4 and 6 mg/L using a coarse-bubble diffuser system. These chemical quantities and airflow quantities, while high, are lower than those estimated using the BioWin model for the system.

Table 3-30 shows the process sizing and operating parameters required to achieve the effluent target concentrations for the Kruger AnoxKaldnes IFAS system. The sizing is based on the maximum month load during winter conditions. With the addition of the IFAS media, the biggest change from the 5-stage Bardenpho process was the reduction in the total activated sludge volume required. Airflow requirements are expected to be higher to suspend the IFAS media in the aerobic reactors. Detailed information on the sizing by Kruger is provided in Appendix B. Alum, acetate, and methanol requirements were assumed to be the same as the 5-stage Bardenpho process.

Table 3-30. 5-Stage Bardenpho with IFAS Modeling Results				
Unit Process Parameter/Unit Value				
Activated sludge basin total	Volume, Mgal	5.67		
MLR rate	Flow rate, percent of PE	300		
WAS production	Mass rate, lb/d	23,250		
Additional chemical sludge from tertiary P removal	Mass rate, lb/d	1,900		
Airflow requirement	Flow rate, scfm	30,800		
Acetate use	Flow rate, gpd	9,230		
Methanol use	Flow rate, gpd	615		

3.8.2 Preliminary Capital and Operating Cost Estimates

To treat the 2030 maximum month flow and loading conditions, the main secondary treatment process will need to be expanded. A high SRT is required to achieve low effluent ammonia concentrations. This results in a high MLSS concentration, which imposes a high solids loading to the secondary clarifiers. For the winter condition, with a maximum month flow of 12.3 mgd and a maximum day flow of 13.8 mgd, the maximum allowable MLSS concentration will be approximately 4,000 mg/L. One new secondary clarifier matching the dimensions of clarifiers 4 and 5 (100-foot diameter) is assumed to be needed.

As shown in Table 3-30, 5.7 Mgal of activated sludge volume is required to meet effluent targets for the 2030 maximum month condition. Given 2.4 Mgal of existing volume, the scope of basin expansion would be 3.3 Mgal. The existing basins would also need to be retrofitted to accommodate the updated configuration and these costs are reflected in the capital cost estimates.

3.8.2.1 Capital Costs

Table 3-31 summarizes the capital costs expected for the IFAS 5-stage Bardenpho process. The assumptions made for costs developed for this estimate include the following:

- Greenfield basin expansion and existing basin retrofit costs per Mgal were developed using
 estimates for the City of Nampa's current plant expansion. However, as manufacturer quotes
 included new equipment for the basins, the values generated for the City of Nampa were
 reduced by 20 percent to account for this equipment.
- Costs for additional secondary clarifiers were taken from estimates completed for similar-sized clarifiers at the Pierce County Chambers Creek WWTP expansion currently in construction.
- Kruger AnoxKaldnes IFAS system costs are based on the vendor quote and includes the AnoxKaldnes K5 media, cylindrical screen assemblies, air sparge system, medium-bubble aeration system, submersible mixers, MLR wall pumps, and modulating airflow control valves.
- Costs for chemical facilities were developed using costs for tanks and pump equipment obtained from equipment vendors.

Table 3-31. Planning-Level Comparative Capital Costs for IFAS 5-Stage Bardenpho				
Process	Quantity	Unit Cost	Total	
Greenfield aeration basin tank expansion	3.3 Mgal	\$680,000/Mgal	\$2,240,000	
Existing basin retrofit	2.4 Mgal	\$320,000/Mgal	\$770,000	
IFAS equipment and appurtenances	-	_	\$6,370,000	
Additional secondary clarifiers	1	\$2,000,000	\$2,000,000	
Tertiary filtration for P removal	-	-	\$6,320,000	
Chemical P removal facilities	-	_	\$62,500	
Acetate addition facilities	-	_	\$106,500	
Methanol addition facilities	-	_	\$568,000	
Total			\$18,440,000	

Note: Costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

It is important to note that the costs provided in Table 3-31 are preliminary planning-level costs that do not include contractor markups and special conditions. This means that these costs do not reflect the true cost for construction, but provide comparative costs for evaluating differences among the

add-on alternatives only. Final AACE Class 5 construction cost estimates will be provided for the final recommended expansion alternatives associated with additional tasks for this work.

3.8.2.2 Operating Costs

Table 3-32 presents the operating costs associated with alum, acetate, and methanol dosing; aeration demand; and biosolids hauling. Additional costs associated with operation of the tertiary membrane system must also be considered. The following assumptions were used to develop these costs:

- electricity: \$0.069/kWh
- biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)
- methanol (99 percent solution): \$2.25/gal
- aeration energy demand: 30 kWh/scfm/month
- alum (P removal chemical): \$1.22/gal
- tertiary filtration operating costs: \$36,800/maximum month

The maximum monthly operating costs for the IFAS 5-stage Bardenpho process would be approximately \$442,000.

Table 3-32. Maximum Monthly Winter Operating Costs for IFAS 5-Stage Bardenpho				
Parameter	Quantity	Unit Cost	Total	
Methanol	18,450 gal	\$2.25/gal	\$41,500	
Acetate (80% solution of acetic acid)	173 ton	\$0.74/lb	\$260,000	
Process aeration	924,000 kWh	\$0.069/kWh	\$63,800	
Tertiary filtration chemical/operating cost	-	-	\$36,800	
Biosolids hauling	1,900 wet ton	\$5.933/wet ton	\$11,300	
P removal chemical	24,000 gal	\$1.22/gal	\$29,000	
Total			\$442,000	

3.9 Conclusions and Recommendations

The results of this evaluation offer the following conclusions and recommendations.

3.9.1 Conclusions

Table 3-33 provides a capital and operating cost comparison of the add-on alternatives.

	Table 3-33. Cost Comparison of Alternatives									
Cost	Base	Sidestream P	Inf. EQ	Inf. EQ + Sidestream N	Inf EQ + Sidestream N and P	Cent. Load EQ	Tert. Nit + Denite	BioMag	MBR	IFAS
Capital	\$14.2M	\$15.1M	\$16.7M	\$19.9M	\$20.8M	\$13.6M	\$30.9M	\$16.4M	\$10.1M	\$18.4M
Operating (maximum monthly cost)	\$420k	\$268k	\$304k	\$306k	\$248k	\$411k	\$449k	\$457k	\$552k	\$442k

Note: Costs provided in this table reflect construction cost only and do not include contractor markups, contingency, inflation to midpoint of construction, bonds, insurance, etc. A more complete construction cost estimate will be provided as part of the final report.

Based on a comparison of the results, the cheapest capital cost options are the MBR, the base case (5-stage Bardenpho with no add-on alternatives), and the centrate load equalization. The cheapest

options from the maximum winter month operating cost standpoint are influent EQ with sidestream N and P removal, influent EQ alone, and sidestream P removal alone.

3.9.2 Recommendations

These costs were presented to the City during a workshop held on May 5, 2015. At this workshop, each option, including capital and O&M costs, were discussed. During this meeting, it was decided that, because the City was already interested in sidestream P removal, this option should be carried forward for detailed evaluation as one of the final three alternatives. The second option to carry forward for further evaluation is the lowest apparent capital cost option, which is the MBR option. In addition, the City is interested in replacing its current centrate EQ tank. While this option has a higher operating cost, the City was interested in carrying this option forward as the third option for detailed evaluation, but that it should be coupled with sidestream P removal. Therefore, the following are the three options to carry forward from this study for detailed final evaluation:

- 1. 5-stage Bardenpho with sidestream P removal (Ostara-type)
- 2. 5-stage Bardenpho with sidestream P removal and centrate load equalization
- 3. 5-stage Bardenpho with MBR

Each of these alternatives is evaluated for 2030 summer maximum month flows and loads as well as 2030 average annual flows and loads in the following Section. In addition, a detailed AACE Class 5 cost estimate has been prepared for each of these options for final comparison.

Section 4

Final Alternatives Evaluation

This section presents the results of the final evaluation of the pared-down list of alternatives determined from Section 3. As part of this evaluation, the following were completed:

- 1. Use the BioWin models developed for the following three 5-stage Bardenpho configurations to determine if summer maximum month operating conditions can be accommodated with the sizing of options previously determined for winter conditions. If summer conditions prove more stringent, optimize treatment system sizing to accommodate summer flows and loads:
 - a. 5-stage Bardenpho configuration with sidestream P removal (e.g., Ostara™)
 - b. 5-stage Bardenpho configuration with centrate N load equalization and sidestream P removal
 - c. 5-stage Bardenpho converting sludge separation to MBR process
- 2. Use the BioWin models developed for the above three options to determine the steady-state operating conditions for average annual flows and loads for 2030 to determine the average annual operating costs for further evaluations.
- 3. Develop potential site layouts for each of the three options.
- 4. Develop AACE Class 5 capital cost estimates for each of the three alternatives evaluated.
- 5. Recommend the most cost-effective alternative for future expansion.

Each of these options and the costs associated with each are described below.

4.1 5-Stage Bardenpho with Sidestream P Removal

The first of the final options evaluated in detail was the 5-stage Bardenpho process with sidestream P removal. This option was evaluated for operation under summer maximum month conditions to determine if sizing for winter conditions was adequate for summer operation. The summer simulations were conducted in the same manner as winter simulations, with the average PE concentrations used for the summer simulations shown in Table 1-4. The temperature used for conducting any biological modeling for the summer conditions was 18 degrees Celsius (°C), which is the minimum monthly temperature for the summer and presents the most restrictive summer temperature for achieving nitrification.

Based on the BioWin simulation results, it was determined that for summer conditions, the average SRT could be reduced significantly from winter conditions (from 12 days to 6 days) and still maintain adequate nitrification. Further, the reduced SRT resulted in reduced MLSS concentration in the basins, which allowed for at least one basin (of the same 0.6 Mgal size as current) to be taken out of service for summer maximum month conditions. This allows for necessary redundancy and routine maintenance. Based on these results, the size of basins was determined during winter simulations presented in Section 3. Results of summer BioWin simulations are presented in Appendix C.

4.1.1 Layout

Based on summer maximum month and winter maximum month simulation results, a layout of plant expansion to meet the 2030 projected conditions discussed in Section 1 was completed. This layout is shown in Figure 4-1.

Secondary Treatment Alternatives Evaluation

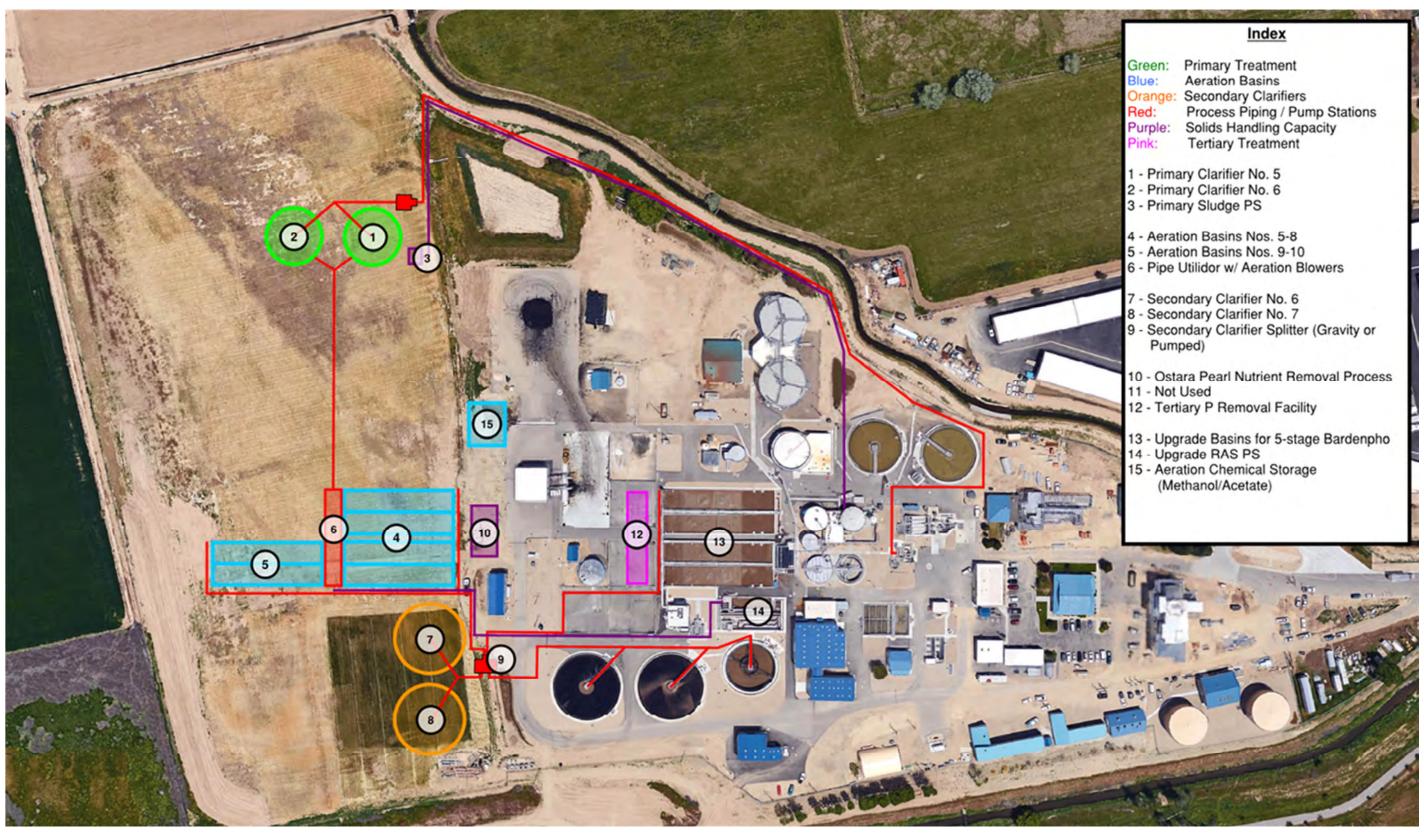


Figure 4-1. Plant layout for 5-stage Bardenpho with sidestream P removal

Brown AND Caldwell

As can be seen on this figure, expansion of the aeration tankage will occur mostly to the west of the existing plant on undeveloped property owned by the City. Aeration tanks are currently shown to be expanded with individual tanks of the same size as the current tanks. In addition to the aeration tank expansion, this plant layout shows expansion of two additional primary clarifiers on the same west property, two new secondary clarifiers, a tertiary P removal facility (modeled after Actiflo), chemical addition facilities, and other flow-splitting devices and conveyance pipelines. Each of these items is included in the cost estimate presented later in this section.

4.1.2 2030 Average Annual Operating Costs

In addition to conducting BioWin simulations at the winter and summer maximum month flow and load conditions, simulations were conducted for the 2030 average annual conditions in order to determine the average yearly operating cost for each option evaluated in detail in this section. These simulations were conducted under steady-state conditions, as this provided the highest associated oxygen demand and chemical usage rates. While average annual conditions were not provided in Section 1, the average summer and average winter conditions were described on Table 1-4. The average annual flow and load condition was developed by taking the average of the summer and winter average conditions described on Table 1-4. Simulations were conducted at a temperature of 18 °C. Table 4-1 presents the results of the average annual operating costs based on these simulations. Detailed results of these simulations are presented in Appendix C. The following assumptions were used to develop these costs:

electricity: \$0.069/kWh

• biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)

methanol (99 percent solution): \$2.25/gal

aeration energy demand: 30 kWh/scfm/month

alum (P removal chemical): \$1.22/galActiflo operating costs: \$7,000/month

operation of struvite recovery facility: \$15,000/average month

Table 4-1. 2030 Average Monthly Operating Costs for 5-Stage Bardenpho with Sidestream P Removal				
Parameter	Quantity	Unit Cost	Total (2015 dollars)	
Methanol	12,000 gal	\$2.25/gal	\$27,000	
Acetate (80% solution of acetic acid)	34 tons	\$0.74/lb	\$50,300	
	436,000 kWh			
Process aeration	(14,520 scfm)	\$0.069/kWh	\$30,100	
Actiflo monthly cost	-	-	\$7,000	
Sidestream P removal monthly cost	-	-	\$15,000	
Biosolids hauling	1,020 wet tons	\$5.933/wet ton	\$11,300	
P removal chemical	24,000 gal	\$1.22/gal	\$29,000	
Total			\$170,000	

As can be seen from this table, the 2030 average monthly cost for operating the 5-stage Bardenpho system with sidestream P removal is approximately \$170,000, or \$2,040,000 per year. This is significantly lower than the maximum winter operating cost for this same option of \$268,000 per month.

4.1.3 Capital Cost

An AACE Class 5 capital cost estimate was prepared for the 5-stage Bardenpho with sidestream P removal alternative. The breakdown of the costs is presented in Table 4-2. The detailed cost estimate for all options is presented in Appendix D.

Table 4-2. Capital Construction Cost for 5-Stage Bardenpho with Sidestream P Removal			
Area Cost (2015 dollars)			
Headworks upgrade	Not estimated/separate project		
Primary influent pump station (new)	\$4,960,000		
Primary clarifiers	\$5,650,000		
Aeration basins (new)	\$18,070,000		
Aeration basins (retrofit of existing)	\$5,190,000		
Secondary clarifiers	\$6,460,000		
Tertiary treatment processes	\$12,280,000		
Supplemental carbon addition facilities	\$680,000		
Sidestream P removal system	\$4,670,000		
Total \$57,960,000			

4.1.4 Estimated 20-Year Cost

To provide an estimate of the 20-year cost of this option, several assumptions must be made regarding the annual operating cost shown in Table 4-1.

First, the 2030 average annual flows and loads are approximately double the current average annual flows and loads. Therefore, the current annual operating cost would be approximately \$1,020,000 for this plant configuration. By knowing the average operating cost today and in 2030, we can approximate the average operating cost for a 20-year life cycle. This cost is estimated to be about \$1,760,000 per year, or \$35,200,000 over the 20-year period (in 2015 dollars).

Adding this value to the capital cost of construction of \$58 million gives an approximate 20-year cost for this option of \$93 million.

4.2 5-Stage Bardenpho with Sidestream P Removal and Centrate Load Equalization

The second of the final options evaluated in detail was the 5-stage Bardenpho process with sidestream P removal and centrate load equalization. As with the previous option, this option was evaluated for operation under summer maximum month conditions to determine if sizing for winter conditions was adequate for summer operation.

Based on the BioWin simulation results, it was determined that for summer conditions, the average SRT could be reduced significantly from winter conditions (from 12 days down to 6 days) and still maintain adequate nitrification. Further, the reduced SRT resulted in reduced MLSS concentration in the basins, which allowed for at least one basin (of the same 0.6 Mgal size as current) to be taken out of service for summer maximum month conditions. This allows for necessary redundancy and routine maintenance. Based on these results, the size of basins was determined during winter simulations presented in Section 3. Results of summer BioWin simulations for the 5-stage Bardenpho option with sidestream P removal and centrate load equalization are presented in Appendix C.

4.2.1 Layout

Based on summer maximum month and winter maximum month simulation results, a layout of plant expansion to meet the 2030 projected conditions discussed in Section 1 was completed. This layout is shown in Figure 4-2.

Secondary Treatment Alternatives Evaluation

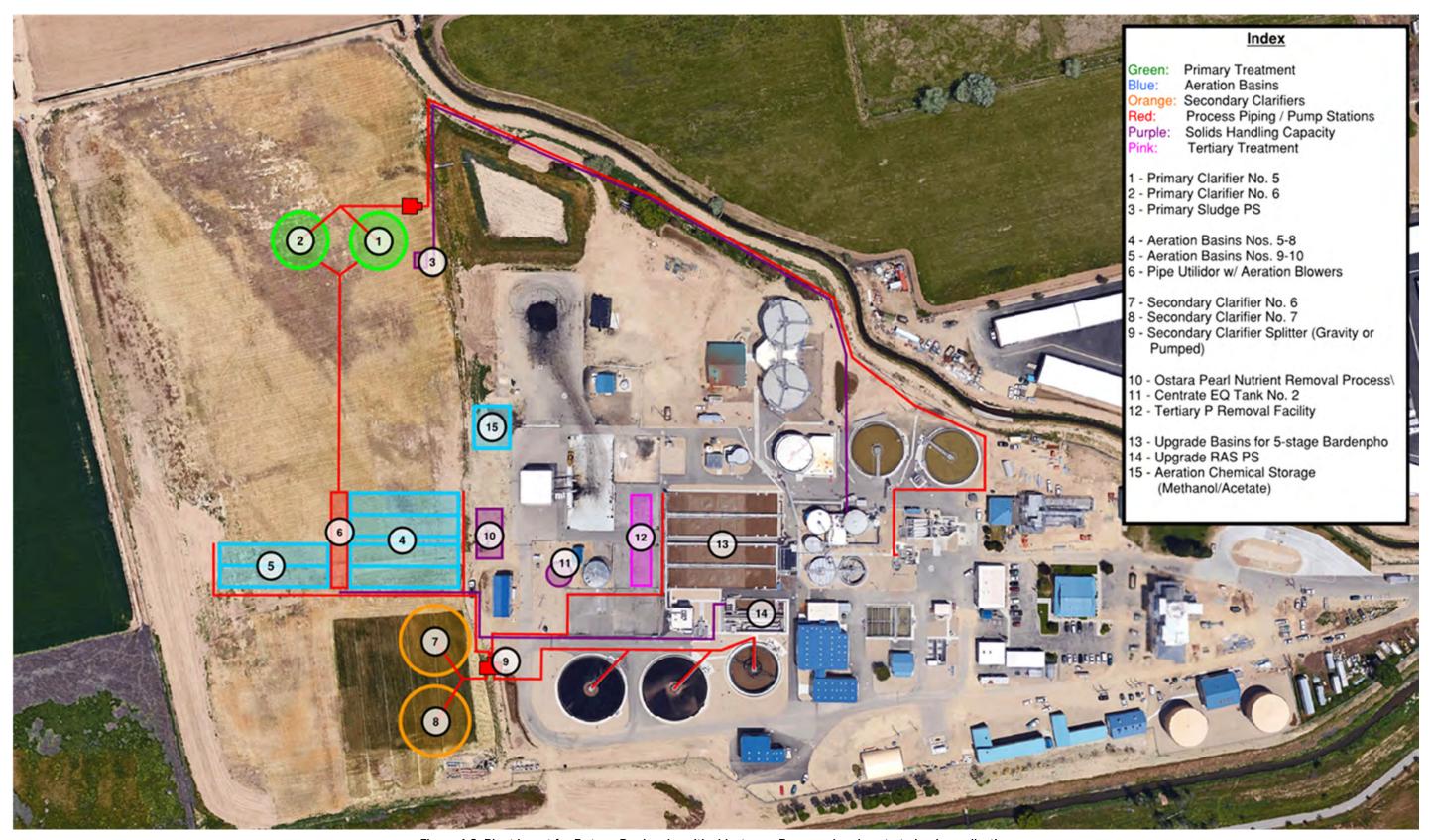


Figure 4-2. Plant layout for 5-stage Bardenpho with sidestream P removal and centrate load equalization

As can be seen on this figure, the layout is exactly the same as that shown in Figure 4-1 for the previous option, with one exception. This option shows an additional centrate storage tank constructed immediately to the east of the existing centrate storage/EQ tank. This additional tank is necessary to provide redundancy for the existing tank should centrate load equalization be used. All additional unit processes shown on the figure are included in the cost estimate.

4.2.2 2030 Average Annual Operating Costs

In addition to conducting BioWin simulations at the winter and summer maximum month flow and load conditions, simulations were conducted for the 2030 average annual conditions in order to determine the average yearly operating cost for each option evaluated in detail in this section. These simulations were conducted under steady-state conditions, as discussed in Section 4.1.2. Table 4-3 presents the results of the average annual operating costs based on these simulations. Detailed results of these simulations are presented in Appendix C. The following assumptions were used to develop these costs:

electricity: \$0.069/kWh

biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)

methanol (99 percent solution): \$2.25/gal

aeration energy demand: 30 kWh/scfm/month

alum (P removal chemical): \$1.22/galActiflo operating costs: \$7,000/month

operation of struvite recovery facility: \$15,000/average month

Table 4-3. 2030 Average Monthly Operating Costs for 5-Stage Bardenpho with Sidestream P Removal and Centrate Load Equalization				
Parameter	Quantity	Unit Cost	Total (2015 dollars)	
Methanol	12,000 gal	\$2.25/gal	\$27,000	
Acetate (80% solution of acetic acid)	34 ton	\$0.74/lb	\$50,300	
Process aeration	436,000 kWh (14,520 scfm)	\$0.069/kWh	\$30,100	
Actiflo monthly cost	-	-	\$7,000	
Sidestream P removal monthly cost	-	-	\$15,000	
Biosolids hauling	1,020 wet ton	\$5.933/wet ton	\$11,300	
P removal chemical	24,000 gal	\$1.22/gal	\$29,000	
Total			\$170,000	

As can be seen from this table, the 2030 average monthly cost for operating the 5-stage Bardenpho system with sidestream P removal and centrate load equalization is approximately \$170,000, or \$2,040,000 per year. This operating cost is approximately the same as determined for the summer operating conditions for the 5-stage Bardenpho option without the centrate storage tank. Therefore, while some benefit was observed in installing a centrate load EQ tank in Section 3, this did not translate to reduced operating cost under average annual conditions.

4.2.3 Capital Cost

An AACE Class 5 capital cost estimate was prepared for the 5-stage Bardenpho with sidestream P removal and centrate load equalization alternative. The breakdown of the costs is presented in Table 4-4. The detailed cost estimate for all options is presented in Appendix D.

Table 4-4. Capital Construction Cost for 5-Stage Bardenpho with Sidestream P Removal and Centrate Load Equalization			
Area	Cost (2015 dollars)		
Headworks upgrade	Not estimated/separate project		
Primary influent pump station (new)	\$4,960,000		
Primary clarifiers	\$5,650,000		
Aeration basins (new)	\$18,070,000		
Aeration basins (retrofit of existing)	\$5,190,000		
Secondary clarifiers	\$6,460,000		
Tertiary treatment processes	\$12,330,000		
Supplemental carbon addition facilities	\$680,000		
Sidestream P removal system	\$4,660,000		
Centrate storage tank	\$720,000		
Total \$58,700,000			

4.2.4 Estimated 20-Year Cost

To provide an estimate of the 20-year cost of this option, several assumptions must be made regarding the annual operating cost shown in Table 4-3.

First, the 2030 average annual flows and loads are approximately double the current average annual flows and loads. Therefore, the current annual operating cost would be approximately \$1,020,000 for this plant configuration. By knowing the average operating cost today and in 2030, we can approximate the average operating cost for a 20-year life cycle. This cost is estimated to be about \$1,760,000 per year, or \$35,200,000 over the 20-year period (in 2015 dollars).

Adding this value to the capital cost of construction of \$59 million gives an approximate 20-year cost for this option of \$94 million.

4.3 5-Stage Bardenpho with MBR Solids Separation

The final option evaluated in detail was the 5-stage Bardenpho process modified for MBR as the solids separation. As with the previous options, this option was evaluated for operation under summer maximum month conditions to determine if sizing for winter conditions was adequate for summer operation.

Again, for summer conditions the average SRT could be reduced significantly from winter conditions (from 12 days down to 6 days) and still maintain adequate nitrification. Further, the reduced SRT resulted in reduced MLSS concentration in the basins, which allowed for at least one basin (of the same 0.6 Mgal size as current) to be taken out of service for summer maximum month conditions. This allows for necessary redundancy and routine maintenance. Based on these results, the size of basins was determined during winter simulations presented in Section 3. Results of summer BioWin simulations for the 5-stage Bardenpho option with MBR are presented in Appendix C.

4.3.1 Layout

Based on summer maximum month and winter maximum month simulation results, a layout of plant expansion to meet the 2030 projected conditions discussed in Section 1 was completed. This layout is shown in Figure 4-3.

Secondary Treatment Alternatives Evaluation

Figure 4-3. Plant layout for 5-stage Bardenpho with MBR

Brown AND Caldwell

As can be seen on this figure, the layout shows a significant departure from the other options evaluated. First, only one additional aeration tank is constructed. This is because the MBR can have significant footprint savings due to its ability to operate at a much higher MLSS concentration. Second, it easy to notice that there are no secondary clarifiers, but only an MBR building. This is because the MBR is taking the place of the clarifiers for solids/liquids separation. Lastly, no tertiary treatment systems are shown on these drawings. This is because the MBR takes the place of tertiary treatment technologies and the P removal chemical can be added directly to the flow into the MBR. All additional unit processes shown on the figure are included in the cost estimate.

4.3.2 2030 Average Annual Operating Costs

In addition to conducting BioWin simulations at the winter and summer maximum month flow and load conditions, simulations were conducted for the 2030 average annual conditions in order to determine the average yearly operating cost for each option evaluated in detail in this section. These simulations were conducted under steady-state conditions, as discussed in Section 4.1.2. Table 4-5 presents the results of the average annual operating costs based on these simulations. Detailed results of these simulations are presented in Appendix C. The following assumptions were used to develop these costs:

electricity: \$0.069/kWh

biosolids hauling and application: \$5.933/wet ton (assuming 20 percent cake solids)

methanol (99 percent solution): \$2.25/gal

aeration energy demand: 30 kWh/scfm/month

alum (P removal chemical): \$1.22/galActiflo operating costs: \$7,000/month

operation of struvite recovery facility: \$15,000/average month

Table 4-5. 2030 Average Annual Operating Costs for 5-Stage Bardenpho with MBR				
Parameter	Quantity	Unit Cost	Total (2015 dollars)	
Methanol	10,650 gal	\$2.25/gal	\$24,000	
Acetate	219 tons	\$0.74/lb	\$325,000	
Sodium hypochlorite	886 gal	\$1.54/gal	\$1,400	
Citric acid	693 gal	\$5.49/gal	\$3,800	
Membrane replacement cost	2,688 modules	\$1,050/module	\$24,000	
Membrane auxiliary system	83,417 kWh	\$0.069/kWh	\$5,800	
	667,000 kWh			
Process aeration	(22,220 scfm)	\$0.069/kWh	\$46,000	
Biosolids hauling	1,900 wet tons	\$5.933/wet ton	\$11,000	
P removal chemical	24,000 gal	\$1.22/gal	\$29,000	
Total			\$470,000	

As can be seen from this table, the 2030 average monthly cost for operating the 5-stage Bardenpho system with MBR is approximately \$470,000, or \$5,640,000 per year. This operating cost is significantly higher than the other two options. This increase in operating cost is due to the higher demands for chemicals, especially acetate, to drive nutrient removal processes. Further, additional maintenance costs are associated with the membrane system that are not required for the other options. Though the costs for tertiary treatment are not required in this option, the cost for

maintaining the membranes themselves appears to be higher than the cost for maintaining the tertiary treatment systems described in the other options.

4.3.3 Capital Cost

An AACE Class 5 capital cost estimate was prepared for the 5-stage Bardenpho with MBR alternative. The breakdown of the costs is presented in Table 4-6. The detailed cost estimate for all options is presented in Appendix D. The capital costs for this option are significantly lower than the other options, mainly due to the smaller footprint and requirement for less aeration basin volume and no secondary clarifiers.

Table 4-6. Capital Construction Cost for 5-Stage Bardenpho with MBR			
Area	Cost (2015 dollars)		
Headworks upgrade	Not estimated/separate project		
Primary influent pump station (new)	\$3,230,000		
Primary clarifiers	\$5,650,000		
Aeration basins (new)	\$5,930,00		
Aeration basins (retrofit of existing)	\$5,580,000		
MBR treatment system	\$22,660,000		
Secondary clarifiers	\$0		
Tertiary treatment processes	\$230,000		
Supplemental carbon addition facilities	\$680,000		
Total	\$43,960,000		

4.3.4 Estimated 20-Year Cost

To provide an estimate of the 20-year cost of this option, several assumptions must be made regarding the annual operating cost shown in Table 4-3.

First, the 2030 average annual flows and loads are approximately double the current average annual flows and loads. Therefore, the current operating cost would be approximately \$2,820,000 annually for this plant configuration. By knowing the average operating cost today and in 2030, we can approximate the average operating cost for a 20-year life cycle. This cost is estimated to be about \$4,860,000 per year, or \$97,200,000 over the 20-year period (in 2015 dollars).

Adding this value to the capital cost of construction of \$44 million gives an approximate 20-year cost for this option of \$141 million.

4.4 Final Recommendation

Based on the results of this evaluation, the MBR option remained the lowest capital cost option at \$44 million compared with \$57 million and \$58 million for the other two options. However, factoring in the estimates for annual operating cost differences between the options makes the MBR option far more expensive over a 20-year life cycle compared with the other two options (\$141 million versus less than \$95 million).

Therefore, the recommendation is to upgrade the facility using the 5-stage Bardenpho process with sidestream P removal, according to the lowest capital and operating cost option presented above. This option also presents the most flexible option for operation of the facility, as it can be designed to operate as either a 5-stage Bardenpho process or an A20 process. It can also be designed to operate as a 4-stage Bardenpho or Modified Ludzack-Ettinger process, should the City decide to go to N removal only for groundwater recharge discharge.

If the City would like to replace or add redundancy for its currently aging centrate storage tank, we would recommend building a new centrate storage tank and sizing the centrate pumps for centrate load equalization, which adds approximately \$720,000 to the overall construction cost and provides the benefit of reducing peak month chemical use.

Section 5

Limitations

This document was prepared solely for City of Meridian in accordance with professional standards at the time the services were performed and in accordance with the contract between City of Meridian and Brown and Caldwell dated October 1, 2014. This document is governed by the specific scope of work authorized by City of Meridian; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by City of Meridian and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

This document sets forth the results of certain services performed by Brown and Caldwell with respect to the property or facilities described therein (the Property). [Client] recognizes and acknowledges that these services were designed and performed within various limitations, including budget and time constraints. These services were not designed or intended to determine the existence and nature of all possible environmental risks (which term shall include the presence or suspected or potential presence of any hazardous waste or hazardous substance, as defined under any applicable law or regulation, or any other actual or potential environmental problems or liabilities) affecting the Property. The nature of environmental risks is such that no amount of additional inspection and testing could determine as a matter of certainty that all environmental risks affecting the Property had been identified. Accordingly, THIS DOCUMENT DOES NOT PURPORT TO DESCRIBE ALL ENVIRONMENTAL RISKS AFFECTING THE PROPERTY, NOR WILL ANY ADDITIONAL TESTING OR INSPECTION RECOMMENDED OR OTHERWISE REFERRED TO IN THIS DOCUMENT NECESSARILY IDENTIFY ALL ENVIRONMENTAL RISKS AFFECTING THE PROPERTY.

Further, Brown and Caldwell makes no warranties, express or implied, with respect to this document, except for those, if any, contained in the agreement pursuant to which the document was prepared. All data, drawings, documents, or information contained in this report have been prepared exclusively for the person or entity to whom it was addressed and may not be relied upon by any other person or entity without the prior written consent of Brown and Caldwell unless otherwise provided by the Agreement pursuant to which these services were provided.

Section 6

References

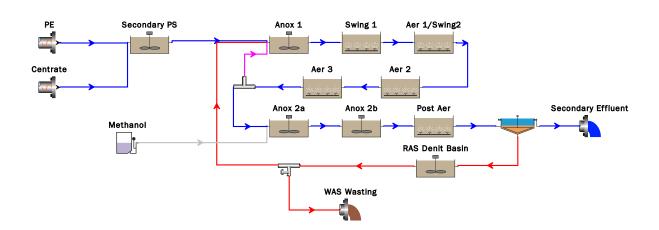
- Tebbutt, T. H. Y and D. G. Christoulas (1975). "Performance relationships for primary sedimentation," Water Research, 9, 347–356.
- Wahlberg, E. J., and Keinath, T. M. (1988). Development of settling flux curves using SVI. Journal of the Water Pollution Control Federation 60(12): 2095–2100.
- Wahlberg, E. J., J. L. Morris, W. H. Kido, R. S. Swanson, D. Finger, D. A. Philips (1997). "Primary Sedimentation: It's Performing Better Than You Think," Proceedings of the Water Environment Federation 70th Annual Conference & Exposition.

Appendix A: BioWin Modeling Results from Main Process Alternatives Evaluation

BioWin user and configuration data

Project details

Project name: COM Capacity Assessment Project ref.: 147104.070.****


Plant name: Meridian WWTP User name: Zach Dobroth

Created: 6/29/2011 Saved: 7/6/2015

Target SRT: 14.00 days SRT: **** days

Temperature: 14.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Anox 1	1.2500	1.194E+4	14.000	Un-aerated
Anox 2b	0.5000	4774.3058	14.000	Un-aerated
Swing 1	0.5000	4774.3058	14.000	1623
Aer 1/Swing2	0.5000	4774.3058	14.000	1623
Aer 2	1.0000	9548.6117	14.000	3245
Aer 3	1.0000	9548.6117	14.000	3245
Anox 2a	0.5000	4774.3058	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Post Aer	0.5000	4527.2475	14.764	1026

Operating data Average (flow/time weighted as required)

Element name	Average DO Setpoint [mg/L]
Anox 1	0
Anox 2b	0
Swing 1	2.0
Aer 1/Swing2	3.6
Aer 2	2.0
Aer 3	2.0
Anox 2a	0
Secondary PS	0
RAS Denit Basin	0

Post Aer	2.0	

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Anox 1	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 2b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 1/Swing2	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 2a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Post Aer	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Operating data Average (flow/time weighted as required)

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0

Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	1188000.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0

Struvite mgISS/L	0	
Hydroxy-dicalcium-phosphate mglSS/L	0	
Hydroxy-apatite mgISS/L	0	
Magnesium mg/L	0	
Calcium mg/L	0	
Metal mg/L	0	
Other Cations (strong bases) meq/L	0	
Other Anions (strong acids) meq/L	0	
Total CO2 mmol/L	0	
User defined 1 mg/L	0	
User defined 2 mg/L	0	
User defined 3 mgVSS/L	0	
User defined 4 mg/SS/L	0	
Dissolved oxygen mg/L	0	
Flow	0.000600000739681704	

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.9670	2.880E+4	13.770

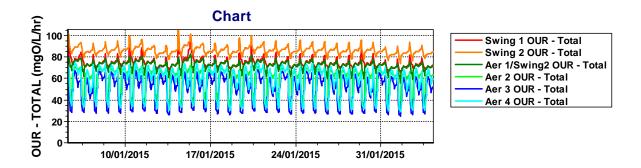
Operating data Average (flow/time weighted as required)

Element name	Split method	Average Split specification
Clarifier	Flow paced	70.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

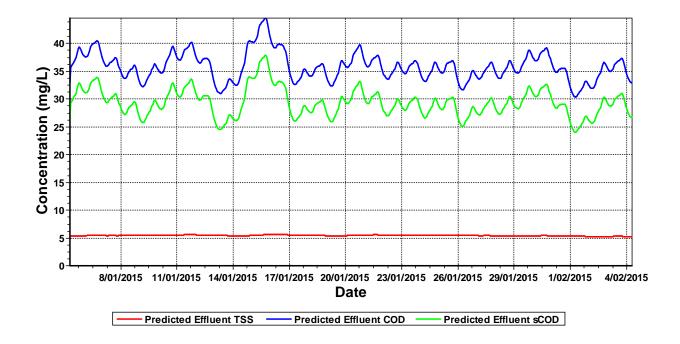
Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	12.4611703212226	0.100114816828393
Total COD mgCOD/L	416.48	1801.80
Total Kjeldahl Nitrogen mgN/L	54.01	934.39
Total P mgP/L	8.12	529.81
Nitrate N mgN/L	0	0
рН	7.95	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.43	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

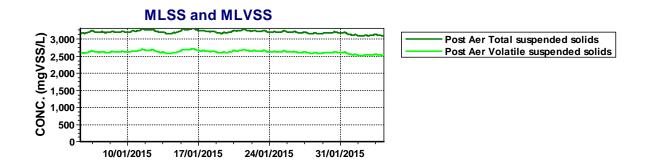

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9400
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0146
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0642
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

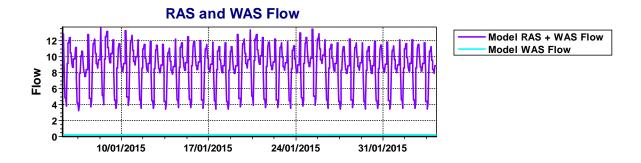
Configuration information for all Sludge units

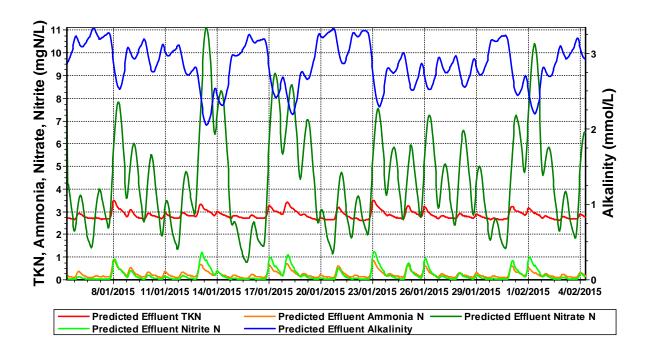
Configuration information for all Splitter units


Element name	Split method	Average Split specification
IMLR	Flow paced	400.00 %
RAS / WAS	Flowrate [Side]	0.17081228917571

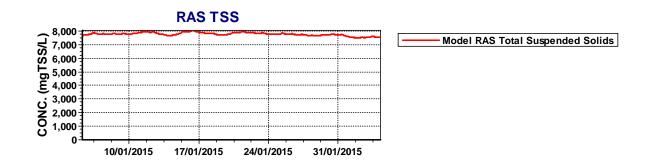
Album page - OURs

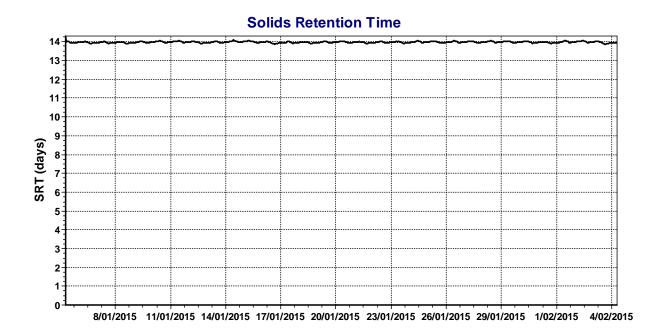


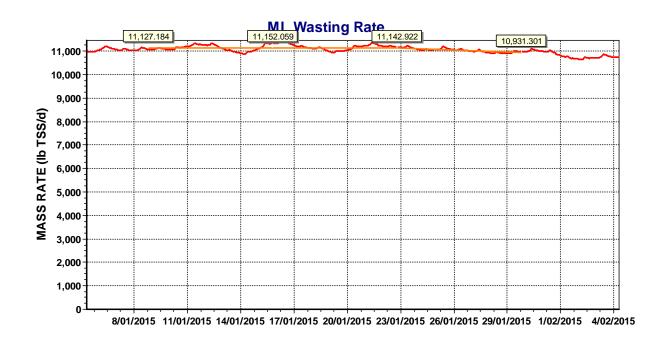

Album page - OURs



Album page - Mixed Liquor, RAS Flow




Album page - Nitrogen Sp., Alkalinity



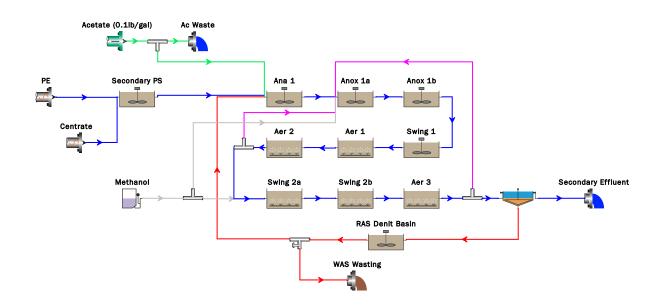
Album page - TP, RAS TSS

Album page - WAS Mass

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Rick Kelly

Created: 6/29/2011 Saved: 3/31/2015

Target SRT: 12.00 days SRT: **** days

Temperature: 14.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.5000	4774.3058	14.000	Un-aerated
Aer 1	1.5000	1.432E+4	14.000	4868
Aer 2	2.0000	1.910E+4	14.000	6491
Swing 2a	0.7500	7161.4587	14.000	2434
Aer 3	0.5000	4774.3058	14.000	1623
Anox 1a	0.3750	3580.7294	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.3750	3580.7294	14.000	Un-aerated
Swing 1	0.5000	4774.3058	14.000	Un-aerated
Swing 2b	0.7500	7161.4587	14.000	1623

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1	2.5
Aer 2	2.0
Swing 2a	2.0
Aer 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0
Anox 1b	0
Swing 1	0

Swing 2b	2.0	

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	15.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0

Angershie gramania guidinare (AAO) == 2000 //	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0

ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

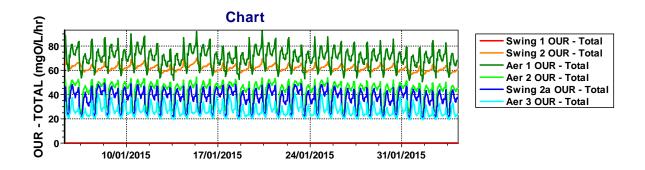
Element name	PE	Centrate
Time	30.00	30.00
Flow	12.461167588271	0.100114816828393
Total COD mgCOD/L	416.48	1801.80
Total Kjeldahl Nitrogen mgN/L	54.01	934.39
Total P mgP/L	8.12	529.81
Nitrate N mgN/L	0	0
рН	7.95	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.43	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0642
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

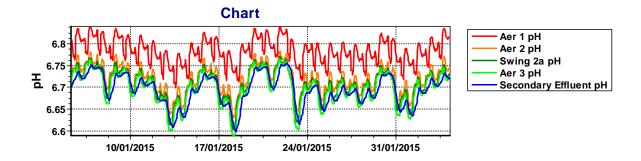
Configuration information for all Sludge units

Configuration information for all Splitter units

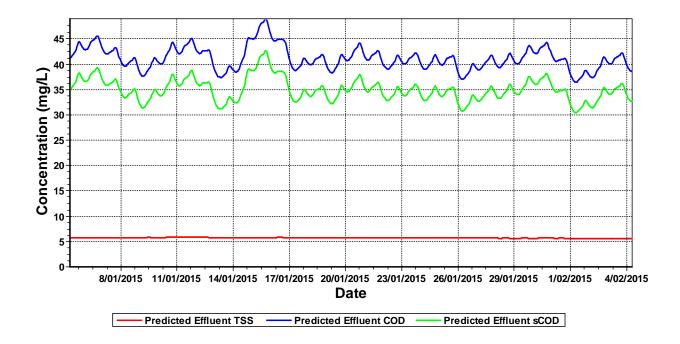
Element name	Split method	Average Split specification
BDF IMLR	Flow paced	0.00 %
RAS / WAS	Flowrate [Side]	0.200282928951046
Acetate Splitter	Flow paced	0.60 %
Splitter21	Fraction	1.00
A20 IMLR	Flow paced	400.00 %

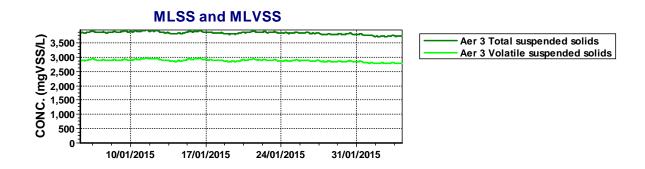

Configuration information for all Stream (SV) Influent units

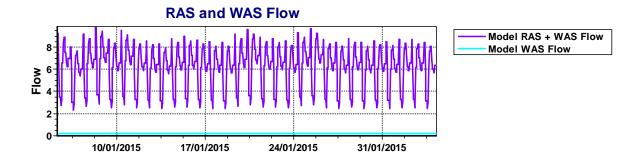
Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0

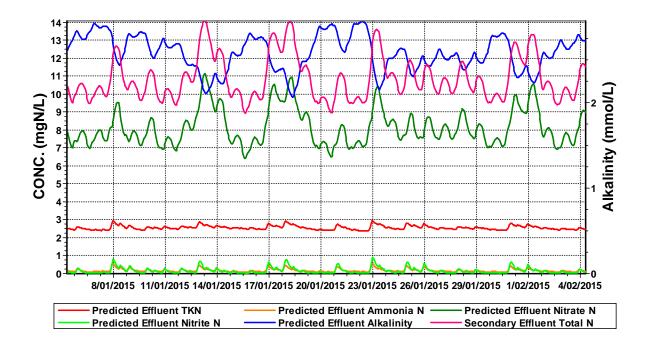

Stored DHA mgCOD/I	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0

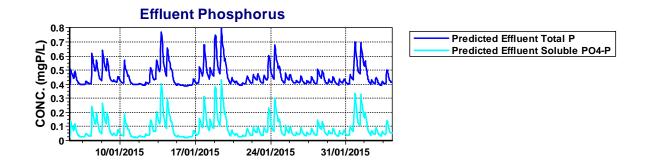
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

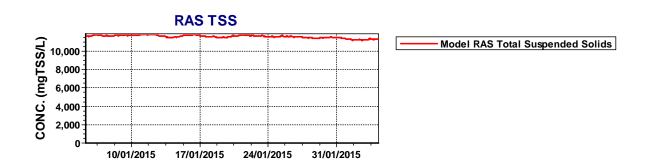

Album page - OURs


Album page - OURs

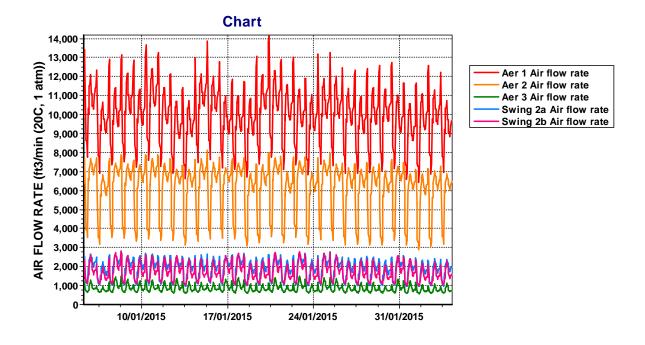

Album page - TSS, COD, BOD

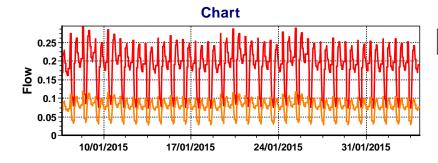

Album page - Mixed Liquor, RAS Flow


Album page - Mixed Liquor, RAS Flow


Album page - Nitrogen Sp., Alkalinity

Album page - TP, RAS TSS


Album page - TP, RAS TSS


Album page - WAS Mass

Album page - Air Flow Rate

Album page - Page 16

Methanol Splitter Flow (U) Acetate Splitter Flow (U)

Meridian Alternative's Analysis version 1

Expansion using selectable 5 stage modified Bardenpho/A2O process

Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

To achieve target effluent concentrations, for Bardenpho process:

Set BDF IMLR at 200% influent, Set A2O IMLR at 0% Set Swing 1 Aerated, Swing 2a and 2b unaerated.

SRT = 12 days

Acetate flow pace at 0.8% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. All methanol to swing 2a

$\frac{\text{To achieve target effluent concentrations, for A2O process:}}{\text{Set BDF IMLR at }0\% \text{ influent, Set A2O IMLR at }400\%$

Set Swing 1 unaerated, Swing 2a and 2b aerated.

SRT = 12 days

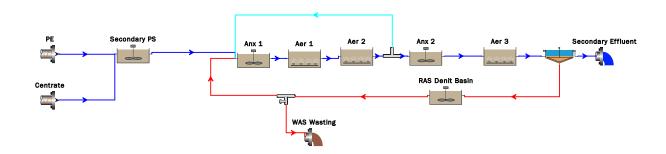
Acetate flow pace at 0.6% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 1.5% of PE flow rate, 1% methanol solution. all methanol to Anoxic 1a

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Pusker Regmi

Created: 6/29/2011 Saved: 4/3/2015

Target SRT: 13.00 days SRT: **** days

Temperature: 15.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Anx 1	0.5000	4774.3058	14.000	Un-aerated
Aer 1	1.5000	1.432E+4	14.000	4868
Anx 2	1.0000	9548.6117	14.000	Un-aerated
Aer 3	0.5000	4774.3058	14.000	1623
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Aer 2	1.5000	1.358E+4	14.764	3078

Operating data Average (flow/time weighted as required)

Element name	Average DO Setpoint [mg/L]
Anx 1	0
Aer 1	0.5
Anx 2	0
Aer 3	2.0
Secondary PS	0
RAS Denit Basin	0
Aer 2	0.3

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Anx 1	2.5656	0.0432	0.8200	0.4413	10.0000

Aer 1	2.5656	0.0432	0.8200	0.4413	15.0000
Anx 2	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.1300	2.068E+4	13.770

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

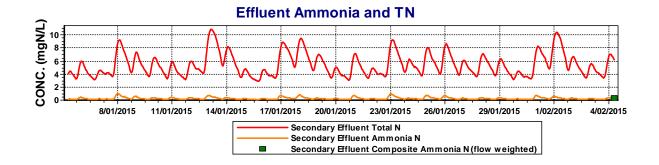
Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	12.461167588271	0.100114816828393
Total COD mgCOD/L	416.48	1801.80
Total Kjeldahl Nitrogen mgN/L	54.01	934.39
Total P mgP/L	8.12	529.81
Nitrate N mgN/L	0	0
рH	7.95	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.43	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

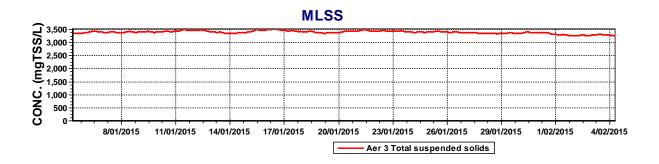
Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5940
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0391
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9930
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3196
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5080
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0140
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0350
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300

FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0642
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

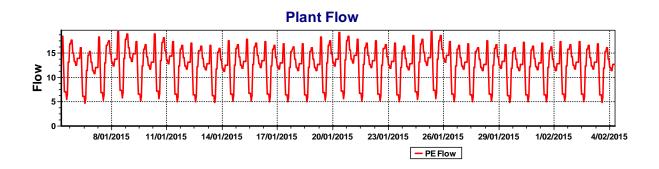
Configuration information for all Sludge units

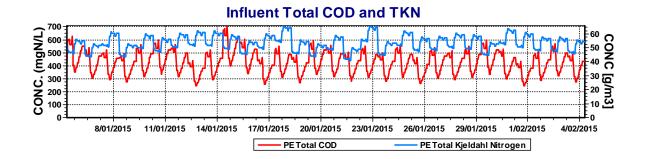

Configuration information for all Splitter units

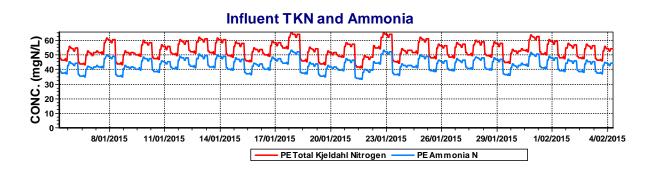
Operating data Average (flow/time weighted as required)

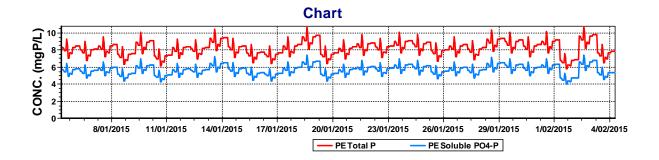

Element name	Split method	Average Split specification
IMLR	Flow paced	300.00 %
RAS / WAS	Flowrate [Side]	0.129545329729831

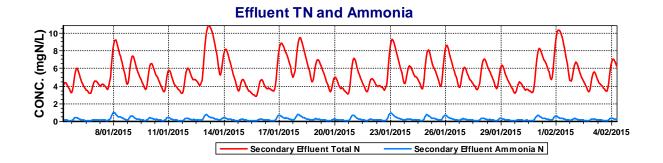
BioWin Album

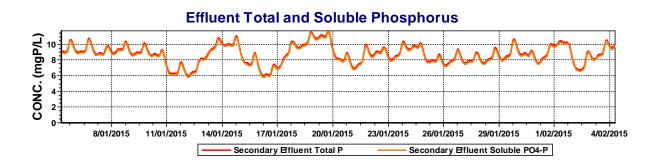

Album page - Main Parameters

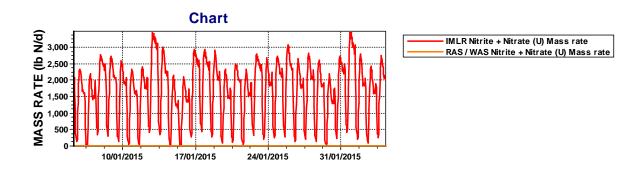

Album page - Main Parameters


Album page - Inf Flow/COD/TKN

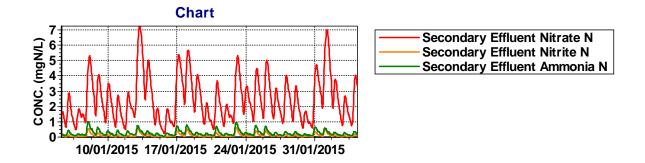

Album page - Inf Flow/COD/TKN


Album page - Influent N/P

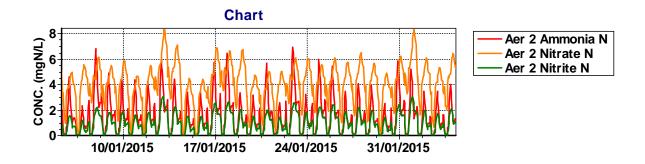

Album page - Influent N/P


Album page - Effluent N/P

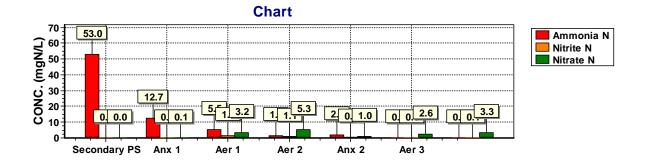
Album page - Effluent N/P



Album page - Page 6



Album page - Page 6


Album page - Page 7

Album page - Page 7

Album page - Page 8

Album page - Page 8

Switches

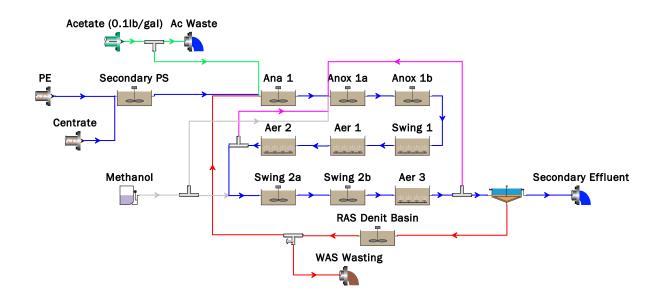
Name	Default	Value
Aerobic/anoxic DO half sat. [mgO2/L]	0.0500	0.3000
Anoxic/anaerobic NOx half sat. [mgN/L]	0.1500	0.1500
AOB DO half sat. [mgO2/L]	0.2500	0.1500
NOB DO half sat. [mgO2/L]	0.5000	0.1500
AAO DO half sat. [mgO2/L]	0.0100	0.0100
Anoxic NO3(->NO2) half sat. [mgN/L]	0.1000	0.1000
Anoxic NO3(->N2) half sat. [mgN/L]	0.0500	0.0500
Anoxic NO2(->N2) half sat. (mgN/L)	0.0100	0.0200
NH3 nutrient half sat. [mgN/L]	0.0050	0.0050
PolyP half sat. [mgP/mgCOD]	0.0100	0.0100
VFA sequestration half sat. [mgCOD/L]	5.0000	5.0000
P uptake half sat. [mgP/L]	0.1500	0.1500
P nutrient half sat. [mgP/L]	0.0010	0.0010
Autotroph CO2 half sat. [mmol/L]	0.1000	0.1000
H2 low/high half sat. [mgCOD/L]	1.0000	1.0000
Propionic acetogens H2 inhibition [mgCOD/L]	5.0000	5.0000
Synthesis anion/cation half sat. [meq/L]	0.0100	0.0100

Appendix B: BioWin Modeling Results from Add-On Process Alternatives Evaluation

BioWin user and configuration data

Project details

Project name: Alternatives Analysis - Biomag Project ref.: 147571


Plant name: Meridian WWTP User name: H Melcer

Created: 6/29/2011 Saved: 7/17/2015

Target SRT: 12.00 days SRT: **** days

Temperature: 14.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.5000	4774.3058	14.000	Un-aerated
Aer 1	0.8200	7829.8616	14.000	2661
Aer 2	1.1000	1.050E+4	14.000	3570
Swing 2a	0.4200	4010.4169	14.000	Un-aerated
Aer 3	0.2800	2673.6113	14.000	909
Anox 1a	0.1900	1814.2362	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.1900	1814.2362	14.000	Un-aerated
Swing 1	0.2700	2578.1251	14.000	584
Swing 2b	0.4200	4010.4169	14.000	Un-aerated

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1	2.5
Aer 2	2.0
Swing 2a	0
Aer 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0
Anox 1b	0
Swing 1	2.0
Swing 2b	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	15.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0

Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mglSS/L	0
Hydroxy-apatite mgISS/L	0

Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	12.461167588271	0.100114816828393
Total COD mgCOD/L	416.48	1801.80
Total Kjeldahl Nitrogen mgN/L	54.01	934.39
Total P mgP/L	8.12	529.81
Nitrate N mgN/L	0	0
рН	7.95	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.43	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050

FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0642
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

Configuration information for all Splitter units

Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.08
Acetate Splitter	Flow paced	0.80 %
Splitter21	Flowrate [Side]	0
A20 IMLR	Flow paced	0.00 %

Configuration information for all Stream (SV) Influent units

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0

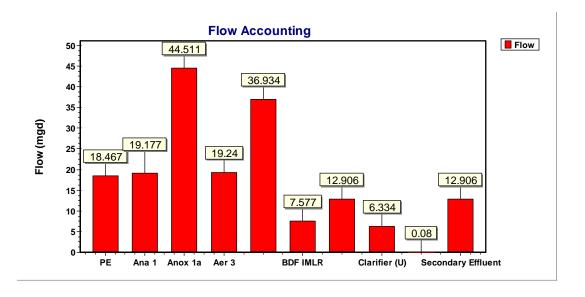
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mg/SS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

BioWin Album

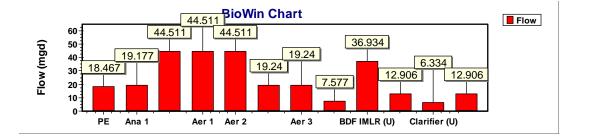
Album page - Table

Anox 1a Ana 1 8206.81 8316.07	Anox 1a 8206.81
565.98 44.51	557.10 565.98 44.51 44.51
0	2.50 0
7763.89	7807.71 7763.89
5567.94	5559.09 5567.94
1.38	1.31 1.38
16.90	6.81 16.90
1.41	3.60 1.41
12.35	17.82 12.35
580.10	579.95 580.10
31.84	14.75 31.84
0.25	0.00 0.25
123.69	124.39 123.69
117.54	118.40 117.54
1.27	1.27 1.27
2328.46	2332.70 2328.4
0.21	0.21 0.21
90.0	90.0 90.0
696.83	696.14 696.83
64.08	64.42 64.08
2489.68	2502.14 2489.6
1753.71	1761.66 1753.7
0.25	0.24 0.25
12310.64	53429.96 12310.
0.00	0.00 00.00

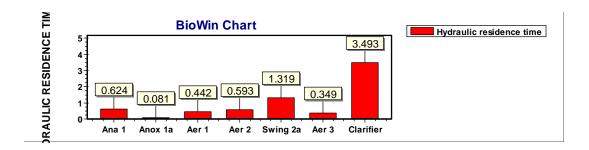
RAS / WAS	RAS / WAS	Clarifier (U)	Clarifier	Secondary	BDF IMLR (U)
24402.75	24402.75	24409.74	47.18	47.18	8131.92
1662.92	1662.92	1663.04	2.67	2.67	551.75
0.08	6.25	6.33	12.91	12.91	36.93
0	0	0.00	1.69	1.69	2.00
23660.81	23660.81	23673.34	11.60	11.60	7838.26
16734.26	16734.26	16740.82	8.19	8.19	5550.99
0.16	0.16	0.41	0.89	0.89	1.12
1.83	1.83	1.40	0.12	0.12	0.97
0.00	0.00	0.04	0.05	0.05	2.75
0.03	0.03	0.89	11.21	11.21	23.88
1751.82	1751.82	1752.04	0.92	0.92	579.81
1.91	1.91	0.33	0.05	0.05	2.20
0.08	0.08	0.03	0.00	0.00	00:00
375.09	375.09	375.31	0.18	0.18	124.87
356.34	356.34	356.67	0.17	0.17	118.77
3.82	3.82	3.82	0.00	0.00	1.27
7098.54	7098.54	7095.80	3.53	3.53	2336.53
09:0	09:0	09:0	0.00	0.00	0.21
0.14	0.14	0.14	0.00	0.00	90:0
2144.15	2144.15	2144.87	1.05	1.05	695.52
194.28	194.28	194.45	0.10	0.10	64.75
7545.79	7545.79	7555.56	3.71	3.71	2508.96
5328.22	5328.22	5330.59	2.60	2.60	1767.04
0.70	0.70	0.70	0.00	0.00	0.24
	1		38974.54		
0.00	0.00	0.00	0.00	0.00	0.00

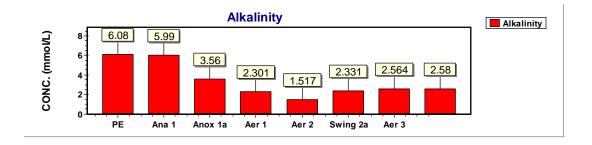

Album page - Output Table 1

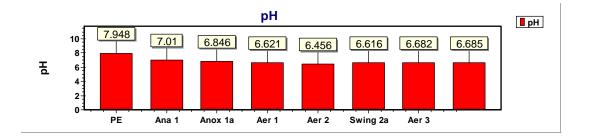
Elements	Flow [mgd]	Liquid	Temperature	[] Hd	Total	Volatile	Total COD	Filtered COD	Volatile fatty	Total	Readily bio.	Slowly bio.	Slowly bio.	Sol. inert	Total	Ammonia N	Nitrite N	Nitrate N	Total	Total N	Total P	Soluble PO4-	Air flow rate	Polyphospha	Ammonia	Nitrite	Ordinary	Methanol
PE	18.47	0	14.00	7.95	138.42	129.64	595.58	310.67	30.07	339.16	152.18	87.92	278.42	40.50	47.74	38.67	0	0	38.67	47.74	8.30	5.73	-	90.0	90.0	90.0	90.0	0
Secondary	12.82	0.04	14.00	7.95	112.41	97.14	449.80	236.31	22.12	253.85	121.80	63.20	201.85	29.19	63.69	52.96	0	0	52.96	63.69	14.10	11.26	0	0.04	0.04	0.04	0.05	0


BDF IMLR (U)	BDF IMLR	Secondary	Clarifier (U)	Clarifier	Aer 3	Swing 2a	Aer 2	Aer 1	Anox 1a	Ana 1
36.93	7.58	12.91	6.33	12.91	19.24	19.24	44.51	44.51	44.51	19.18
0	0	0	2.80	2.80	0.28	0.42	1.10	0.82	0.19	0.50
14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00
6.46	6.46	89.9	6.74	6.68	6.68	6.62	6.46	6.62	6.85	7.01
7838.26	7838.26	11.60	23673.34	11.60	7810.33	7819.22	7838.26	7807.71	7763.89	7666.19
5550.99	5550.99	8.19	16740.82	8.19	5524.93	5536.40	5550.99	5559.09	5567.94	5589.48
8131.92	8131.92	47.18	24409.74	47.18	8081.78	8110.86	8131.92	8158.70	8206.81	8316.07
35.79	35.79	35.30	39.73	35.30	36.40	39.73	35.79	35.92	50.75	80.74
0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.25	6.75
2985.52	2985.52	5.22	8950.43	5.22	2959.90	2978.71	2985.52	3001.34	3020.49	3074.87
1.59	1.59	1.26	0.54	1.26	1.46	0.72	1.59	1.85	1.24	3.14
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.45	3.20
132.50	132.50	0.11	326.91	0.11	111.67	127.79	132.50	159.32	196.37	282.62
34.16	34.16	33.98	36.78	33.98	34.89	34.39	34.16	33.75	33.22	31.79
551.75	551.75	2.67	1663.04	2.67	549.39	549.91	551.75	557.10	565.98	584.81
0.97	76.0	0.12	1.40	0.12	60.0	0.54	76.0	6.81	16.90	37.78
2.75	2.75	0.05	0.04	0.05	0.02	0.40	2.75	3.60	1.41	0.00
23.88	23.88	11.21	0.89	11.21	11.10	14.41	23.88	17.82	12.35	0.00
27.60	27.60	11.39	2.33	11.39	11.21	15.35	27.60	28.23	30.66	37.78
578.38	578.38	13.94	1663.97	13.94	560.51	564.72	578.38	578.52	579.74	584.81
579.81	579.81	0.92	1752.04	0.92	577.55	577.77	579.81	579.95	580.10	580.55
2.20	2.20	0.05	0.33	0.05	0.03	1.02	2.20	14.75	31.84	70.61
					979.84	0	7461.05	8636.26	0	0
1767.04	1767.04	2.60	5330.59	2.60	1759.38	1760.15	1767.04	1761.66	1753.71	1735.65
118.77	118.77	0.17	356.67	0.17	117.81	118.17	118.77	118.40	117.54	116.00
64.75	64.75	0.10	194.45	0.10	64.23	64.42	64.75	64.42	64.08	63.26
2508.96	2508.96	3.71	7555.56	3.71	2495.52	2498.33	2508.96	2502.14	2489.68	2461.76
0.00	0.00	0.00	0.00	0.00	0.00	4.51	0.00	0.00	0.00	0.00

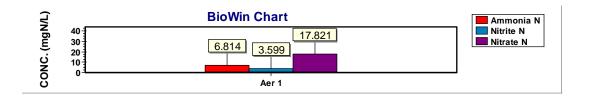
WAS Wasting	RAS / WAS	RAS / WAS	RAS Denit
0.08	0.08	6.25	6.33
0	0	0	0.07
14.00	14.00	14.00	14.00
92.9	9.76	6.76	9.76
23660.81	23660.81	23660.81	23660.81
16734.26	16734.26	16734.26	16734.26
24402.75	24402.75	24402.75	24402.75
41.33	41.33	41.33	41.33
0.08	0.08	0.08	0.08
8943.93	8943.93	8943.93	8943.93
0.14	0.14	0.14	0.14
0.00	0.00	0.00	0.00
329.30	329.30	329.30	329.30
37.11	37.11	37.11	37.11
1662.92	1662.92	1662.92	1662.92
1.83	1.83	1.83	1.83
00:00	0.00	0.00	0.00
0.03	0.03	0.03	0.03
1.87	1.87	1.87	1.87
1662.96	1662.96	1662.96	1662.96
1751.82	1751.82	1751.82	1751.82
1.91	1.91	1.91	1.91
	1		0
5328.22	5328.22	5328.22	5328.22
356.34	356.34	356.34	356.34
194.28	194.28	194.28	194.28
7545.79	7545.79	7545.79	7545.79
0.00	0.00	0.00	0.00

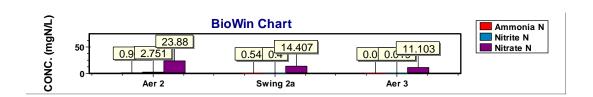

Album page - SS Flow Accounting

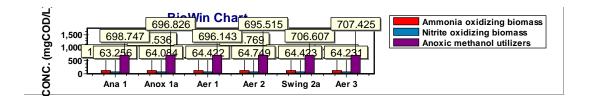

Album page - SS Flow and HRT

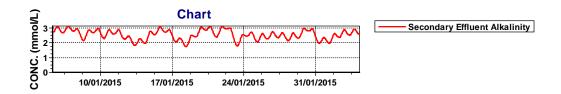

Album page - SS Flow and HRT


Album page - SS pH-Alkalinity

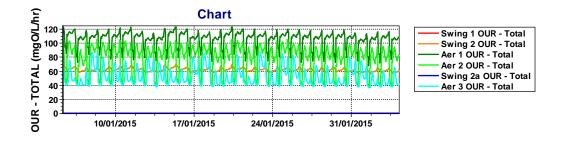

Album page - SS pH-Alkalinity


Album page - SS NH3-NO2-NO3


Album page - SS NH3-NO2-NO3


Album page - SS NH3-NO2-NO3

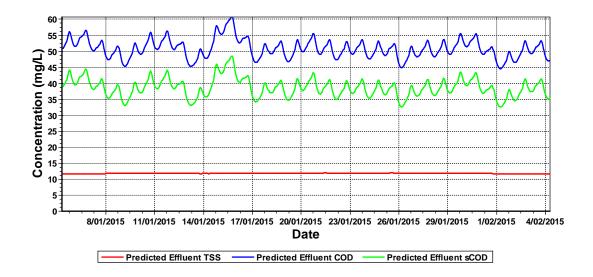
Album page - SS AOB-NOB

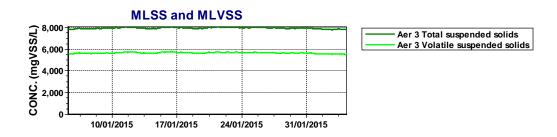


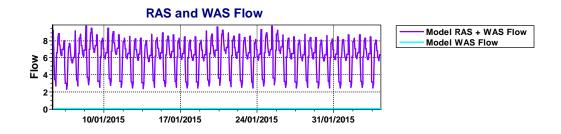
Album page - SS AOB-NOB

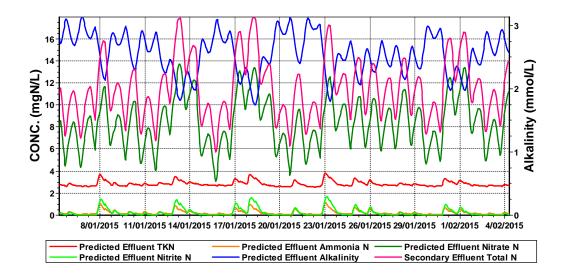


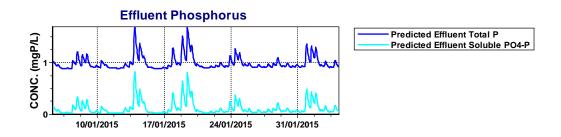
Album page - SS AOB-NOB

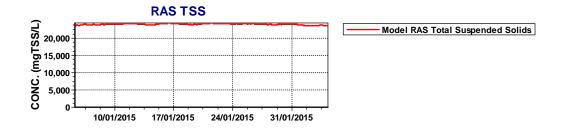

Album page - OURs

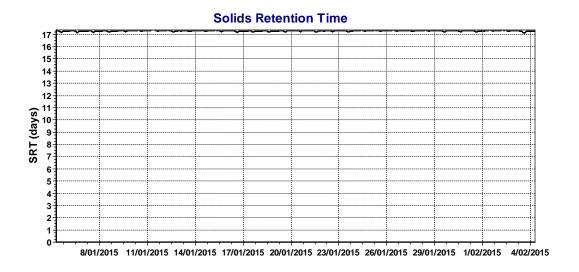

Album page - OURs

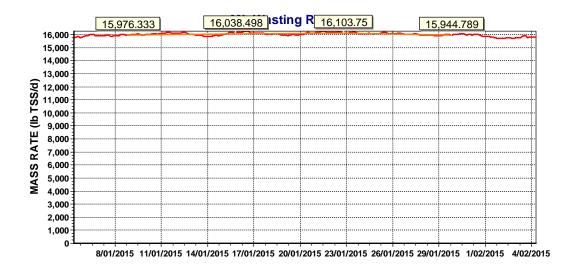

Album page - TSS, COD, BOD


Album page - Mixed Liquor, RAS Flow


Album page - Mixed Liquor, RAS Flow

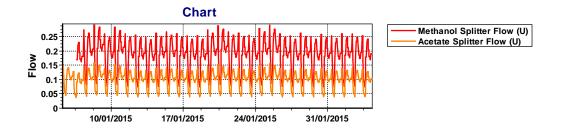

Album page - Nitrogen Sp., Alkalinity


Album page - TP, RAS TSS


Album page - TP, RAS TSS

Album page - SRT

Album page - WAS Mass


Album page - Air Flow Rate

Album page - Page 16

Elements	Air flow rate [ft3/min (20C, 1 atm)]	Flow [mgd]
Acetate Splitter (U)		0.15
Aer 1	8636.26	44.51
Aer 2	7461.05	44.51
Aer 3	979.84	19.24
Swing 2a	0	19.24
Swing 2b	0	19.24

Album page - Page 16

Global Parameters

Common

Name	Default	Value	
Hydrolysis rate [1/d]	2.1000	2.1000	1.0290
Hydrolysis half sat. [-]	0.0600	0.0600	1.0000
Anoxic hydrolysis factor [-]	0.2800	0.2800	1.0000
Anaerobic hydrolysis factor (AS) [-]	0.0400	0.0400	1.0000
Anaerobic hydrolysis factor (AD) [-]	0.5000	0.5000	1.0000
Adsorption rate of colloids [L/(mgCOD d)]	0.1500	0.1500	1.0290
Ammonification rate [L/(mgN d)]	0.0400	0.0400	1.0290
Assimilative nitrate/nitrite reduction rate [1/d]	0.5000	0.5000	1.0000
Endogenous products decay rate [1/d]	0	0	1.0000

AOB

Name	Default	Value	
Max. spec. growth rate [1/d]	0.9000	0.9000	1.0720
Substrate (NH4) half sat. [mgN/L]	0.7000	0.7000	1.0000
Byproduct NH4 logistic slope [-]	50.0000	50.0000	1.0000
Byproduct NH4 inflection point [mgN/L]	1.4000	1.4000	1.0000
AOB denite DO half sat. [mg/L]	0.1000	0.1000	1.0000
AOB denite HNO2 half sat. [mgN/L]	5.000E-6	5.000E-6	1.0000
Aerobic decay rate [1/d]	0.1700	0.1700	1.0290
Anoxic/anaerobic decay rate [1/d]	0.0800	0.0800	1.0290
KiHN02 [mmol/L]	0.0050	0.0050	1.0000

NOB

Default	Value	
0.7000	0.7000	1.0600
0.1000	0.1000	1.0000
0.1700	0.1700	1.0290
0.0800	0.0800	1.0290
0.0750	0.0750	1.0000
	0.7000 0.1000 0.1700 0.0800	0.7000 0.7000 0.1000 0.1000 0.1700 0.1700 0.0800 0.0800

AAO

Name	Default	Value	
Max. spec. growth rate [1/d]	0.2000	0.2000	1.1000
Substrate (NH4) half sat. [mgN/L]	2.0000	2.0000	1.0000
Substrate (NO2) half sat. [mgN/L]	1.0000	1.0000	1.0000
Aerobic decay rate [1/d]	0.0190	0.0190	1.0290
Anoxic/anaerobic decay rate [1/d]	0.0095	0.0095	1.0290
Ki Nitrite [mgN/L]	1000.0000	1000.0000	1.0000
Nitrite sensitivity constant [L / (d mgN)]	0.0160	0.0160	1.0000

ОНО

Name	Default	Value	
Max. spec. growth rate [1/d]	3.2000	3.2000	1.0290
Substrate half sat. [mgCOD/L]	5.0000	5.0000	1.0000
Anoxic growth factor [-]	0.5000	0.5000	1.0000

Denite N2 producers (N03 or N02) [-]	0.5000	0.5000	1.0000
Aerobic decay rate [1/d]	0.6200	0.6200	1.0290
Anoxic decay rate [1/d]	0.2330	0.2330	1.0290
Anaerobic decay rate [1/d]	0.1310	0.1310	1.0290
Fermentation rate [1/d]	1.6000	1.6000	1.0290
Fermentation half sat. [mgCOD/L]	5.0000	5.0000	1.0000
Fermentation growth factor (AS) [-]	0.2500	0.2500	1.0000
Free nitrous acid inhibition [mmol/L]	1.000E-7	1.000E-7	1.0000

Methylotrophs

Name	Default	Value	
Max. spec. growth rate [1/d]	1.3000	1.3000	1.0720
Methanol half sat. [mgCOD/L]	0.5000	0.5000	1.0000
Denite N2 producers (NO3 or NO2) [-]	0.5000	0.5000	1.0000
Aerobic decay rate [1/d]	0.0400	0.0400	1.0290
Anoxic/anaerobic decay rate [1/d]	0.0300	0.0300	1.0290
Free nitrous acid inhibition [mmol/L]	1.000E-7	1.000E-7	1.0000

PAO

Name	Default	Value	
Max. spec. growth rate [1/d]	0.9500	0.9500	1.0000
Max. spec. growth rate, P-limited [1/d]	0.4200	0.4200	1.0000
Substrate half sat. [mgCOD(PHB)/mgCOD(Zbp)]	0.1000	0.1000	1.0000
Substrate half sat., P-limited [mgCOD(PHB)/mgCOD(Zbp)]	0.0500	0.0500	1.0000
Magnesium half sat. [mgMg/L]	0.1000	0.1000	1.0000

Cation half sat. [mmol/L]	0.1000	0.1000	1.0000
Calcium half sat. [mgCa/L]	0.1000	0.1000	1.0000
Aerobic/anoxic decay rate [1/d]	0.1000	0.1000	1.0000
Aerobic/anoxic maintenance rate [1/d]	0	0	1.0000
Anaerobic decay rate [1/d]	0.0400	0.0400	1.0000
Anaerobic maintenance rate [1/d]	0	0	1.0000
Sequestration rate [1/d]	4.5000	4.5000	1.0000
Anoxic growth factor [-]	0.3300	0.3300	1.0000

Acetogens

Name	Default	Value	
Max. spec. growth rate [1/d]	0.2500	0.2500	1.0290
Substrate half sat. [mgCOD/L]	10.0000	10.0000	1.0000
Acetate inhibition [mgCOD/L]	10000.0000	10000.0000	1.0000
Anaerobic decay rate [1/d]	0.0500	0.0500	1.0290
Aerobic/anoxic decay rate [1/d]	0.5200	0.5200	1.0290
Anaerobic decay rate [1/d]	0.0500	0.0500	1.0290

Methanogens

Name	Default	Value	
Acetoclastic max. spec. growth rate [1/d]	0.3000	0.3000	1.0290
H2-utilizing max. spec. growth rate [1/d]	1.4000	1.4000	1.0290
Acetoclastic substrate half sat. [mgCOD/L]	100.0000	100.0000	1.0000
Acetoclastic methanol half sat. [mgCOD/L]	0.5000	0.5000	1.0000
H2-utilizing CO2 half sat. [mmol/L]	0.1000	0.1000	1.0000
H2-utilizing substrate half sat. [mgCOD/L]	0.1000	0.1000	1.0000

0.5000	0.5000	1.0000
10000.0000	10000.0000	1.0000
0.1300	0.1300	1.0290
0.6000	0.6000	1.0290
0.1300	0.1300	1.0290
2.8000	2.8000	1.0290
	10000.0000 0.1300 0.6000 0.1300	10000.0000 10000.0000 0.1300 0.1300 0.6000 0.6000 0.1300 0.1300

рΗ

Name	Default	Value
OHO low pH limit [-]	4.0000	4.0000
OHO high pH limit [-]	10.0000	10.0000
Methylotrophs low pH limit [-]	4.0000	4.0000
Methylotrophs high pH limit [-]	10.0000	10.0000
Autotrophs low pH limit [-]	5.5000	5.5000
Autotrophs high pH limit [-]	9.5000	9.5000
PAO low pH limit [-]	4.0000	4.0000
PAO high pH limit [-]	10.0000	10.0000
OHO low pH limit (anaerobic) [-]	5.5000	5.5000
OHO high pH limit (anaerobic) [-]	8.5000	8.5000
Propionic acetogens low pH limit [-]	4.0000	4.0000
Propionic acetogens high pH limit [-]	10.0000	10.0000
Acetoclastic methanogens low pH limit [-]	5.0000	5.0000
Acetoclastic methanogens high pH limit [-]	9.0000	9.0000
H2-utilizing methanogens low pH limit [-]	5.0000	5.0000
H2-utilizing methanogens high pH limit [-]	9.0000	9.0000

Switches

Name	Default	Value
Aerobic/anoxic DO half sat. [mgO2/L]	0.0500	0.0500
Anoxic/anaerobic NOx half sat. [mgN/L]	0.1500	0.1500
AOB DO half sat. [mgO2/L]	0.2500	0.2500
NOB DO half sat. [mg02/L]	0.5000	0.5000
AAO DO half sat. [mgO2/L]	0.0100	0.0100
Anoxic NO3(->NO2) half sat. [mgN/L]	0.1000	0.1000
Anoxic NO3(->N2) half sat. [mgN/L]	0.0500	0.0500
Anoxic NO2(->N2) half sat. (mgN/L)	0.0100	0.0100
NH3 nutrient half sat. [mgN/L]	0.0050	0.0050
PolyP half sat. [mgP/mgCOD]	0.0100	0.0100
VFA sequestration half sat. [mgCOD/L]	5.0000	5.0000
P uptake half sat. [mgP/L]	0.1500	0.1500
P nutrient half sat. [mgP/L]	0.0010	0.0010
Autotroph CO2 half sat. [mmol/L]	0.1000	0.1000
H2 low/high half sat. [mgCOD/L]	1.0000	1.0000
Propionic acetogens H2 inhibition [mgCOD/L]	5.0000	5.0000
Synthesis anion/cation half sat. [meq/L]	0.0100	0.0100

Common

Name	Default	Value
Biomass volatile fraction (VSS/TSS)	0.9200	0.9200
Endogenous residue volatile fraction (VSS/TSS)	0.9200	0.9200
N in endogenous residue [mgN/mgCOD]	0.0700	0.0700
P in endogenous residue [mgP/mgCOD]	0.0220	0.0220
Endogenous residue COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Particulate substrate COD:VSS ratio [mgCOD/mgVSS]	1.6000	2.2000

Particulate inert COD:VSS ratio [mgCOD/mgVSS]	1.6000	2.2000	

AOB

Name	Default	Value
Yield [mgCOD/mgN]	0.1500	0.1500
AOB denite NO2 fraction as TEA [-]	0.5000	0.5000
Byproduct NH4 fraction to N20 [-]	0.0025	0.0025
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

NOB

AAO

Name	Default	Value	

Yield [mgCOD/mgN]	0.1140	0.1140
Nitrate production [mgN/mgBiomassCOD]	2.2800	2.2800
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

ОНО

Name	Default	Value
Yield (aerobic) [-]	0.6660	0.6660
Yield (fermentation, low H2) [-]	0.1000	0.1000
Yield (fermentation, high H2) [-]	0.1000	0.1000
H2 yield (fermentation low H2) [-]	0.3500	0.3500
H2 yield (fermentation high H2) [-]	0	0
Propionate yield (fermentation, low H2) [-]	0	0
Propionate yield (fermentation, high H2) [-]	0.7000	0.7000
CO2 yield (fermentation, low H2) [-]	0.7000	0.7000
CO2 yield (fermentation, high H2) [-]	0	0
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Endogenous fraction - aerobic [-]	0.0800	0.0800
Endogenous fraction - anoxic [-]	0.1030	0.1030
Endogenous fraction - anaerobic [-]	0.1840	0.1840
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Yield (anoxic) [-]	0.5400	0.5400
Yield propionic (aerobic) [-]	0.6400	0.6400
Yield propionic (anoxic) [-]	0.4600	0.4600
Yield acetic (aerobic) [-]	0.6000	0.6000

Yield acetic (anoxic) [-]	0.4300	0.4300
Yield methanol (aerobic) [-]	0.5000	0.5000
Adsorp. max. [-]	1.0000	1.0000
Max fraction to N2O at high FNA over nitrate [-]	0.0500	0.0500
Max fraction to N2O at high FNA over nitrite [-]	0.1000	0.1000

Methylotrophs

Name	Default	Value
Yield (anoxic) [-]	0.4000	0.4000
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Max fraction to N2O at high FNA over nitrate [-]	0.1000	0.1000
Max fraction to N2O at high FNA over nitrite [-]	0.1500	0.1500

PAO

Name	Default	Value
Yield (aerobic) [-]	0.6390	0.6390
Yield (anoxic) [-]	0.5200	0.5200
Aerobic P/PHA uptake [mgP/mgCOD]	0.9300	0.9300
Anoxic P/PHA uptake [mgP/mgCOD]	0.3500	0.3500
Yield of PHA on sequestration [-]	0.8890	0.8890
N in biomass [mgN/mgCOD]	0.0700	0.0700
N in sol. inert [mgN/mgCOD]	0.0700	0.0700

P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous part. [-]	0.2500	0.2500
Inert fraction of endogenous sol. [-]	0.2000	0.2000
P/Ac release ratio [mgP/mgCOD]	0.5100	0.5100
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Yield of low PP [-]	0.9400	0.9400

Acetogens

Name	Default	Value
Yield [-]	0.1000	0.1000
H2 yield [-]	0.4000	0.4000
CO2 yield [-]	1.0000	1.0000
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

Methanogens

Name	Default	Value
Acetoclastic yield [-]	0.1000	0.1000
Methanol acetoclastic yield [-]	0.1000	0.1000
H2-utilizing yield [-]	0.1000	0.1000
Methanol H2-utilizing yield [-]	0.1000	0.1000
N in acetoclastic biomass [mgN/mgCOD]	0.0700	0.0700
N in H2-utilizing biomass [mgN/mgCOD]	0.0700	0.0700

P in acetoclastic biomass [mgP/mgCOD]	0.0220	0.0220
P in H2-utilizing biomass [mgP/mgCOD]	0.0220	0.0220
Acetoclastic fraction to endog. residue [-]	0.0800	0.0800
H2-utilizing fraction to endog. residue [-]	0.0800	0.0800
Acetoclastic COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
H2-utilizing COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

General

Name	Default	Value
Molecular weight of other anions [mg/mmol]	35.5000	35.5000
Molecular weight of other cations [mg/mmol]	39.1000	39.1000
Mg to P mole ratio in polyphosphate [mmolMg/mmolP]	0.3000	0.3000
Cation to P mole ratio in polyphosphate [meq/mmolP]	0.1500	0.3000
Ca to P mole ratio in polyphosphate [mmolCa/mmolP]	0.0500	0.0500
Cation to P mole ratio in organic phosphate [meq/mmolP]	0.0100	0.0100
Bubble rise velocity (anaerobic digester) [cm/s]	23.9000	23.9000
Bubble Sauter mean diameter (anaerobic digester) [cm]	0.3500	0.3500
Anaerobic digester gas hold-up factor []	1.0000	1.0000
Tank head loss per metre of length (from flow) [m/m]	0.0025	0.0025

Mass transfer

Name	Default	Value	
KI for H2 [m/d]	17.0000	17.0000	1.0240
KI for CO2 [m/d]	10.0000	10.0000	1.0240
KI for NH3 [m/d]	1.0000	1.0000	1.0240

8.0000	8.0000	1.0240
15.0000	15.0000	1.0240
8.0000	8.0000	1.0240
13.0000	13.0000	1.0240
	15.0000 8.0000	15.0000 15.0000 8.0000 8.0000

Henry's law constants

Name	Default	Value	
CO2 [M/atm]	3.4000E-2	3.4000E-2	2400.0000
02 [M/atm]	1.3000E-3	1.3000E-3	1500.0000
N2 [M/atm]	6.5000E-4	6.5000E-4	1300.0000
N20 [M/atm]	2.5000E-2	2.5000E-2	2600.0000
NH3 [M/atm]	5.8000E+1	5.8000E+1	4100.0000
CH4 [M/atm]	1.4000E-3	1.4000E-3	1600.0000
H2 [M/atm]	7.8000E-4	7.8000E-4	500.0000

Physico-chemical rates

Name	Default	Value	
Struvite precipitation rate [1/d]	3.000E+10	3.000E+10	1.0240
Struvite redissolution rate [1/d]	3.000E+11	3.000E+11	1.0240
Struvite half sat. [mgTSS/L]	1.0000	1.0000	1.0000
HDP precipitation rate [L/(molP d)]	1.000E+8	1.000E+8	1.0000
HDP redissolution rate [L/(mol P d)]	1.000E+8	1.000E+8	1.0000
HAP precipitation rate [molHDP/(L d)]	5.000E-4	5.000E-4	1.0000

Physico-chemical constants

Name	Default	Value
Struvite solubility constant [mol/L]	6.918E-14	6.918E-14
HDP solubility product [mol/L]	2.750E-22	2.750E-22
HDP half sat. [mgTSS/L]	1.0000	1.0000
Equilibrium soluble PO4 with Al dosing at pH 7 [mgP/L]	0.0100	0.0100
Al to P ratio [molAl/molP]	0.8000	0.8000
Al(OH)3 solubility product [mol/L]	1.259E+9	1.259E+9
AIHPO4+ dissociation constant [mol/L]	7.943E-13	7.943E-13
Equilibrium soluble PO4 with Fe dosing at pH 7 [mgP/L]	0.0100	0.0100
Fe to P ratio [molFe/molP]	1.6000	1.6000
Fe(OH)3 solubility product [mol/L]	0.0500	0.0500
FeH2PO4++ dissociation constant [mol/L]	5.012E-22	5.012E-22

Aeration

Name	Default	Value
Alpha (surf) OR Alpha F (diff) [-]	0.5000	0.5000
Beta [-]	0.9500	0.9500
Surface pressure [kPa]	101.3250	101.3250
Fractional effective saturation depth (Fed) [-]	0.3250	0.3250
Supply gas CO2 content [vol. %]	0.0350	0.0350
Supply gas O2 [vol. %]	20.9500	20.9500
Off-gas CO2 [vol. %]	2.0000	2.0000
Off-gas O2 [vol. %]	18.8000	18.8000
Off-gas H2 [vol. %]	0	0
Off-gas NH3 [vol. %]	0	0
Off-gas CH4 [vol. %]	0	0

Surface turbulence factor [-]	2.0000	2.0000
Set point controller gain []	1.0000	1.0000

Modified Vesilind

Name	Default	Value
Maximum Vesilind settling velocity (Vo) [ft/min]	0.387	0.387
Vesilind hindered zone settling parameter (K) [L/g]	0.370	0.370
Clarification switching function [mg/L]	100.000	100.000
Specified TSS conc.for height calc. [mg/L]	2500.000	2500.000
Maximum compactability constant [mg/L]	15000.000	15000.000

Double exponential

Name	Default	Value
Maximum Vesilind settling velocity (Vo) [ft/min]	0.934	0.934
Maximum (practical) settling velocity (Vo') [ft/min]	0.615	0.615
Hindered zone settling parameter (Kh) [L/g]	0.400	0.400
Flocculent zone settling parameter (Kf) [L/g]	2.500	2.500
Maximum non-settleable TSS [mg/L]	20.0000	20.0000
Non-settleable fraction [-]	0.0010	0.0010
Specified TSS conc. for height calc. [mg/L]	2500.0000	2500.0000

Emission factors

Name	Default	Value
Carbon dioxide equivalence of nitrous oxide	296.0000	296.0000
Carbon dioxide equivalence of methane	23.0000	23.0000

Biofilm general

Name	Default	Value	
Attachment rate [g / (m2 d)]	80.0000	80.0000	1.0000
Attachment TSS half sat. [mg/L]	100.0000	100.0000	1.0000
Detachment rate [g/(m3 d)]	8.000E+4	8.000E+4	1.0000
Solids movement factor []	10.0000	10.0000	1.0000
Diffusion neta []	0.8000	0.8000	1.0000
Thin film limit [mm]	0.5000	0.5000	1.0000
Thick film limit [mm]	3.0000	3.0000	1.0000
Assumed Film thickness for tank volume correction (temp independent) [mm]	0.7500	0.7500	1.0000
Film surface area to media area ratio - Max.[]	1.0000	1.0000	1.0000
Minimum biofilm conc. for streamer formation [gTSS/m2]	4.0000	4.0000	1.0000

Maximum biofilm concentrations [mg/L]

Name	Default	Value	
Ordinary heterotrophic organisms (OHO)	5.000E+4	5.000E+4	1.0000
Methylotrophs	5.000E+4	5.000E+4	1.0000
Ammonia oxidizing biomass (AOB)	1.000E+5	1.000E+5	1.0000
Nitrite oxidizing biomass (NOB)	1.000E+5	1.000E+5	1.0000
Anaerobic ammonia oxidizers (AAO)	5.000E+4	5.000E+4	1.0000
Polyphosphate accumulating organisms (PAO)	5.000E+4	5.000E+4	1.0000

Propionic acetogens	5.000E+4	5.000E+4	1.0000
Methanogens - acetoclastic	5.000E+4	5.000E+4	1.0000
Methanogens - hydrogenotrophic	5.000E+4	5.000E+4	1.0000
Endogenous products	3.000E+4	3.000E+4	1.0000
Slowly bio. COD (part.)	5000.0000	5000.0000	1.0000
Slowly bio. COD (colloid.)	4000.0000	4000.0000	1.0000
Part. inert. COD	5000.0000	5000.0000	1.0000
Part. bio. org. N	0	0	1.0000
Part. bio. org. P	0	0	1.0000
Part, inert N	0	0	1.0000
Part, inert P	0	0	1.0000
Stored PHA	5000.0000	5000.0000	1.0000
Releasable stored polyP	1.150E+6	1.150E+6	1.0000
Fixed stored polyP	1.150E+6	1.150E+6	1.0000
Readily bio. COD (complex)	0	0	1.0000
Acetate	0	0	1.0000
Propionate	0	0	1.0000
Methanol	0	0	1.0000
Dissolved H2	0	0	1.0000
Dissolved methane	0	0	1.0000
Ammonia N	0	0	1.0000
Sol. bio. org. N	0	0	1.0000
Nitrous Oxide N	0	0	1.0000
Nitrite N	0	0	1.0000
Nitrate N	0	0	1.0000
Dissolved nitrogen gas	0	0	1.0000
PO4-P (Sol. & Me Complexed)	1.000E+10	1.000E+10	1.0000
Sol. inert COD	0	0	1.0000
Sol. inert TKN	0	0	1.0000
ISS Influent	1.300E+6	1.300E+6	1.0000
Struvite	8.500E+5	8.500E+5	1.0000

Hydroxy-dicalcium-phosphate	1.150E+6	1.150E+6	1.0000
Hydroxy-apatite	1.600E+6	1.600E+6	1.0000
Magnesium	0	0	1.0000
Calcium	0	0	1.0000
Metal	1.000E+10	1.000E+10	1.0000
Other Cations (strong bases)	0	0	1.0000
Other Anions (strong acids)	0	0	1.0000
Total CO2	0	0	1.0000
User defined 1	0	0	1.0000
User defined 2	0	0	1.0000
User defined 3	5.000E+4	5.000E+4	1.0000
User defined 4	5.000E+4	5.000E+4	1.0000
Dissolved oxygen	0	0	1.0000

Effective diffusivities [m2/s]

Name	Default	Value	
Ordinary heterotrophic organisms (OHO)	5.000E-14	5.000E-14	1.0290
Methylotrophs	5.000E-14	5.000E-14	1.0290
Ammonia oxidizing biomass (AOB)	5.000E-14	5.000E-14	1.0290
Nitrite oxidizing biomass (NOB)	5.000E-14	5.000E-14	1.0290
Anaerobic ammonia oxidizers (AAO)	5.000E-14	5.000E-14	1.0290
Polyphosphate accumulating organisms (PAO)	5.000E-14	5.000E-14	1.0290
Propionic acetogens	5.000E-14	5.000E-14	1.0290
Methanogens - acetoclastic	5.000E-14	5.000E-14	1.0290
Methanogens - hydrogenotrophic	5.000E-14	5.000E-14	1.0290
Endogenous products	5.000E-14	5.000E-14	1.0290
Slowly bio. COD (part.)	5.000E-14	5.000E-14	1.0290
Slowly bio. COD (colloid.)	5.000E-12	5.000E-12	1.0290

Part inart COD	E 000E 14	E 000E 14	1 0200
Part. inert. COD	5.000E-14	5.000E-14	1.0290
Part. bio. org. N	5.000E-14	5.000E-14	1.0290
Part. bio. org. P	5.000E-14	5.000E-14	1.0290
Part. inert N	5.000E-14	5.000E-14	1.0290
Part. inert P	5.000E-14	5.000E-14	1.0290
Stored PHA	5.000E-14	5.000E-14	1.0290
Releasable stored polyP	5.000E-14	5.000E-14	1.0290
Fixed stored polyP	5.000E-14	5.000E-14	1.0290
Readily bio. COD (complex)	6.900E-10	6.900E-10	1.0290
Acetate	1.240E-9	1.240E-9	1.0290
Propionate	8.300E-10	8.300E-10	1.0290
Methanol	1.600E-9	1.600E-9	1.0290
Dissolved H2	5.850E-9	5.850E-9	1.0290
Dissolved methane	1.963E-9	1.963E-9	1.0290
Ammonia N	2.000E-9	2.000E-9	1.0290
Sol. bio. org. N	1.370E-9	1.370E-9	1.0290
Nitrous Oxide N	1.607E-9	1.607E-9	1.0290
Nitrite N	2.980E-9	2.980E-9	1.0290
Nitrate N	2.980E-9	2.980E-9	1.0290
Dissolved nitrogen gas	1.900E-9	1.900E-9	1.0290
PO4-P (Sol. & Me Complexed)	2.000E-9	2.000E-9	1.0290
Sol. inert COD	6.900E-10	6.900E-10	1.0290
Sol. inert TKN	6.850E-10	6.850E-10	1.0290
ISS Influent	5.000E-14	5.000E-14	1.0290
Struvite	5.000E-14	5.000E-14	1.0290
Hydroxy-dicalcium-phosphate	5.000E-14	5.000E-14	1.0290
Hydroxy-apatite	5.000E-14	5.000E-14	1.0290
Magnesium	7.200E-10	7.200E-10	1.0290
Calcium	7.200E-10	7.200E-10	1.0290
Metal	4.800E-10	4.800E-10	1.0290
Other Cations (strong bases)	1.440E-9	1.440E-9	1.0290

Other Anions (strong acids)	1.440E-9	1.440E-9	1.0290
Total CO2	1.960E-9	1.960E-9	1.0290
User defined 1	6.900E-10	6.900E-10	1.0290
User defined 2	6.900E-10	6.900E-10	1.0290
User defined 3	5.000E-14	5.000E-14	1.0290
User defined 4	5.000E-14	5.000E-14	1.0290
Dissolved oxygen	2.500E-9	2.500E-9	1.0290

EPS Strength coefficients []

Name	Default	Value	
Ordinary heterotrophic organisms (OHO)	1.0000	1.0000	1.0000
Methylotrophs	1.0000	1.0000	1.0000
Ammonia oxidizing biomass (AOB)	5.0000	1.0000	1.0000
Nitrite oxidizing biomass (NOB)	25.0000	1.0000	1.0000
Anaerobic ammonia oxidizers (AAO)	10.0000	1.0000	1.0000
Polyphosphate accumulating organisms (PAO)	1.0000	1.0000	1.0000
Propionic acetogens	1.0000	1.0000	1.0000
Methanogens - acetoclastic	1.0000	1.0000	1.0000
Methanogens - hydrogenotrophic	1.0000	1.0000	1.0000
Endogenous products	1.0000	1.0000	1.0000
Slowly bio. COD (part.)	1.0000	1.0000	1.0000
Slowly bio. COD (colloid.)	1.0000	1.0000	1.0000
Part. inert. COD	1.0000	1.0000	1.0000
Part. bio. org. N	1.0000	1.0000	1.0000
Part. bio. org. P	1.0000	1.0000	1.0000
Part. inert N	1.0000	1.0000	1.0000
Part. inert P	1.0000	1.0000	1.0000
Stored PHA	1.0000	1.0000	1.0000

Releasable stored polyP	1.0000	1.0000	1.0000
Fixed stored polyP	1.0000	1.0000	1.0000
Readily bio. COD (complex)	0	0	1.0000
Acetate	0	0	1.0000
Propionate	0	0	1.0000
Methanol	0	0	1.0000
Dissolved H2	0	0	1.0000
Dissolved methane	0	0	1.0000
Ammonia N	0	0	1.0000
Sol. bio. org. N	0	0	1.0000
Nitrous Oxide N	0	0	1.0000
Nitrite N	0	0	1.0000
Nitrate N	0	0	1.0000
Dissolved nitrogen gas	0	0	1.0000
PO4-P (Sol. & Me Complexed)	1.0000	1.0000	1.0000
Sol. inert COD	0	0	1.0000
Sol. inert TKN	0	0	1.0000
ISS Influent	0.3300	0.3300	1.0000
Struvite	1.0000	1.0000	1.0000
Hydroxy-dicalcium-phosphate	1.0000	1.0000	1.0000
Hydroxy-apatite	1.0000	1.0000	1.0000
Magnesium	0	0	1.0000
Calcium	0	0	1.0000
Metal	1.0000	1.0000	1.0000
Other Cations (strong bases)	0	0	1.0000
Other Anions (strong acids)	0	0	1.0000
Total CO2	0	0	1.0000
User defined 1	0	0	1.0000
User defined 2	0	0	1.0000
User defined 3	1.0000	1.0000	1.0000
User defined 4	1.0000	1.0000	1.0000

Dissolved oxygen	0	0	1.0000

Meridian Alternative's Analysis version 1

Expansion using selectable 5 stage modified Bardenpho/A2O process

Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

 $\frac{\text{To achieve target effluent concentrations, for Bardenpho process:}}{\text{Set BDF IMLR at 200\% influent, Set A2O IMLR at 0\%}}$

Set Swing 1 Aerated, Swing 2a and 2b unaerated.

SRT = 12 days

Acetate flow pace at 0.8% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. All methanol to swing 2a

 $\frac{\text{To achieve target effluent concentrations, for A2O process:}}{\text{Set BDF IMLR at }0\% \text{ influent, Set A2O IMLR at }400\%$

Set Swing 1 unaerated, Swing 2a and 2b aerated.

SRT = 12 days

Acetate flow pace at 0.6% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 1.5% of PE flow rate, 1% methanol solution. all methanol to Anoxic 1a



MERIDIAN, ID

BIOMAG™
CONCEPTUAL

PROPOSAL, REV1

April 2015

CONTENTS

1	DESIGN SUMMARY	3
2	BIOMAG OPERATING COSTS	5
3	ADDITIONAL DESIGN considerations	5
4	SCOPE OF SUPPLY	6
5	PROCESS DESIGN SUPPORT/RECOMMENDATIONS	7
6	BUDGETARY PRICING	8

Evoqua Water Technologies LLC Confidential Information

This document and all information contained herein are the property of Evoqua and/or its affiliates. The design concepts and information contained herein are proprietary to Evoqua Water Technologies LLC and are submitted in confidence. They are not transferable and must be used only for the purpose for which the document is expressly loaned. They must not be disclosed, reproduced, loaned or used in any other manner without the express written consent of Evoqua Water Technologies LLC. In no event shall they be used in any manner detrimental to the interest of Evoqua Water Technologies LLC. All patent rights are reserved. Upon the demand of Evoqua Water Technologies LLC, this document, along with all copies and extracts, and all related notes and analyses must be returned to Evoqua Water Technologies LLC or destroyed, as instructed by Evoqua Water Technologies LLC. Acceptance of the delivery of this document constitutes agreement to these terms and conditions.

©2014 Evoqua Water Technologies LLC

Evoqua Water Technologies LLC 2607 N. Grandview Blvd Suite 130 Waukesha, WI 53188

Phone: 262-547-0141 Fax: 262-547-4120 www.evoqua.com/

Evoqua Water Technologies is pleased to present a preliminary BioMag system proposal. The BioMag system is a proven, reliable, treatment process using magnetite to ballast the biological floc in an activated sludge process. This high density ballast (specific gravity of 5.2) allows the plant to operate at elevated mixed liquor concentrations while achieving enhanced settling rates.

1 DESIGN SUMMARY

Table 1 summarizes the design flows used as the basis for the proposed BioMag system. Any max month, peak day or peak hourly flows will need to be evaluated for a final design.

Table 1: Design flows.

Barrier to a	Unite	THE NAME OF STREET	100
Parameter	Units	Summer	Winter
Design Average Daily Flow	MGD	14	12.3
Design Max Month Flow	MGD	TBD	TBD
Design Peak Daily Flow	MGD	TBD	TBD
Design Peak Hourly Flow	MGD	TBD	TBD

Table 2 summarizes the design influent water quality (after primary clarifiers) used as the basis for the proposed BioMag system.

Table 2: Design influent water quality after primary clarifier.

	Parameter	Units	Summer	Winter
Ford Time	Biochemical Oxygen Demand (BOD₅)	mg/L	202	223
	Chemical Oxygen Demand (COD)	mg/L	403	446
	Total Suspended Solids (TSS)	mg/L	85	85
	Ammonia Nitrogen (NH ₃ -N)	mg/L	34	40
U.F	Total Kjeldahl Nitrogen (TKN)	mg/L	46	54
	Total Phosphorus (TP)	mg/L	7.2	8.3
	Alkalinity	mg/L as CaCO₃	350	350
	Max Influent Temperature	°C	25	25
	Min Influent Temperature	°C	12	12

Table 3 summarizes the secondary effluent performance requirements used as the basis for the proposed BioMag system.

Table 3: Secondary effluent performance requirements.

Parameter ¹	Units	Summer	Winter
Biochemical Oxygen Demand (BOD ₅)	mg/L	20	20
Total Suspended Solids (TSS)	mg/L	20	20
Nitrate/Nitrite (NOx-N)	mg/L	8	8
Ammonia (NH₃-N)	mg/L	0.405	0.307
Total Phosphorus (TP) ²	mg/L	0.5	0.5

Table 4 summarizes the preliminary process parameters for the proposed BioMag system.

Table 4: Design and process parameters.

Parameter ³	Units	Value
Number of biological treatment trains		TBD
Biological Treatment Volume	MG	TBD
Aerobic SRT	d	TBD
Max Recommended Design MLSS in Biological System (excluding magnetite)	mg/l	8,000
Aeration/Mixing System		TBD
Design WAS rate (excluding magnetite)	lb/d	20,000
Design RAS/WAS MLSS (excluding magnetite)	g/L	14-20
Thickened RAS to Recovery Equipment (excl magnetite)	g/L	20
Max Clarifier Loading Rates		Epolician in the second
@ Average @ Peak	lb/sf/d	50 100

¹ Effluent BOD, and nitrogen removals are contingent upon biological system design and equipment.

² Listed effluent TP is secondary effluent. Tertiary CoMag or filters will be required to reach a final effluent TP of 0.1 mg/L.

³ WAS Rate and WAS MLSS are estimated at this stage. These parameters are critical for sizing of the BioMag recovery equipment and will need to be confirmed for final design. WAS thickening is assumed if underflow cannot achieve value shown.

2 BIOMAG OPERATING COSTS

As a guidance and reference, table 5 lists the main consumables associated with the BioMag system recommended for this project.

Table 5: Estimated BioMag consumables⁴

Item	Guidance
Magnetite usage	~2200 lb/day at ADF / 93% recovery
	(~\$0.35/lb.)
Power usage of magnetite feed / recovery	~2600 kWh/d
equipment and the second secon	divisors tislanus
Polymer	0.5 to 1.5 mg/l – active

3 ADDITIONAL DESIGN CONSIDERATIONS

The following design considerations will need to be evaluated and discussed in more detail before a final design is established:

- Continued use of existing primary clarifiers
- Biological system design
- Secondary clarifier sizing and design
- Supplemental mixing requirements
- Existing return sludge and waste sludge pumping capacity
- Biosolids wasting strategy (ie surface wasting)
- Chemical feed systems; chemical preference
- BioMag building layout

⁴ The values show are estimated values for this design based on existing plant data performance from other BioMag[™] installations; they are not intended to reflect guaranteed values. A reasonable safety factor would be applied to values for any performance guarantee.

4 SCOPE OF SUPPLY

Evoqua will supply the following equipment and services with the BioMag system. All equipment or services not specified in table 6 are to be supplied by others.

Table 6: Evoqua Scope of Supply

Item	Quantity	Description
Ballast Storage and Feed System		an su su sunstitution
Ballast mix tank mixer	1	3 HP – vertical shaft
Magnetite storage silo	CREASE LE SECON LE SEL SEL SEL SEL SEL SEL SEL SEL SEL	25 ton outdoor silo
Magnetite dry feeder system	1	Hopper, 10 foot stinger and drop pipe
Compressed Air System	1	Lead/Lag 10 HP air compressors, air receiver and heatless desiccant drye
Ballast Recovery System		高的 35 (1) (1) (2) (1) (1) (2) (2)
Magnetic drum separator	4	7.5 HP each
Shear mill	4	40 HP each
Pump – ballast mix tank discharge	2	Dry Pit Submersible (~300 gpm)
Pump – shear mill feed	2	Rotary Lobe (~150 gpm)
Flow control valves	Multiple	Motor operated modulating plug valve (ballast mix tank feed, mag drum feed)
Flow meters	Multiple	Ballast mix tank feed, Mag drum, bal- last return
Level sensors/switches	Multiple	Mag drum, ballast mix tank
Control System Hardware	AND A STORY OF BOAL OF A STORY OF THE PROPERTY OF THE STORY OF THE STO	
Control panel	1	NEMA 12 control panel with PLC and door mounted HMI
Services		
Engineering support		Site visits/design kickoff; basis of design engineer support
Installation oversight, commission- ing and training		Up to 8 days
Start-up and performance testing		Up to 15 days

5 PROCESS DESIGN SUPPORT/RECOMMENDATIONS

In the event that the aeration system for the existing plant will require upgrading due to the equipment age or replacement due to a significant plant capacity increase, Evoqua will make recommendations for the new aeration system that will be compatible with the BioMag system. Consideration is given to the basin configuration, new aeration equipment energy efficiency, treatment goals, power turndown requirements, capital costs, supplemental mixing requirements and ease of installation. For many plants, Evoqua has recommended the use of simultaneous nitrification denitrification for the upgraded aeration basin, due to the energy savings potential with this process, even when strict denitrification is not required. Simultaneous nitrification denitrification can save 20 – 30% in energy over a conventional MLE process.

Evoqua recommends the use of jet aeration when the aeration system requires upgrading with the addition of BioMag. Jet aeration offers several advantages for any activated sludge process, but has additional benefits when a BioMag system is used. The benefits of jet aeration are:

- Supplemental mixing in the aeration basins, that may be required with a BioMag system, can be eliminated;
- a high oxygen transfer efficiency which does not diminish over time;
- · there are no moving parts, which minimizes maintenance;
- · there are no parts to be replaced;
- exceptional power turndown with independent mixing and aeration;
- fits any basin configuration; and
- low installation costs.

As this project progresses with the BioMag system, Evoqua will make a more specific recommendation for the equipment and the process configuration for the existing aeration basin and any other basins, anoxic or anaerobic, that may be included in the flowsheet.

6 BUDGETARY PRICING

The budgetary price for the proposed Evoqua BioMag system is provided under separate cover.

The initial magnetite charge for the proposed system will require approximately 125 tons of virgin magnetite at design conditions. Evoqua can provide magnetite at a cost of \$525 per ton plus freight.

The scope of supply and pricing are based on Evoqua standard equipment selection, standard terms of sale and warranty terms as described herein. Any variations from these standards may affect this budgetary quotation. Additionally, please note this budgetary quotation is for review and informational purposes only and does not constitute an offer for acceptance.

This price makes no provision for bonds, taxes, tariffs, duties, permitting fees and other fees and charges that are not made explicit above.

All pricing is quoted at FOB, Factory (full freight allowed). No taxes, regulatory fees or other costs related to the procurement and installation of the system are included.

6 BUDGETARY PRICING

The budgetary price for the proposed Evoqua BioMag system is \$2,854,000.0.0

The initial magnetite charge for the proposed system will require approximately 125 tons of virgin magnetite at design conditions. Evoqua can provide magnetite at a cost of \$525 per ton plus freight.

The scope of supply and pricing are based on Evoqua standard equipment selection, standard terms of sale and warranty terms as described herein. Any variations from these standards may affect this budgetary quotation. Additionally, please note this budgetary quotation is for review and informational purposes only and does not constitute an offer for acceptance.

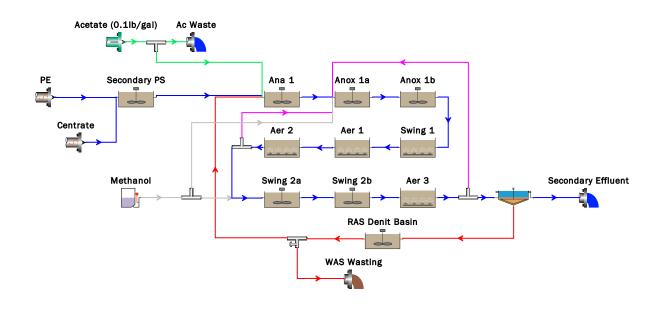
This price makes no provision for bonds, taxes, tariffs, duties, permitting fees and other fees and charges that are not made explicit above.

All pricing is quoted at FOB, Factory (full freight allowed). No taxes, regulatory fees or other costs related to the procurement and installation of the system are included.

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Rick Kelly

Created: 6/29/2011 Saved: 4/30/2015

Target SRT: 12.00 days SRT: **** days

Temperature: 14.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.5000	4774.3058	14.000	Un-aerated
Aer 1	1.5000	1.432E+4	14.000	4868
Aer 2	1.2500	1.194E+4	14.000	4057
Swing 2a	0.7500	7161.4587	14.000	Un-aerated
Aer 3	0.5000	4774.3058	14.000	1623
Anox 1a	0.3750	3580.7294	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.3750	3580.7294	14.000	Un-aerated
Swing 1	0.5000	4774.3058	14.000	1082
Swing 2b	0.7500	7161.4587	14.000	Un-aerated

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1	2.5
Aer 2	2.0
Swing 2a	0
Aer 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0
Anox 1b	0
Swing 1	2.0

Swing 2b	0	

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	15.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0

Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	1188000.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0

ISS Influent mgISS/L	0
Struvite mglSS/L	0
Hydroxy-dicalcium-phosphate mglSS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	5.00
Other Anions (strong acids) meq/L	5.00
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mglSS/L	0
Dissolved oxygen mg/L	0
Flow	2.64172037284185E-5

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	12.461167588271	0.100014702011564
Total COD mgCOD/L	416.48	1801.80
Total Kjeldahl Nitrogen mgN/L	54.01	934.40
Total P mgP/L	8.12	529.81
Nitrate N mgN/L	0	0
рН	7.95	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.43	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0642
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

Configuration information for all Splitter units

Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.179947546016876
Acetate Splitter	Flow paced	0.80 %
Splitter21	Flowrate [Side]	0
A20 IMLR	Flow paced	0.00 %

Configuration information for all Stream (SV) Influent units

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0

D. I. A.	•
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0

User defined 2 mg/L	0	_
User defined 3 mgVSS/L	0	
User defined 4 mgISS/L	0	
Dissolved oxygen mg/L	0	
Flow	1	

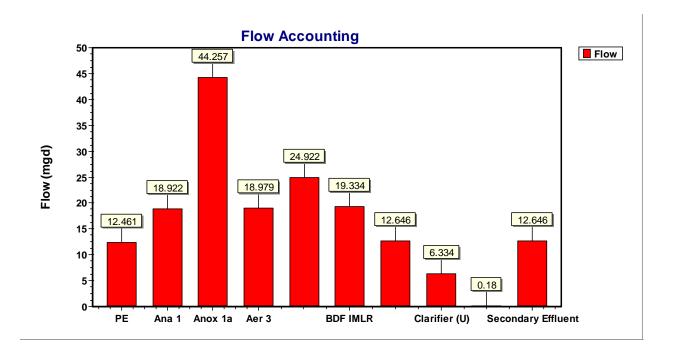
BioWin Album

Album page - Table

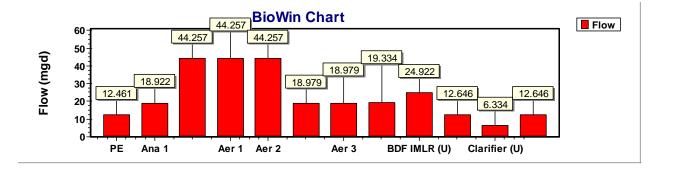
Part	EI	Т	Т	FI	Di	Т	V	Fi	Α	Ni	Ni	Т	S	V	Fi	Α	Α	Е	M	М	М	Ni	0	Р	Pr	Т	М
Male al al w s s al at er m te at al u at er m a do de he he he he he he per per al he e C ky [ol s ii e o o N e p bl ii do o er o a a a yl o ar p o s a a s a s al al al u at er m s e e st mi o g a do er o a a a yl o ar p o s a a s al		-																								-	
C																											
Nt O el m v u e d ni [N [e e e st ni o g n n ot xi y h ni ol n s D d g e s C a m [m P fa or a o ro <																								-	-		
S D d g e s s s C a m [m P fa or a bi e o o o ro di h o c c id ol a m hl o o c id ol a m hl o o c id ol a m hl o o c id ol m hl or m hl or m hl or m hl o o c s s s b [m N g m g O tt c o o c n g g g p zi et s a s s [m m n m n s s s s s c o c m m g g V] tr g g d e n g L] / L] [c id ol zi m s s s s [bi ro at o s C L] o e e n a a N L] m s d y n o o pr m o p e g s O th et a g g M s P g ni o a h g m hi a e [l D N n i or b] / m m o o o u et dr o s o c c o n b] / m m m o o o u et dr o s o c c o n b] / m m m o o o u et dr o s o c c o n b] / m m m o o o u et dr o s o c c o n b] / m m m o o o u et dr o s o c c o n b] / m m m o o o u et dr o s o c c o n b] / m m m o o o u et dr o s o c c o n b] / m m m o o o u et dr o s o c c o n b] / m m m o o o u et dr o s o c c o n b] / m m m o o o u et dr o s o o c s g u [m m m in o o o u et dr o s o o c c o n b] / m m m o o o u et dr o s o o c c s g u [m m m in o o o u et dr o o s o o c c s g u [m m m in o o o u et dr o o s o o c o s g u [m m m m o o o u et dr o o s o o c o c o o o o o c o c o o o o	nt	0	el	m	٧	u	е	d	ni	[Ν	[е	е	st	ni	0	g	n	n	-	хi	у	h	ni	ol	n
m hl	s	D	d	g	е	s	s	С	а		[Р	fa	or	а	bi		0	0	ro	di		0	С	id	ol
g Ni		[а	d]	d	р	u	ar	Ν	g	m	g	0	tt	е	0	С	n	g	g	р	zi	et	S	а	S	[
/ tr g d e n g L] / L] [ci ol zi m s s s s [bi ro at o s C L] o e e n a N L] m d y n o pr m o p e g s O g n d d c / g s P g ni o a d c y C a c c n b] / n m ol d o / m m o o u et dr O s or c s L] e [bi a d c y C a c c c n b] / n m ol d o / m m o o u et dr O s or c s L] [g id s u L] f id B L] f id L		m	hl		0	е	S	b	[Ν	g	Р	4-	у	d	хi	а	0	е	е	h	n	er	р	С	m	m
L] O e e n a N L] m d y n o pr m o p e g s O g n d d c / g s P g ni o a h g m hi a e [l D e [l bi a d c y C a c c n b] / n m ol d o		g	Ni		ху	n	p	0	m		Ν		Р	а	р	di	m	u	n	n	S		ot	h	et	а	
g		/	tr		g	d	е	n		L]		L]	[ol	zi	m	S	S	S	[bi	ro	at	0	S	
e [s e e L]		L]							N		L]																
n m ol d o o u et dr O s or c s L] [g id s u L] g g m xi ct o o D s g u [m / s ol s u l <td< td=""><td></td><td></td><td></td><td></td><td>n</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					n																						
[l				LJ					-	_					-						bJ	
m			_										,														LJ
g L] [id B L] / s z [a e L] N ni ul g N m s O L] / s er m st n O s at C / g [D (A s g ic ot B) m in O L] T m [O (A C [ro [s g D B) A O m p m (or / S V g B													LJ														
N m s O L] s er m st n O s at C / g [D																											
/ g [D (A s g ic ot B) m in 0 L] T m [0 (A C [ro [s g D D S g m B) A O m p m (or / S g D S V g [O D g hi g O g L] G C C C H a L] S L] g [L] O [O O ni D O ni C m D m D) s D O g / g / [m D C L] C L] m s D C A / O O O G G (P L] D D D C A C A / O D D C A C A / D C L] m s C C / O D D C C A C C / D D C C A C C / D D D C C A C C / [L] m g C C C C O C C C C C C O C C C C C C O C C C C C C O C C C C C C O C C C C C C O C C C C C C O C C C C C C O C C C C C C O C C C C C C O C C C C C C O C C C C C C					Lj	-								L]	•						Lj						
L] T m [-,												
S g m S V g [O D g hi g O g L] / S / m) / C c C C H a L] S L] g [L] O [O O ni / C m D m D) s L] O g / g / [m D C L] C L] m s / O O O L] D D C A // O O O L] D D C A // C C A // O O O L] D D O C A // O O O O O O O O O O O O O O								_																			
S V g [O D g hi g O g L] / S /			•														•		-								
/ S / m) / C c C H a L] S L] g [L] O [O O ni / C m D m D) S O g / g / [m D C L] C L] m S / O O G G (P L] D D D C A L] D D D C A L] D D C A L] D D G C A C A C C A C C C C C C C C C C C C C C C C C C C								g								[0	D	g			g	0	g	L]		
C m D m D) s C m D m D) s O g / g / [m D C L] C L] m s / O O G G (P L] D D C A / O O O L] L] D) / [L] m g C m D m D D S / E D C C C C C C C C C C C C C C C C C C						/	S									m)	/	С	С		С	Н				
L] O g / g / [m D C L] C L] m s / O O g (P L] D D C A / / O O L] L] D) / [L] m g C O						L]	S	L]								g	[L]	0	[0	0	ni			
D C L] M s / O O g (P L] D D C A / (O O O L] D D (C A / (D O O L] D (D O C A / (D O O L] D (D O C O O																С	m		D	m		D)	S			
/ O O G (P L] D D C A / / O O L] L] D) / [L] m g C O							L]									0	g		/			/	[m			
L] D D C A // / O O L] L] D) / [L] m g C C O																D			L]			L]					
/ / O O L] D) / [L] m g C O																/								•			
L] D) / [L] m g C																L]											
/ [L] m g C																											
L] m g C O																	LJ			LJ							
g C O																							,	-			
C O																							LJ				
0																											
•																											
\mathbf{I}																								D			

																							/ L]			
P E	4 1 6. 4 8	5 4. 0 1	1 2. 4 6	0	1 0 2. 1 2	9 0. 6 5	1 3 4. 0 5	4 3. 7 5	0	0	8. 1 2	5. 6 0	2 1. 0 3	0	0. 0 4	0. 0 4	0	0. 0 4	0. 0 4	0. 0 4	0. 0 4	0. 0 4	0. 0 4	0. 0 4		0
S e c o n d ar y P S	4 3 3. 2 9	5 4. 5 6	1 2. 6 7	0	1 0 6. 6 9	9 4. 3 1	1 3 9. 4 6	4 4. 1 9	0	0	7. 8 1	5. 3 9	2 1. 8 8	0	0. 0 4	0. 0 4	0. 0 0	0. 0 4	0. 0 4	0. 0 4	0. 0 4	0. 0 4	0. 0 4	0. 0 4	3 5. 8 8	0
A n a 1	4 3 0 6. 2 3	3 0 6. 4 8	1 8. 9 2	0	3 7 2 8. 2 8	2 8 3 3. 1 0	2 6. 7 3	3 1. 4 9	0	0. 0 0	2 6 8. 8 9	5 4. 0 8	2 5. 2 2	6 0. 0 9	6 4. 5 0	0. 6 3	9 1 4. 8 0	0. 1 5	0. 0 6	3 2 8. 7 5	3 2. 6 8	1 4 7 0. 2 0	8 7 0. 9 8	0. 1 7	1 5 5 7. 0 1	0. 0 0
A n o x 1 a	4 1 9 5. 9	2 9 1. 1 5	4 4. 2 6	0	3 8 0 9. 7 1	2 8 2 0. 9 4	2. 4 1	1 3. 7 7	1. 0 6	6. 7 7	2 6 9. 7 6	2 5. 0 7	0. 9 6	6 1. 5 0	6 5. 9 0	0. 6 3	9 2 5. 1 2	0. 1 4	0. 0 4	3 2 7. 2 0	3 3. 4 1	1 5 0 4. 7 8	8 8 9. 2 8	0. 1 6	1 1 9 2 2. 5	0. 0 0
A er 1	4 1 4 5. 3 1	2 8 2. 4 5	4 4. 2 6	2. 5 0	3 8 5 8. 9 5	2 8 1 1. 7 8	1. 3 3	3. 6 0	3. 3 1	1 1. 8 8	2 7 0. 1 2	6. 7 0	0. 0 0	6 2. 3 3	6 6. 8 0	0. 6 3	9 2 9. 5 4	0. 1 3	0. 0 4	3 2 6. 5 5	3 3. 7 7	1 5 2 0. 5	8 9 8. 7 1	0. 1 5	4 8 3 0 6. 7 5	0. 0 0
A er 2	4 1 2 6. 7 6	2 7 9. 7 2	4 4. 2 6	2. 0 0	3 8 7 3. 6 4	2 8 0 6. 1	1. 1 3	0. 5 7	2. 3 2	1 5. 6 7	2 7 0. 3 0	0. 3 9	0. 0 0	6 2. 5 6	6 6. 9 8	0. 6 3	9 3 1. 9	0. 1 3	0. 0 3	3 2 6. 1 8	3 3. 9 8	1 5 2 5. 0 2	9 0 2. 1 8	0. 1 5	4 0 4 0 8. 8 2	0. 0 0
S wi n g 2 a	4 1 1 9. 7 9	2 7 8. 8 7	1 8. 9 8	0	3 8 6 5. 8 4	2 7 9 9. 8 6	4. 9 4	0. 4 3	0. 3 4	7. 5 8	2 6 9. 7 5	0. 1 0	0. 0 1	6 2. 1 9	6 6. 6 4	0. 6 2	9 3 1. 3 4	0. 1 3	0. 0 3	3 3 6. 7 5	3 3. 8 0	1 5 1 7. 2 1	8 9 7. 4 3	0. 1 5	2 4 1 9 6. 4 8	5. 7 0
A er	4 0	2 7	1 8.	2. 0	3 8	2 7	0. 9	0. 0	0. 0	4. 7	2 7	0. 0	0. 0	6 1.	6 6.	0. 6	9 3	0. 1	0. 0	3 3	3 3.	1 5	8 9	0. 1	1 6	0. 0

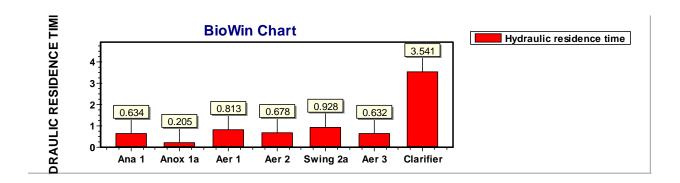
```
1
       8
          0.
                 1
                     8
                         0.
                            1.
                                0.
                                   0.
                                           1.
                                              0.
                                                         1.
                                                             2
                                                                0.
                                                                    0.
                                                                           1
                                                                                      0.
                                                                                             0.
   2
       2
          1
                 1
                     3
                        1
                            3
                               0
                                   0
                                       1
                                          2
                                              0
                                                 8
                                                     9
                                                         8
                                                            8
                                                               3
                                                                   0
                                                                       0
                                                                           0
                                                                              5
                                                                                 6
                                                                                     4
                                                                                             0
S
   1
       9.
          8
                 5
                     3
                                0
                                   2
                                       0.
                                           1
                                              8
                                                 4.
                                                     8.
                                                         6
                                                            0
                                                                    8
                                                                       1
                                                                           0.
                                                                              1
                                                                                  8
                                                                                             0
   6
       9
                 3
                     5.
                                       0
                                                  9
                                                             9.
                                                                       1.
                                                                           5
                                                                              0.
                                                                                  0.
W
                 3.
                                                                              5
                                                                                  5
                                       7
                                                  3
                                                     8
                                                             1
                                                                           4
                 3
                     6
                                                                              6
                                                                                  0
S
(U
```

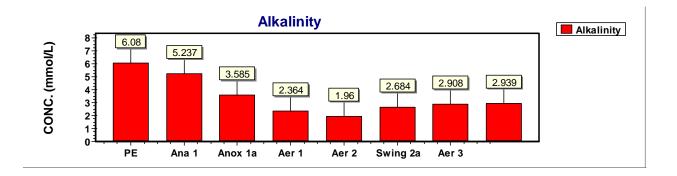

Album page - Output Table 1

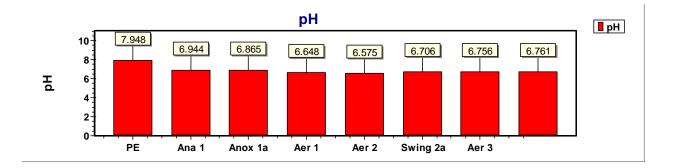
E	4 6		0	5	2. 1 2	6 5	6. 4 8	7. 2 4	0	7. 1 7	6. 4 1	4 8	4. 6 9	3 2	0	7 5			7 5	0	2	0		4	4	4	4	
S e c o n d ar y P S	1 2. 6 7	0. 0 4	1 4. 0 0	7. 9 5	1 0 6. 6 9	9 4. 3 1	4 3 3. 2 9	2 2 6. 0 1	2 1. 8 8	2 4 6. 7 5	1 1 0. 7 1	6 3. 9 6	2 0 2. 5 5	2 9. 4 6	5 4. 5 6	4 4. 1 9	0	0	4 4. 1 9	5 4. 5 6	7. 8 1	5. 3 9	0	0. 0 4	0. 0 4	0. 0 4	0. 0 4	0
A n a 1	1 8. 9 2	0. 5 0	1 4. 0 0	6. 9 4	3 7 2 8. 2 8	2 8 3 3. 1 0	4 3 0 6. 2 3	9 6. 4 2	2 5. 2 2	1 7 5 3. 6 7	6. 0 2	5. 6 9	2 3 1. 4 3	3 0. 6 7	3 0 6. 4 8	3 1. 4 9	0	0. 0 0	3 1. 4 9	3 0 6. 4 8	2 6 8. 8 9	5 4. 0 8	0	8 7 0. 9 8	6 4. 5 0	3 2. 6 8	1 4 7 0. 2 0	0. 0 0
A n o x 1 a	4 4. 2 6	0. 3 8	1 4. 0 0	6. 8 7	3 8 0 9. 7 1	2 8 2 0. 9 4	4 1 9 5. 9	4 7. 8 6	0. 9 6	1 6 9 2. 4 3	1. 6 7	0. 7 4	1 4 4. 6 2	3 1. 5 2	2 9 1. 1 5	1 3. 7 7	1. 0 6	6. 7 7	2 1. 5 9	2 9 8. 9 8	2 6 9. 7 6	2 5. 0 7	0	8 8 9. 2 8	6 5. 9 0	3 3. 4 1	1 5 0 4. 7 8	0. 0 0
A er 1	4 4. 2 6	1. 5 0	1 4. 0 0	6. 6 5	3 8 5 8. 9 5	2 8 1 1. 7 8	4 1 4 5. 3	3 4. 0 2	0. 0 0	1 6 7 0. 1 8	1. 8 8	0. 0 1	1 0 0. 2 4	3 1. 8 9	2 8 2. 4 5	3. 6 0	3. 3 1	1 1. 8 8	1 8. 8 0	2 9 7. 6 5	2 7 0. 1 2	6. 7 0	7 7 8 4. 8 7	8 9 8. 7 1	6 6. 8 0	3 3. 7 7	1 5 2 0. 5	0. 0 0
A er 2	4 4. 2 6	1. 2 5	1 4. 0 0	6. 5 7	3 8 7 3. 6 4	2 8 0 6. 1	4 1 2 6. 7	3 3. 6 8	0. 0 0	1 6 5 9. 2	1. 5 9	0. 0 0	8 1. 2 6	3 2. 0 5	2 7 9. 7 2	0. 5 7	2. 3 2	1 5. 6 7	1 8. 5 6	2 9 7. 7 1	2 7 0. 3 0	0. 3 9	3 8 9 2. 1 7	9 0 2. 1 8	6 6. 9 8	3 3. 9 8	1 5 2 5. 0 2	0. 0 0
S wi n g 2 a	1 8. 9 8	0. 7 5	1 4. 0 0	6. 7 1	3 8 6 5. 8 4	2 7 9 9. 8 6	4 1 9. 7	3 8. 6 9	0. 0 1	1 6 5 7. 1 2	0. 6 9	0. 0 0	7 6. 0 6	3 2. 1 2	2 7 8. 8 7	0. 4 3	0. 3 4	7. 5 8	8. 3 5	2 8 6. 7 9	2 6 9. 7 5	0. 1 0	0	8 9 7. 4 3	6 6. 6 4	3 3. 8 0	1 5 1 7. 2	5. 7 0
A er 3	1 8. 9 8	0. 5 0	1 4. 0 0	6. 7 6	3 8 5 7. 3 8	2 7 8 9. 1 5	4 0 9 1. 3	3 3. 8 2	0. 0 0	1 6 3 7. 8 1	1. 3 4	0. 0 0	6 0. 6 2	3 2. 4 0	2 7 8. 4 2	0. 0 9	0. 0 2	4. 7 6	4. 8 7	2 8 3. 2 0	2 7 0. 2 5	0. 0 2	8 5 7. 6 2	8 9 6. 6	6 6. 4 2	3 3. 6 6	1 5 1 2. 3 7	0. 0 0
CI ar ifi er	1 2. 6 5	2. 8 0	1 4. 0 0	6. 7 6	5. 7 7	4. 1 7	3 9. 8 0	3 3. 7 5	0. 0 0	3. 2 6	1. 1 9	0. 0 0	0. 0 6	3 2. 4 8	2. 3 2	0. 1 8	0. 1 8	6. 0 3	6. 3 9	8. 5 3	0. 4 4	0. 0 3		1. 3 4	0. 1 0	0. 0 5	2. 2 6	0. 0 0

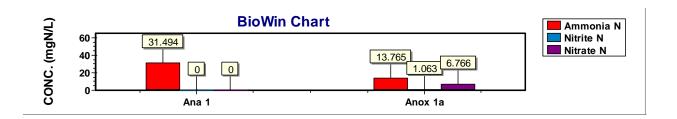

R A	R A S / W A S	R A S D e ni t B a si n	B D F I M L R (U	B D F I M L R	S e c o n d ar y Ef fl u e nt	CI ar ifi er (U
0. 1	6. 1 5	6. 3 3	2 4. 9 2	1 9. 3 3	1 2. 6 5	6. 3 3
0	0	0. 0 7	0	0	0	2. 8 0
1 4.	1 4. 0 0	1 4. 0 0	1 4. 0 0	1 4. 0 0	1 4. 0 0	1 4. 0 0
6. 8	6. 8 0	6. 8 0	6. 5 7	6. 5 7	6. 7 6	6. 7 8
1 1	1 1 5 3 3. 3	1 5 3 3. 3	3 8 7 3. 6 4	3 8 7 3. 6 4	5. 7 7	1 1 5 3 7. 5 7
8	8 3 5. 8 6	8 3 5. 8 6	2 8 0 6. 1 0	2 8 0 6. 1	4. 1 7	8 3 8. 1 8
1 2	1 2 1 6 1. 1	1 2 1 6 1. 1 6	4 1 2 6. 7 6	4 1 2 6. 7 6	3 9. 8 0	1 2 1 6 3. 0 6
3 6.	3 6. 6 6	3 6. 6 6	3 3. 6 8	3 3. 6 8	3 3. 7 5	3 6. 0 5
0. 0	0. 0 8	0. 0 8	0. 0 0	0. 0 0	0. 0	0. 0 6
4 8	4 8 8 3. 5 6	4 8 8 3. 5 6	1 6 5 9. 2 0	1 6 5 9. 2 0	3. 2 6	4 8 8 6. 3 5
0. 1	0. 1 1	0. 1 1	1. 5 9	1. 5 9	1. 1 9	0. 4 1
0. 0	0. 0 0	0. 0 0	0. 0 0	0. 0 0	0. 0	0. 0 0
1 7	1 7 9. 0 3	1 7 9. 0 3	8 1. 2 6	8 1. 2 6	0. 0 6	1 7 7. 1
3 3.	3 3. 3 6	3 3. 3 6	3 2. 0 5	3 2. 0 5	3 2. 4 8	3 3. 2 1
8 2	8 2 9. 9	8 2 9. 9 2	2 7 9. 7 2	2 7 9. 7 2	2. 3 2	8 2 9. 8 5
1. 3	1. 3 4	1. 3 4	0. 5 7	0. 5 7	0. 1 8	1. 0 3
0. 0	0. 0 0	0. 0 0	2. 3 2	2. 3 2	0. 1 8	0. 0 2
0. 0	0. 0 2	0. 0 2	1 5. 6 7	1 5. 6 7	6. 0 3	0. 3 1
1. 3	1. 3 6	1. 3 6	1 8. 5 6	1 8. 5 6	6. 3 9	1. 3 6
8 2	8 2 9. 9 3	8 2 9. 9 3	2 9 7. 7 1	2 9 7. 7 1	8. 5 3	8 3 0. 1 8
8 1	8 1 0. 0 7	8 1 0. 0 7	2 7 0. 3 0	2 7 0. 3 0	0. 4 4	8 0 9. 7 6
1. 2	1. 2 1	1. 2 1	0. 3 9	0. 3 9	0. 0 3	0. 3 4
	-	0	-			
2 6	2 6 8 0. 5 0	2 6 8 0. 5 0	9 0 2. 1 8	9 0 2. 1 8	1. 3 4	2 6 8 1. 4 1
1 9	1 9 8. 4 8	1 9 8. 4 8	6 6. 9 8	6 6. 9 8	0. 1 0	1 9 8. 5 8
1 0	1 0 0. 5 4	1 0 0. 5 4	3 3. 9 8	3 3. 9 8	0. 0 5	1 0 0. 6 1
4 5	4 5 1 0. 5 6	4 5 1 0. 5 6	1 5 2 5. 0 2	1 5 2 5. 0 2	2. 2 6	4 5 1 5. 7
0. 0	0. 0 0	0. 0 0	0. 0 0	0. 0 0	0. 0 0	0. 0 0

S 8 / W A S (U		0	0	5 3 3. 3 7	3 5. 8 6	1 6 1. 1 6	6	8	8 3. 5 6	1	0	9. 0 3	3 6	9. 9 2	4	0	2	6	9. 9 3	0. 0 7	1	 8 0. 5 0	8. 4 8	0. 5 4	1 0. 5 6	0
W 0. A 1 S 8 W a st in g	0	1 4. 0 0	6. 8 0	1 1 5 3 3. 3	8 3 5. 8 6	1 2 1 6 1. 1 6	3 6. 6 6	0. 0 8	4 8 8 3. 5 6	0. 1 1	0. 0 0	1 7 9. 0 3	3 3. 3 6	8 2 9. 9 2	1. 3 4	0. 0 0	0. 0 2	1. 3 6	8 2 9. 9 3	8 1 0. 0 7	1. 2 1	 2 6 8 0. 5 0	1 9 8. 4 8	1 0 0. 5 4	4 5 1 0. 5 6	0. 0 0

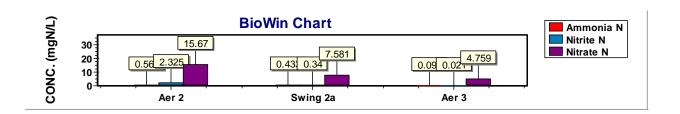

Album page - SS Flow Accounting

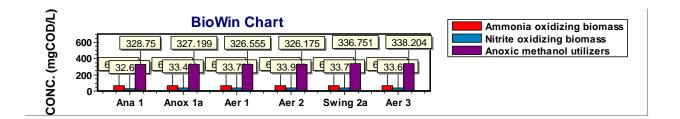

Album page - SS Flow and HRT


Album page - SS Flow and HRT


Album page - SS pH-Alkalinity

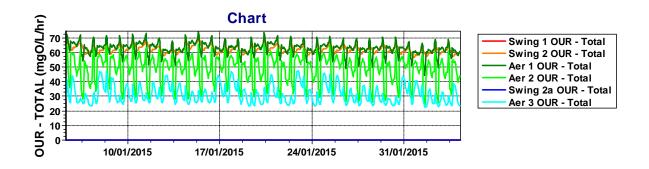
Album page - SS pH-Alkalinity


Album page - SS NH3-NO2-NO3

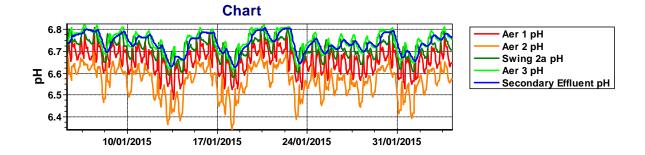

Album page - SS NH3-NO2-NO3

Album page - SS NH3-NO2-NO3

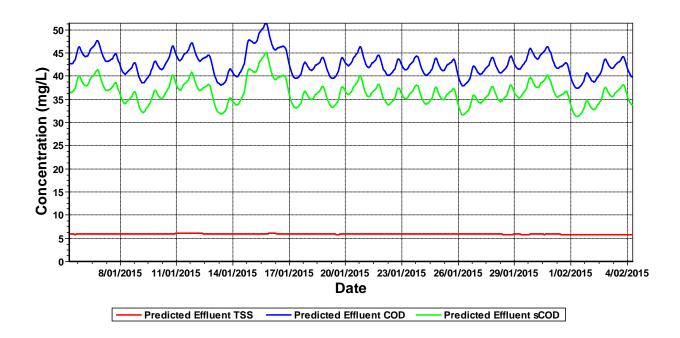
Album page - SS AOB-NOB



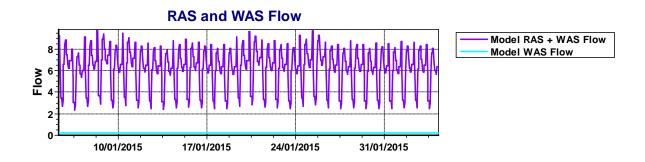
Album page - SS AOB-NOB

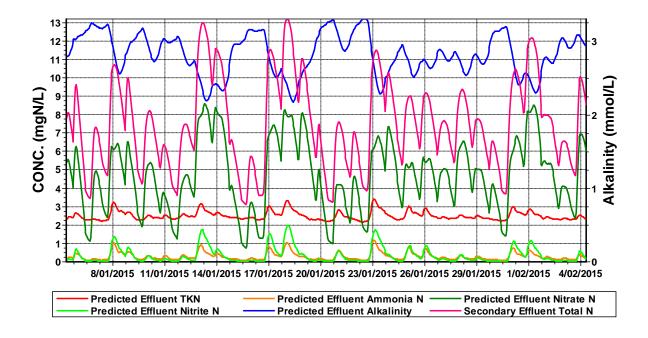


Album page - SS AOB-NOB

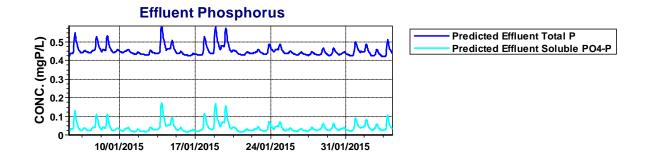

Album page - OURs

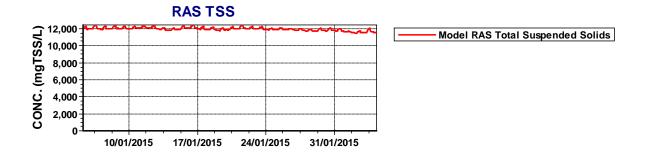
Album page - OURs

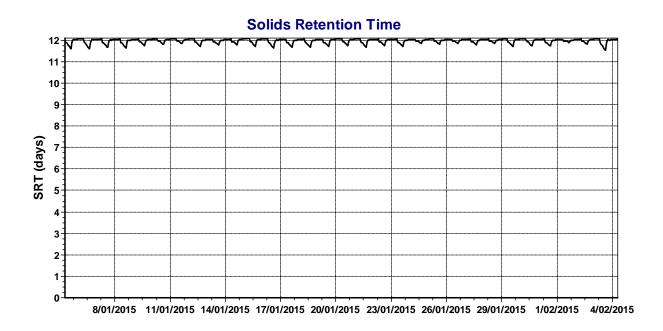

Album page - TSS, COD, BOD

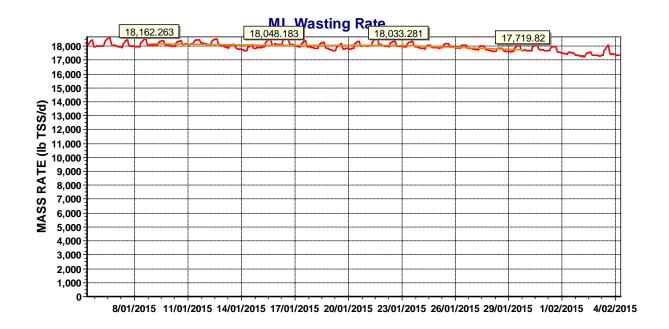

Album page - Mixed Liquor, RAS Flow

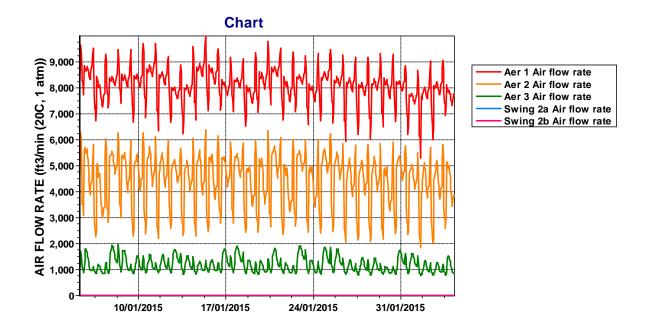
MLSS and MLVSS 4,000 3,500 2,500 E 2,000 1,0


Album page - Mixed Liquor, RAS Flow

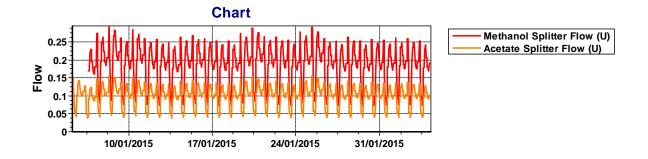

Album page - Nitrogen Sp., Alkalinity

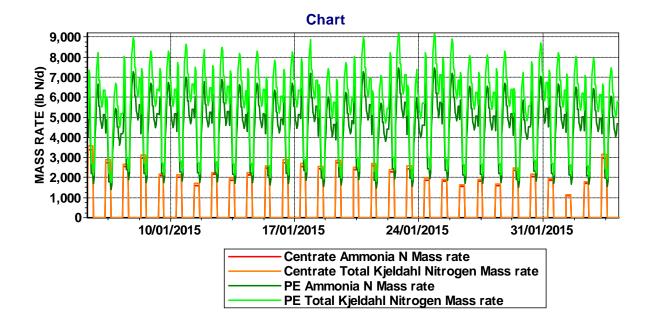

Album page - TP, RAS TSS


Album page - TP, RAS TSS


Album page - SRT

Album page - WAS Mass


Album page - Air Flow Rate


Album page - Page 16

Elements	Air flow rate [ft3/min (20C, 1 atm)]	Flow [mgd]
Acetate Splitter (U)		0.10
Aer 1	7784.87	44.26
Aer 2	3892.17	44.26
Aer 3	857.62	18.98
Swing 2a	0	18.98
Swing 2b	0	18.98

Album page - Page 16

Album page - Centrate Addition

Global Parameters

Common

Name	Default	Value	
Hydrolysis rate [1/d]	2.1000	2.1000	1.0290
Hydrolysis half sat. [-]	0.0600	0.0600	1.0000
Anoxic hydrolysis factor [-]	0.2800	0.2800	1.0000
Anaerobic hydrolysis factor (AS) [-]	0.0400	0.0400	1.0000
Anaerobic hydrolysis factor (AD) [-]	0.5000	0.5000	1.0000
Adsorption rate of colloids [L/(mgCOD d)]	0.1500	0.1500	1.0290
Ammonification rate [L/(mgN d)]	0.0400	0.0400	1.0290
Assimilative nitrate/nitrite reduction rate [1/d]	0.5000	0.5000	1.0000
Endogenous products decay rate [1/d]	0	0	1.0000

AOB

Name	Default	Value	
Max. spec. growth rate [1/d]	0.9000	0.9000	1.0720
Substrate (NH4) half sat. [mgN/L]	0.7000	0.7000	1.0000
Byproduct NH4 logistic slope [-]	50.0000	50.0000	1.0000
Byproduct NH4 inflection point [mgN/L]	1.4000	1.4000	1.0000
AOB denite DO half sat. [mg/L]	0.1000	0.1000	1.0000
AOB denite HNO2 half sat. [mgN/L]	5.000E-6	5.000E-6	1.0000
Aerobic decay rate [1/d]	0.1700	0.1700	1.0290
Anoxic/anaerobic decay rate [1/d]	0.0800	0.0800	1.0290
KiHNO2 [mmol/L]	0.0050	0.0050	1.0000

NOB

Name	Default	Value	
Max. spec. growth rate [1/d]	0.7000	0.7000	1.0600
Substrate (NO2) half sat. [mgN/L]	0.1000	0.1000	1.0000
Aerobic decay rate [1/d]	0.1700	0.1700	1.0290
Anoxic/anaerobic decay rate [1/d]	0.0800	0.0800	1.0290
KiNH3 [mmol/L]	0.0750	0.0750	1.0000

AAO

Name	Default	Value	
Max. spec. growth rate [1/d]	0.2000	0.2000	1.1000
Substrate (NH4) half sat. [mgN/L]	2.0000	2.0000	1.0000
Substrate (NO2) half sat. [mgN/L]	1.0000	1.0000	1.0000

Aerobic decay rate [1/d]	0.0190	0.0190	1.0290
Anoxic/anaerobic decay rate [1/d]	0.0095	0.0095	1.0290
Ki Nitrite [mgN/L]	1000.0000	1000.0000	1.0000
Nitrite sensitivity constant [L / (d mgN)]	0.0160	0.0160	1.0000

ОНО

Name	Default	Value	
Max. spec. growth rate [1/d]	3.2000	3.2000	1.0290
Substrate half sat. [mgCOD/L]	5.0000	5.0000	1.0000
Anoxic growth factor [-]	0.5000	0.5000	1.0000
Denite N2 producers (NO3 or NO2) [-]	0.5000	0.5000	1.0000
Aerobic decay rate [1/d]	0.6200	0.6200	1.0290
Anoxic decay rate [1/d]	0.2330	0.2330	1.0290
Anaerobic decay rate [1/d]	0.1310	0.1310	1.0290
Fermentation rate [1/d]	1.6000	1.6000	1.0290
Fermentation half sat. [mgCOD/L]	5.0000	5.0000	1.0000
Fermentation growth factor (AS) [-]	0.2500	0.2500	1.0000
Free nitrous acid inhibition [mmol/L]	1.000E-7	1.000E-7	1.0000

Methylotrophs

Name	Default	Value	
Max. spec. growth rate [1/d]	1.3000	1.3000	1.0720
Methanol half sat. [mgCOD/L]	0.5000	0.5000	1.0000
Denite N2 producers (NO3 or NO2) [-]	0.5000	0.5000	1.0000
Aerobic decay rate [1/d]	0.0400	0.0400	1.0290

Anoxic/anaerobic decay rate [1/d]	0.0300	0.0300	1.0290
Free nitrous acid inhibition [mmol/L]	1.000E-7	1.000E-7	1.0000

PAO

Name	Default	Value	
Max. spec. growth rate [1/d]	0.9500	0.9500	1.0000
Max. spec. growth rate, P-limited [1/d]	0.4200	0.4200	1.0000
Substrate half sat. [mgCOD(PHB)/mgCOD(Zbp)]	0.1000	0.1000	1.0000
Substrate half sat., P-limited [mgCOD(PHB)/mgCOD(Zbp)]	0.0500	0.0500	1.0000
Magnesium half sat. [mgMg/L]	0.1000	0.1000	1.0000
Cation half sat. [mmol/L]	0.1000	0.1000	1.0000
Calcium half sat. [mgCa/L]	0.1000	0.1000	1.0000
Aerobic/anoxic decay rate [1/d]	0.1000	0.1000	1.0000
Aerobic/anoxic maintenance rate [1/d]	0	0	1.0000
Anaerobic decay rate [1/d]	0.0400	0.0400	1.0000
Anaerobic maintenance rate [1/d]	0	0	1.0000
Sequestration rate [1/d]	4.5000	4.5000	1.0000
Anoxic growth factor [-]	0.3300	0.3300	1.0000

Acetogens

Name	Default	Value	
Max. spec. growth rate [1/d]	0.2500	0.2500	1.0290
Substrate half sat. [mgCOD/L]	10.0000	10.0000	1.0000
Acetate inhibition [mgCOD/L]	10000.0000	10000.0000	1.0000
Anaerobic decay rate [1/d]	0.0500	0.0500	1.0290

Aerobic/anoxic decay rate [1/d]	0.5200	0.5200	1.0290

Methanogens

Name	Default	Value	
Acetoclastic max. spec. growth rate [1/d]	0.3000	0.3000	1.0290
H2-utilizing max. spec. growth rate [1/d]	1.4000	1.4000	1.0290
Acetoclastic substrate half sat. [mgCOD/L]	100.0000	100.0000	1.0000
Acetoclastic methanol half sat. [mgCOD/L]	0.5000	0.5000	1.0000
H2-utilizing CO2 half sat. [mmol/L]	0.1000	0.1000	1.0000
H2-utilizing substrate half sat. [mgCOD/L]	0.1000	0.1000	1.0000
H2-utilizing methanol half sat. [mgCOD/L]	0.5000	0.5000	1.0000
Acetoclastic propionic inhibition [mgCOD/L]	10000.0000	10000.0000	1.0000
Acetoclastic anaerobic decay rate [1/d]	0.1300	0.1300	1.0290
Acetoclastic aerobic/anoxic decay rate [1/d]	0.6000	0.6000	1.0290
H2-utilizing anaerobic decay rate [1/d]	0.1300	0.1300	1.0290
H2-utilizing aerobic/anoxic decay rate [1/d]	2.8000	2.8000	1.0290

рΗ

Name	Default	Value
OHO low pH limit [-]	4.0000	4.0000
OHO high pH limit [-]	10.0000	10.0000
Methylotrophs low pH limit [-]	4.0000	4.0000
Methylotrophs high pH limit [-]	10.0000	10.0000
Autotrophs low pH limit [-]	5.5000	5.5000
Autotrophs high pH limit [-]	9.5000	9.5000

PAO low pH limit [-]	4.0000	4.0000
PAO high pH limit [-]	10.0000	10.0000
OHO low pH limit (anaerobic) [-]	5.5000	5.5000
OHO high pH limit (anaerobic) [-]	8.5000	8.5000
Propionic acetogens low pH limit [-]	4.0000	4.0000
Propionic acetogens high pH limit [-]	10.0000	10.0000
Acetoclastic methanogens low pH limit [-]	5.0000	5.0000
Acetoclastic methanogens high pH limit [-]	9.0000	9.0000
H2-utilizing methanogens low pH limit [-]	5.0000	5.0000
H2-utilizing methanogens high pH limit [-]	9.0000	9.0000

Switches

Name	Default	Value
Name	Delault	value
Aerobic/anoxic DO half sat. [mg02/L]	0.0500	0.0500
Anoxic/anaerobic NOx half sat. [mgN/L]	0.1500	0.1500
AOB DO half sat. [mg02/L]	0.2500	0.2500
NOB DO half sat. [mg02/L]	0.5000	0.5000
AAO DO half sat. [mgO2/L]	0.0100	0.0100
Anoxic NO3(->NO2) half sat. [mgN/L]	0.1000	0.1000
Anoxic NO3(->N2) half sat. [mgN/L]	0.0500	0.0500
Anoxic NO2(->N2) half sat. (mgN/L)	0.0100	0.0100
NH3 nutrient half sat. [mgN/L]	0.0050	0.0050
PolyP half sat. [mgP/mgCOD]	0.0100	0.0100
VFA sequestration half sat. [mgCOD/L]	5.0000	5.0000
P uptake half sat. [mgP/L]	0.1500	0.1500
P nutrient half sat. [mgP/L]	0.0010	0.0010
Autotroph CO2 half sat. [mmol/L]	0.1000	0.1000
H2 low/high half sat. [mgCOD/L]	1.0000	1.0000

Propionic acetogens H2 inhibition [mgCOD/L]	5.0000	5.0000
Synthesis anion/cation half sat. [meq/L]	0.0100	0.0100

Common

Name	Default	Value
Biomass volatile fraction (VSS/TSS)	0.9200	0.9200
Endogenous residue volatile fraction (VSS/TSS)	0.9200	0.9200
N in endogenous residue [mgN/mgCOD]	0.0700	0.0700
P in endogenous residue [mgP/mgCOD]	0.0220	0.0220
Endogenous residue COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Particulate substrate COD:VSS ratio [mgCOD/mgVSS]	1.6000	2.2000
Particulate inert COD:VSS ratio [mgCOD/mgVSS]	1.6000	2.2000

AOB

Name	Default	Value
Yield [mgCOD/mgN]	0.1500	0.1500
AOB denite NO2 fraction as TEA [-]	0.5000	0.5000
Byproduct NH4 fraction to N20 [-]	0.0025	0.0025
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

NOB

Name	Default	Value
Yield [mgCOD/mgN]	0.0900	0.0900
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

AAO

Name	Default	Value
Yield [mgCOD/mgN]	0.1140	0.1140
Nitrate production [mgN/mgBiomassCOD]	2.2800	2.2800
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

ОНО

Name	Default	Value
Yield (aerobic) [-]	0.6660	0.6660
Yield (fermentation, low H2) [-]	0.1000	0.1000
Yield (fermentation, high H2) [-]	0.1000	0.1000
H2 yield (fermentation low H2) [-]	0.3500	0.3500
H2 yield (fermentation high H2) [-]	0	0
Propionate yield (fermentation, low H2) [-]	0	0

Propionate yield (fermentation, high H2) [-]	0.7000	0.7000
CO2 yield (fermentation, low H2) [-]	0.7000	0.7000
CO2 yield (fermentation, high H2) [-]	0	0
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Endogenous fraction - aerobic [-]	0.0800	0.0800
Endogenous fraction - anoxic [-]	0.1030	0.1030
Endogenous fraction - anaerobic [-]	0.1840	0.1840
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Yield (anoxic) [-]	0.5400	0.5400
Yield propionic (aerobic) [-]	0.6400	0.6400
Yield propionic (anoxic) [-]	0.4600	0.4600
Yield acetic (aerobic) [-]	0.6000	0.6000
Yield acetic (anoxic) [-]	0.4300	0.4300
Yield methanol (aerobic) [-]	0.5000	0.5000
Adsorp. max. [-]	1.0000	1.0000
Max fraction to N2O at high FNA over nitrate [-]	0.0500	0.0500
Max fraction to N2O at high FNA over nitrite [-]	0.1000	0.1000

Methylotrophs

Name	Default	Value
Yield (anoxic) [-]	0.4000	0.4000
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Max fraction to N2O at high FNA over nitrate [-]	0.1000	0.1000
Max fraction to N2O at high FNA over nitrite [-]	0.1500	0.1500

PAO

Name	Default	Value
Yield (aerobic) [-]	0.6390	0.6390
Yield (anoxic) [-]	0.5200	0.5200
Aerobic P/PHA uptake [mgP/mgCOD]	0.9300	0.9300
Anoxic P/PHA uptake [mgP/mgCOD]	0.3500	0.3500
Yield of PHA on sequestration [-]	0.8890	0.8890
N in biomass [mgN/mgCOD]	0.0700	0.0700
N in sol. inert [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous part. [-]	0.2500	0.2500
Inert fraction of endogenous sol. [-]	0.2000	0.2000
P/Ac release ratio [mgP/mgCOD]	0.5100	0.5100
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Yield of low PP [-]	0.9400	0.9400

Acetogens

Name	Default	Value
Yield [-]	0.1000	0.1000
H2 yield [-]	0.4000	0.4000
CO2 yield [-]	1.0000	1.0000
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

Methanogens

Name	Default	Value
Acetoclastic yield [-]	0.1000	0.1000
Methanol acetoclastic yield [-]	0.1000	0.1000
H2-utilizing yield [-]	0.1000	0.1000
Methanol H2-utilizing yield [-]	0.1000	0.1000
N in acetoclastic biomass [mgN/mgCOD]	0.0700	0.0700
N in H2-utilizing biomass [mgN/mgCOD]	0.0700	0.0700
P in acetoclastic biomass [mgP/mgCOD]	0.0220	0.0220
P in H2-utilizing biomass [mgP/mgCOD]	0.0220	0.0220
Acetoclastic fraction to endog. residue [-]	0.0800	0.0800
H2-utilizing fraction to endog. residue [-]	0.0800	0.0800
Acetoclastic COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
H2-utilizing COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

General

Name	Default	Value
Traine	Doradic	Value
Molecular weight of other anions [mg/mmol]	35.5000	35.5000
Molecular weight of other cations [mg/mmol]	39.1000	39.1000
Mg to P mole ratio in polyphosphate [mmolMg/mmolP]	0.3000	0.3000
Cation to P mole ratio in polyphosphate [meq/mmolP]	0.1500	0.3000
Ca to P mole ratio in polyphosphate [mmolCa/mmolP]	0.0500	0.0500
Cation to P mole ratio in organic phosphate [meq/mmolP]	0.0100	0.0100
Bubble rise velocity (anaerobic digester) [cm/s]	23.9000	23.9000
Bubble Sauter mean diameter (anaerobic digester) [cm]	0.3500	0.3500
Anaerobic digester gas hold-up factor []	1.0000	1.0000

Mass transfer

Name	Default	Value	
KI for H2 [m/d]	17.0000	17.0000	1.0240
KI for CO2 [m/d]	10.0000	10.0000	1.0240
KI for NH3 [m/d]	1.0000	1.0000	1.0240
KI for CH4 [m/d]	8.0000	8.0000	1.0240
KI for N2 [m/d]	15.0000	15.0000	1.0240
KI for N20 [m/d]	8.0000	8.0000	1.0240
KI for O2 [m/d]	13.0000	13.0000	1.0240

Henry's law constants

CO2 [M/atm] 3.4000E-2 3.4000E-2 2400.0000 O2 [M/atm] 1.3000E-3 1.3000E-3 1500.0000 N2 [M/atm] 6.5000E-4 6.5000E-4 1300.0000 N20 [M/atm] 2.5000E-2 2.5000E-2 2600.0000 NH3 [M/atm] 5.8000E+1 5.8000E+1 4100.0000 CH4 [M/atm] 1.4000E-3 1.4000E-3 1600.0000
N2 [M/atm] 6.5000E-4 6.5000E-4 1300.0000 N20 [M/atm] 2.5000E-2 2.5000E-2 2600.0000 NH3 [M/atm] 5.8000E+1 5.8000E+1 4100.0000
N20 [M/atm] 2.5000E-2 2.5000E-2 2600.0000 NH3 [M/atm] 5.8000E+1 5.8000E+1 4100.0000
NH3 [M/atm] 5.8000E+1 5.8000E+1 4100.0000
[,]
CH4 [M/atm] 1 4000F-3 1 4000F-3 1600 0000
1. 1000E 0 1. 1000E 0 1. 1000E 0 1000.0000
H2 [M/atm] 7.8000E-4 7.8000E-4 500.0000

Physico-chemical rates

Name	Default	Value	
Struvite precipitation rate [1/d]	3.000E+10	3.000E+10	1.0240
Struvite redissolution rate [1/d]	3.000E+11	3.000E+11	1.0240
Struvite half sat. [mgTSS/L]	1.0000	1.0000	1.0000
HDP precipitation rate [L/(molP d)]	1.000E+8	1.000E+8	1.0000
HDP redissolution rate [L/(mol P d)]	1.000E+8	1.000E+8	1.0000
HAP precipitation rate [molHDP/(L d)]	5.000E-4	5.000E-4	1.0000

Physico-chemical constants

Name	Default	Value
Struvite solubility constant [mol/L]	6.918E-14	6.918E-14
HDP solubility product [mol/L]	2.750E-22	2.750E-22
HDP half sat. [mgTSS/L]	1.0000	1.0000
Equilibrium soluble PO4 with Al dosing at pH 7 [mgP/L]	0.0100	0.0100
Al to P ratio [molAl/molP]	0.8000	0.8000
Al(OH)3 solubility product [mol/L]	1.259E+9	1.259E+9
AIHPO4+ dissociation constant [mol/L]	7.943E-13	7.943E-13
Equilibrium soluble PO4 with Fe dosing at pH 7 [mgP/L]	0.0100	0.0100
Fe to P ratio [molFe/molP]	1.6000	1.6000
Fe(OH)3 solubility product [mol/L]	0.0500	0.0500
FeH2P04++ dissociation constant [mol/L]	5.012E-22	5.012E-22

Aeration

Name	Default	Value
Alpha (surf) OR Alpha F (diff) [-]	0.5000	0.5000

Beta [-]	0.9500	0.9500
Surface pressure [kPa]	101.3250	101.3250
Fractional effective saturation depth (Fed) [-]	0.3250	0.3250
Supply gas CO2 content [vol. %]	0.0350	0.0350
Supply gas O2 [vol. %]	20.9500	20.9500
Off-gas CO2 [vol. %]	2.0000	2.0000
Off-gas 02 [vol. %]	18.8000	18.8000
Off-gas H2 [vol. %]	0	0
Off-gas NH3 [vol. %]	0	0
Off-gas CH4 [vol. %]	0	0
Surface turbulence factor [-]	2.0000	2.0000
Set point controller gain []	1.0000	1.0000

Modified Vesilind

Name	Default	Value
Maximum Vesilind settling velocity (Vo) [ft/min]	0.387	0.387
Vesilind hindered zone settling parameter (K) $[L/g]$	0.370	0.370
Clarification switching function [mg/L]	100.000	100.000
Specified TSS conc.for height calc. [mg/L]	2500.000	2500.000
Maximum compactability constant [mg/L]	15000.000	15000.000

Double exponential

Name	Default	Value
Maximum Vesilind settling velocity (Vo) [ft/min]	0.934	0.934
Maximum (practical) settling velocity (Vo') [ft/min]	0.615	0.615

Hindered zone settling parameter (Kh) [L/g]	0.400	0.400
Flocculent zone settling parameter (Kf) [L/g]	2.500	2.500
Maximum non-settleable TSS [mg/L]	20.0000	20.0000
Non-settleable fraction [-]	0.0010	0.0010
Specified TSS conc. for height calc. [mg/L]	2500.0000	2500.0000

Emission factors

Name	Default	Value
Carbon dioxide equivalence of nitrous oxide	296.0000	296.0000
Carbon dioxide equivalence of methane	23.0000	23.0000

Biofilm general

Name	Default	Value	
Attachment rate [g / (m2 d)]	80.0000	80.0000	1.0000
Attachment TSS half sat. [mg/L]	100.0000	100.0000	1.0000
Detachment rate [g/(m3 d)]	8.000E+4	8.000E+4	1.0000
Solids movement factor []	10.0000	10.0000	1.0000
Diffusion neta []	0.8000	0.8000	1.0000
Thin film limit [mm]	0.5000	0.5000	1.0000
Thick film limit [mm]	3.0000	3.0000	1.0000
Assumed Film thickness for tank volume correction (temp independent) [mm]	0.7500	0.7500	1.0000
Film surface area to media area ratio - Max.[]	1.0000	1.0000	1.0000
Minimum biofilm conc. for streamer formation [gTSS/m2]	4.0000	4.0000	1.0000

Maximum biofilm concentrations [mg/L]

Name	Default	Value	
Ordinary heterotrophic organisms (OHO)	5.000E+4	5.000E+4	1.0000
Methylotrophs	5.000E+4	5.000E+4	1.0000
Ammonia oxidizing biomass (AOB)	1.000E+5	1.000E+5	1.0000
Nitrite oxidizing biomass (NOB)	1.000E+5	1.000E+5	1.0000
Anaerobic ammonia oxidizers (AAO)	5.000E+4	5.000E+4	1.0000
Polyphosphate accumulating organisms (PAO)	5.000E+4	5.000E+4	1.0000
Propionic acetogens	5.000E+4	5.000E+4	1.0000
Methanogens - acetoclastic	5.000E+4	5.000E+4	1.0000
Methanogens - hydrogenotrophic	5.000E+4	5.000E+4	1.0000
Endogenous products	3.000E+4	3.000E+4	1.0000
Slowly bio. COD (part.)	5000.0000	5000.0000	1.0000
Slowly bio. COD (colloid.)	4000.0000	4000.0000	1.0000
Part. inert. COD	5000.0000	5000.0000	1.0000
Part. bio. org. N	0	0	1.0000
Part. bio. org. P	0	0	1.0000
Part. inert N	0	0	1.0000
Part. inert P	0	0	1.0000
Stored PHA	5000.0000	5000.0000	1.0000
Releasable stored polyP	1.150E+6	1.150E+6	1.0000
Fixed stored polyP	1.150E+6	1.150E+6	1.0000
Readily bio. COD (complex)	0	0	1.0000
Acetate	0	0	1.0000
Propionate	0	0	1.0000
Methanol	0	0	1.0000
Dissolved H2	0	0	1.0000
Dissolved methane	0	0	1.0000
Ammonia N	0	0	1.0000
Sol. bio. org. N	0	0	1.0000

Nitrous Oxide N	0	0	1.0000
Nitrite N	0	0	1.0000
Nitrate N	0	0	1.0000
Dissolved nitrogen gas	0	0	1.0000
PO4-P (Sol. & Me Complexed)	1.000E+10	1.000E+10	1.0000
Sol. inert COD	0	0	1.0000
Sol. inert TKN	0	0	1.0000
ISS Influent	1.300E+6	1.300E+6	1.0000
Struvite	8.500E+5	8.500E+5	1.0000
Hydroxy-dicalcium-phosphate	1.150E+6	1.150E+6	1.0000
Hydroxy-apatite	1.600E+6	1.600E+6	1.0000
Magnesium	0	0	1.0000
Calcium	0	0	1.0000
Metal	1.000E+10	1.000E+10	1.0000
Other Cations (strong bases)	0	0	1.0000
Other Anions (strong acids)	0	0	1.0000
Total CO2	0	0	1.0000
User defined 1	0	0	1.0000
User defined 2	0	0	1.0000
User defined 3	5.000E+4	5.000E+4	1.0000
User defined 4	5.000E+4	5.000E+4	1.0000
Dissolved oxygen	0	0	1.0000

Effective diffusivities [m2/s]

Name	Default	Value	
Ordinary heterotrophic organisms (OHO)	5.000E-14	5.000E-14	1.0290
Methylotrophs	5.000E-14	5.000E-14	1.0290
Ammonia oxidizing biomass (AOB)	5.000E-14	5.000E-14	1.0290

Nitrite oxidizing biomass (NOB)	5.000E-14	5.000E-14	1.0290
Anaerobic ammonia oxidizers (AAO)	5.000E-14	5.000E-14	1.0290
Polyphosphate accumulating organisms (PAO)	5.000E-14	5.000E-14	1.0290
Propionic acetogens	5.000E-14	5.000E-14	1.0290
Methanogens - acetoclastic	5.000E-14	5.000E-14	1.0290
Methanogens - hydrogenotrophic	5.000E-14	5.000E-14	1.0290
Endogenous products	5.000E-14	5.000E-14	1.0290
Slowly bio. COD (part.)	5.000E-14	5.000E-14	1.0290
Slowly bio. COD (colloid.)	5.000E-12	5.000E-12	1.0290
Part. inert. COD	5.000E-14	5.000E-14	1.0290
Part. bio. org. N	5.000E-14	5.000E-14	1.0290
Part. bio. org. P	5.000E-14	5.000E-14	1.0290
Part. inert N	5.000E-14	5.000E-14	1.0290
Part. inert P	5.000E-14	5.000E-14	1.0290
Stored PHA	5.000E-14	5.000E-14	1.0290
Releasable stored polyP	5.000E-14	5.000E-14	1.0290
Fixed stored polyP	5.000E-14	5.000E-14	1.0290
Readily bio. COD (complex)	6.900E-10	6.900E-10	1.0290
Acetate	1.240E-9	1.240E-9	1.0290
Propionate	8.300E-10	8.300E-10	1.0290
Methanol	1.600E-9	1.600E-9	1.0290
Dissolved H2	5.850E-9	5.850E-9	1.0290
Dissolved methane	1.963E-9	1.963E-9	1.0290
Ammonia N	2.000E-9	2.000E-9	1.0290
Sol. bio. org. N	1.370E-9	1.370E-9	1.0290
Nitrous Oxide N	1.607E-9	1.607E-9	1.0290
Nitrite N	2.980E-9	2.980E-9	1.0290
Nitrate N	2.980E-9	2.980E-9	1.0290
Dissolved nitrogen gas	1.900E-9	1.900E-9	1.0290
PO4-P (Sol. & Me Complexed)	2.000E-9	2.000E-9	1.0290
Sol. inert COD	6.900E-10	6.900E-10	1.0290

Sol. inert TKN	6.850E-10	6.850E-10	1.0290
ISS Influent	5.000E-14	5.000E-14	1.0290
Struvite	5.000E-14	5.000E-14	1.0290
Hydroxy-dicalcium-phosphate	5.000E-14	5.000E-14	1.0290
Hydroxy-apatite	5.000E-14	5.000E-14	1.0290
Magnesium	7.200E-10	7.200E-10	1.0290
Calcium	7.200E-10	7.200E-10	1.0290
Metal	4.800E-10	4.800E-10	1.0290
Other Cations (strong bases)	1.440E-9	1.440E-9	1.0290
Other Anions (strong acids)	1.440E-9	1.440E-9	1.0290
Total CO2	1.960E-9	1.960E-9	1.0290
User defined 1	6.900E-10	6.900E-10	1.0290
User defined 2	6.900E-10	6.900E-10	1.0290
User defined 3	5.000E-14	5.000E-14	1.0290
User defined 4	5.000E-14	5.000E-14	1.0290
Dissolved oxygen	2.500E-9	2.500E-9	1.0290

EPS Strength coefficients []

Name	Default	Value	
Ordinary heterotrophic organisms (OHO)	1.0000	1.0000	1.0000
Methylotrophs	1.0000	1.0000	1.0000
Ammonia oxidizing biomass (AOB)	5.0000	1.0000	1.0000
Nitrite oxidizing biomass (NOB)	25.0000	1.0000	1.0000
Anaerobic ammonia oxidizers (AAO)	10.0000	1.0000	1.0000
Polyphosphate accumulating organisms (PAO)	1.0000	1.0000	1.0000
Propionic acetogens	1.0000	1.0000	1.0000
Methanogens - acetoclastic	1.0000	1.0000	1.0000
Methanogens - hydrogenotrophic	1.0000	1.0000	1.0000

Endogenous products	1.0000	1.0000	1.0000
Slowly bio. COD (part.)	1.0000	1.0000	1.0000
Slowly bio. COD (colloid.)	1.0000	1.0000	1.0000
Part. inert. COD	1.0000	1.0000	1.0000
Part. bio. org. N	1.0000	1.0000	1.0000
Part. bio. org. P	1.0000	1.0000	1.0000
Part. inert N	1.0000	1.0000	1.0000
Part. inert P	1.0000	1.0000	1.0000
Stored PHA	1.0000	1.0000	1.0000
Releasable stored polyP	1.0000	1.0000	1.0000
Fixed stored polyP	1.0000	1.0000	1.0000
Readily bio. COD (complex)	0	0	1.0000
Acetate	0	0	1.0000
Propionate	0	0	1.0000
Methanol	0	0	1.0000
Dissolved H2	0	0	1.0000
Dissolved methane	0	0	1.0000
Ammonia N	0	0	1.0000
Sol. bio. org. N	0	0	1.0000
Nitrous Oxide N	0	0	1.0000
Nitrite N	0	0	1.0000
Nitrate N	0	0	1.0000
Dissolved nitrogen gas	0	0	1.0000
PO4-P (Sol. & Me Complexed)	1.0000	1.0000	1.0000
Sol. inert COD	0	0	1.0000
Sol. inert TKN	0	0	1.0000
ISS Influent	0.3300	0.3300	1.0000
Struvite	1.0000	1.0000	1.0000
Hydroxy-dicalcium-phosphate	1.0000	1.0000	1.0000
Hydroxy-apatite	1.0000	1.0000	1.0000
Magnesium	0	0	1.0000

Calcium	0	0	1.0000
Metal	1.0000	1.0000	1.0000
Other Cations (strong bases)	0	0	1.0000
Other Anions (strong acids)	0	0	1.0000
Total CO2	0	0	1.0000
User defined 1	0	0	1.0000
User defined 2	0	0	1.0000
User defined 3	1.0000	1.0000	1.0000
User defined 4	1.0000	1.0000	1.0000
Dissolved oxygen	0	0	1.0000

Meridian Alternative's Analysis version 1

Expansion using selectable 5 stage modified Bardenpho/A2O process

Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

$\frac{\text{To achieve target effluent concentrations, for Bardenpho process:}}{\text{Set BDF IMLR at 200\% influent, Set A2O IMLR at 0\%}}$

Set Swing 1 Aerated, Swing 2a and 2b unaerated.

SRT = 12 days

Acetate flow pace at 0.8% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. All methanol to swing 2a

To achieve target effluent concentrations, for A2O process: Set BDF IMLR at 0% influent, Set A2O IMLR at 400%

Set Swing 1 unaerated, Swing 2a and 2b aerated.

SRT = 12 days

Acetate flow pace at 0.6% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 1.5% of PE flow rate, 1% methanol solution. all methanol to Anoxic 1a

CENTRATE LOAD EQUALIZATION AND OPTIMIZATION

	Permit Li	imits			0.307	1.25	8	10	0.5	
					30-D Ave	Max Day	30-D Ave	30-D Ave	30-D Ave	
	Cen EQ	SRT	Basin Vol	Chem	NH3	NH3	NOx	TN	TP	
Run	hrs	days	Reduced?	Reduced?	mg/L	mg/L	mg/L	mg/L	mg/L	Notes
Bardenpho		12	N	N	0.27	0.63	5.34	7.95	0.41	
CEN EQ_24hr	24	12	N	N	0.27	0.63	5.34	7.95	0.41	check ok!
CEN EQ_7hr	7	12	N	N	0.18	0.34	5.75	8.15	0.42	
CEN EQ_7hr	7	11	N	N	0.24	0.5	5.02	7.54	0.38	
CEN EQ_7hr	7	10	N	N	0.36	0.79	3.91	6.78	0.38	
CEN EQ_7hr	7	10.5	N	N	0.29	0.62	4.52	7.17	0.36	
CEN EQ_7hr_AB1	7	12	Υ	N	0.24	0.49	4.65	7.25	0.44	
CEN EQ_7hr_AB2	7	12	Υ	N	0.82	1.85	1.35	5.9	0.51	
CEN EQ_7hr_AB3	7	12	Υ	N	0.39	0.89	2.69	5.9	0.47	
CEN EQ_7hr_AB4	7	12	Υ	N	0.29	0.62	3.86	6.67	0.45	
CEN EQ_7hr_AB1	7	11	Υ	N	0.34	0.74	3.74	6.65	0.4	
CEN EQ_7hr_M1	7	12	N	Υ	0.21	0.38	7.54	9.98	0.44	
CEN EQ_7hr_AB4_M1	7	12	Υ	Υ	0.31	0.64	5.66	8.54	0.46	
CEN EQ_7hr_AB4_M2	7	12	Υ	Υ	0.3	0.63	4.75	7.59	0.45	Selected

Centrate EQ options

Equalize centrate ammonia load from 12AM to 7AM

- 1. Can reduce SRT from 12 days to 10.5 days
- 2. Can reduce zone Aer2 from 2 MG to 1.25 MG
- 3. Can reduce MeOH from 0.6 MGD to 0.5MGD
- 4. Can reduce zone Aer 2 from 2MG to 1.25 MG and reduce MeOH from 0.06 MGD to 0.057 MGD

Option 4 was best option selected

Adjust Basin Volumes

modified

	Volume MG						
	Bardenpho						
RUN	CEN_EQ	AB1	AB2	AB3	AB4		
Ana1	0.5	0.5	0.5	0.5	0.5		
Anox1a	0.38	0.38	0.38	0.38	0.38		
Anox1b	0.38	0.38	0.38	0.38	0.38		
Swing1	0.5	0.5	0.5	0.5	0.5		
Aer1	1.5	1.5	1	1.25	1.5		
Aer2	2	1.5	1	1.25	1.25		
Swing2a	0.75	0.75	0.75	0.75	0.75		
Swing2b	0.75	0.75	0.75	0.75	0.75		
Aer3	0.5	0.5	0.5	0.5	0.5		

Adjust Methanol Dosing

	Flow Pacing to PE	MeOH Flow
RUN	%	mgd
Bardenpho_CEN_EQ	0.5	0.06
M1	0.4	0.05
M2	0.45	0.057

		Total COD	Total Kjeldahl Nitrogen	Total P	Nitrate N			Alkalinity		Inorganic	Calcium	Magnesium	Dissolved oxygen
Time (days)	Flow	mgCOD/L	mgN/L	mgP/L	mgN/L	рН		mmol/L		S.S. mgISS/L	mg/L	mg/L	mg/L
0.000	0.43789652	1801.802	976.3	529.80576		0	7.9	:	32	264.317882	24.8	2.72	0
	0.43789652	1801.802		529.80576		0	7.9			264.317882	24.8	2.72	
	0.43789652	1801.802		529.80576		0	7.9			264.317882	24.8		
	0.43789652	1801.802	976.3	529.80576		0	7.9			264.317882	24.8		
	0.43789652	1801.802	976.3	529.80576		0	7.9	8	32	264.317882	24.8	2.72	0
0.333	0												
0.417 0.500	0												
0.583	0												
0.667	0												
0.750	0												
0.833	0												
0.917	0												
1.000	0.37719135	1801.802	915.5	529.80576		0	7.9		32	160.192772	24.8	2.72	0
1.083	0.37719135	1801.802	915.5	529.80576		0	7.9		32	160.192772	24.8	2.72	0
	0.37719135	1801.802	915.5	529.80576		0	7.9			160.192772	24.8	2.72	
	0.37719135	1801.802	915.5	529.80576		0	7.9			160.192772	24.8		
	0.37719135	1801.802	915.5	529.80576		0	7.9	8	32	160.192772	24.8	2.72	0
1.333	0												
1.417	0												
1.500	0												
1.583 1.667	0												
1.750	0												
1.833	0												
1.917	0												
	0.37109169	1801.802	865.7	529.80576		0	7.9	8	32	127.518246	24.8	2.72	0
2.083	0.37109169	1801.802	865.7	529.80576		0	7.9	8	32	127.518246	24.8	2.72	0
2.125	0.37109169	1801.802	865.7	529.80576		0	7.9	8	32	127.518246	24.8	2.72	0
2.250	0.37109169	1801.802	865.7	529.80576		0	7.9	8	32	127.518246	24.8	2.72	0
	0.37109169	1801.802	865.7	529.80576		0	7.9	8	32	127.518246	24.8	2.72	0
2.333	0												
2.417	0												
2.500	0												
2.583 2.667	0												
2.750	0												
2.833	0												
2.917	0												
	0.38308793	1801.802	977.3	529.80576		0	7.9	8	32	181.642089	24.8	2.72	0
3.083	0.38308793	1801.802	977.3	529.80576		0	7.9	8	32	181.642089	24.8	2.72	0
3.125	0.38308793	1801.802	977.3	529.80576		0	7.9	8	32	181.642089	24.8	2.72	0
3.250	0.38308793	1801.802	977.3	529.80576		0	7.9			181.642089	24.8	2.72	0
	0.38308793	1801.802	977.3	529.80576		0	7.9	8	32	181.642089	24.8	2.72	0
3.333	0												
3.417	0												
3.500 3.583	0												
3.667	0												
3.750	0												
3.833	0												
3.917	0												
4.000	0.2789805	1801.802	939.1	529.80576		0	7.9	8	32	79.1349048	24.8	2.72	0
4.083	0.2789805	1801.802	939.1	529.80576		0	7.9	8	32	79.1349048	24.8	2.72	0
4.125	0.2789805	1801.802		529.80576		0	7.9			79.1349048	24.8		
4.250	0.2789805	1801.802		529.80576		0	7.9			79.1349048	24.8		
4.292	0.2789805	1801.802	939.1	529.80576		0	7.9	8	32	79.1349048	24.8	2.72	0
4.333	0												
4.417 4.500	0												
4.500	0												
4.565	0												
4.750	0												
4.833	0												
4.917	0												

		Total COD	Total Kjeldahl Nitrogen	Total P	Nitrate N			Alkalinity	_	Calcium	Magnesium		
Time (days)		_	mgN/L	mgP/L	mgN/L	рН		mmol/L	S.S. mgISS/L	_	mg/L	mg/L	
	0.26183965		971.7	529.80576		0	7.9		56.9103224	24.8			0
	0.26183965	1801.802	971.7	529.80576		0	7.9		56.9103224	24.8			0
	0.26183965	1801.802	971.7	529.80576		0	7.9		56.9103224	24.8			0
	0.26183965	1801.802	971.7	529.80576		0	7.9 7.9		56.9103224	24.8			0
5.292	0.26183965	1801.802	971.7	529.80576		U	7.9	82	56.9103224	24.8	2.72		U
5.417	0												
5.500	0												
5.583	0												
5.667	0												
5.750	0												
5.833	0												
5.917	0												
6.000	0.21329618	1801.802	954.4	529.80576		0	7.9	82	56.495922	24.8	2.72		0
6.083	0.21329618	1801.802	954.4	529.80576		0	7.9	82	56.495922	24.8	2.72		0
6.125	0.21329618	1801.802	954.4	529.80576		0	7.9	82	56.495922	24.8	2.72		0
6.250	0.21329618	1801.802	954.4	529.80576		0	7.9	82	56.495922	24.8	2.72		0
6.292	0.21329618	1801.802	954.4	529.80576		0	7.9	82	56.495922	24.8	2.72		0
6.333	0												
6.417	0												
6.500	0												
6.583	0												
6.667	0												
6.750	0												
6.833	0												
6.917	0					_							
7.000	0.2881506	1801.802	941.3	529.80576		0	7.9		141.792798	24.8			0
7.083	0.2881506	1801.802	941.3	529.80576		0	7.9		141.792798	24.8			0
7.125	0.2881506	1801.802	941.3	529.80576		0	7.9		141.792798	24.8			0
7.250	0.2881506	1801.802	941.3	529.80576		0	7.9		141.792798	24.8			0
7.292	0.2881506	1801.802	941.3	529.80576		0	7.9	82	141.792798	24.8	2.72		0
7.333 7.417	0												
7.417	0												
7.583	0												
7.667	0												
7.750	0												
7.833	0												
7.917	0												
8.000	0.2465276	1801.802	956.4	529.80576		0	7.9	82	176.958633	24.8	2.72		0
8.083	0.2465276	1801.802	956.4	529.80576		0	7.9		176.958633	24.8			0
8.125			956.4	529.80576		0	7.9	82	176.958633	24.8			0
8.250	0.2465276	1801.802	956.4	529.80576		0	7.9	82	176.958633	24.8	2.72		0
8.292	0.2465276	1801.802	956.4	529.80576		0	7.9	82	176.958633	24.8	2.72		0
8.333	0												
8.417	0												
8.500	0												
8.583	0												
8.667	0												
8.750	0												
8.833	0												
8.917	0												_
	0.29225996	1801.802	922.4	529.80576		0	7.9		95.5565461	24.8			0
	0.29225996	1801.802	922.4	529.80576		0	7.9		95.5565461	24.8			0
	0.29225996		922.4	529.80576		0	7.9		95.5565461	24.8			0
	0.29225996		922.4	529.80576		0	7.9		95.5565461	24.8			0
	0.29225996		922.4	529.80576		0	7.9	82	95.5565461	24.8	2.72		0
9.333	0												
9.417 9.500	0												
9.583	0												
9.667	0												
9.750	0												
9.833	0												
9.917	0												
3.327	Ü												

		Total COD	Total Kjeldahl Nitrogen	Total P	Nitrate N			Alkalinity	-	Inorganic	Calcium	Magnesium	Dissolved oxygen
Time (days)	Flow	mgCOD/L	mgN/L	mgP/L	mgN/L	рН		mmol/L		S.S. mgISS/L	mg/L	mg/L	mg/L
10.000	0.31955219	1801.802	970.2	529.80576		0	7.9	8	32	151.727613	24.8	2.72	0
	0.31955219	1801.802	970.2	529.80576		0	7.9			151.727613	24.8		
	0.31955219	1801.802	970.2	529.80576		0	7.9			151.727613	24.8	2.72	
	0.31955219	1801.802	970.2	529.80576		0	7.9			151.727613	24.8		
	0.31955219	1801.802	970.2	529.80576		0	7.9	8	32	151.727613	24.8	2.72	0
10.333	0												
10.417	0												
10.500 10.583	0												
10.667	0												
10.750	0												
10.833	0												
10.917	0												
11.000	0.36608102	1801.802	942.1	529.80576		0	7.9	8	32	215.811924	24.8	2.72	0
11.083	0.36608102	1801.802	942.1	529.80576		0	7.9	8	32	215.811924	24.8	2.72	0
	0.36608102	1801.802	942.1	529.80576		0	7.9			215.811924	24.8	2.72	
	0.36608102	1801.802	942.1	529.80576		0	7.9			215.811924	24.8		
	0.36608102	1801.802	942.1	529.80576		0	7.9	8	32	215.811924	24.8	2.72	0
11.333	0												
11.417	0												
11.500	0												
11.583 11.667	0												
11.750	0												
11.833	0												
11.917	0												
12.000	0.3415931	1801.802	944.2	529.80576		0	7.9	8	32	283.844444	24.8	2.72	0
12.083	0.3415931	1801.802	944.2	529.80576		0	7.9	8	32	283.844444	24.8	2.72	0
12.125	0.3415931	1801.802	944.2	529.80576		0	7.9	8	32	283.844444	24.8	2.72	0
12.250	0.3415931	1801.802	944.2	529.80576		0	7.9	8	32	283.844444	24.8		
12.292	0.3415931	1801.802	944.2	529.80576		0	7.9	8	32	283.844444	24.8	2.72	0
12.333	0												
12.417	0												
12.500 12.583	0												
12.565	0												
12.750	0												
12.833	0												
12.917	0												
13.000	0.32749548	1801.802	935.0	529.80576		0	7.9	8	32	274.253405	24.8	2.72	0
	0.32749548	1801.802	935.0	529.80576		0	7.9			274.253405	24.8		
	0.32749548	1801.802	935.0	529.80576		0	7.9			274.253405	24.8		
	0.32749548	1801.802	935.0	529.80576		0	7.9			274.253405	24.8		
	0.32749548	1801.802	935.0	529.80576		0	7.9	8	32	274.253405	24.8	2.72	0
13.333 13.417	0												
13.500	0												
13.583	0												
13.667	0												
13.750	0												
13.833	0												
13.917	0												
	0.34717684	1801.802	989.8	529.80576		0	7.9			239.772423	24.8		
	0.34717684	1801.802	989.8	529.80576		0	7.9			239.772423	24.8		
	0.34717684	1801.802	989.8	529.80576		0	7.9			239.772423	24.8		
	0.34717684 0.34717684	1801.802 1801.802	989.8 989.8	529.80576 529.80576		0 0	7.9 7.9			239.772423 239.772423	24.8 24.8		
14.292	0.34/1/684	1001.002	303.0	J43.0U3/0		U	7.9	č	,,	233.112423	24.8	2.72	U
14.333	0												
14.500	0												
14.583	0												
14.667	0												
14.750	0												
14.833	0												
14.917	0												

Time (days)	Flore	Total COD	Total Kjeldahl Nitrogen	Total P	Nitrate N			Alkalinity	J	Calcium	Magnesium		
Time (days)		_	mgN/L	mgP/L	mgN/L	рН		mmol/L	S.S. mgISS/L	_	mg/L	mg/L	_
	0.31767991	1801.802	946.6	529.80576		0	7.9		249.915461	24.8			0
	0.31767991	1801.802	946.6	529.80576		0	7.9		249.915461	24.8			0
	0.31767991	1801.802	946.6	529.80576		0	7.9		249.915461	24.8			0
	0.31767991	1801.802	946.6	529.80576		0	7.9		249.915461	24.8			0
	0.31767991	1801.802	946.6	529.80576		0	7.9	82	249.915461	24.8	2.72		0
15.333	0												
15.417	0												
15.500	0												
15.583 15.667	0												
	0												
15.750 15.833	0												
15.917	0												
	0.34305758	1801.802	947.2	529.80576		0	7.9	82	231.893132	24.8	2.72		0
	0.34305758	1801.802	947.2	529.80576		0	7.9		231.893132	24.8			0
	0.34305758	1801.802	947.2	529.80576		0	7.9		231.893132	24.8			0
	0.34305758	1801.802	947.2	529.80576		0	7.9		231.893132	24.8			0
	0.34305758	1801.802	947.2	529.80576		0	7.9		231.893132	24.8			0
16.333	0												
16.417	0												
16.500	0												
16.583	0												
16.667	0												
16.750	0												
16.833	0												
16.917	0												
	0.29311305	1801.802	975.8	529.80576		0	7.9		161.824108	24.8	2.72		0
	0.29311305	1801.802	975.8	529.80576		0	7.9		161.824108	24.8			0
	0.29311305	1801.802	975.8	529.80576		0	7.9		161.824108	24.8			0
	0.29311305	1801.802	975.8	529.80576		0	7.9		161.824108	24.8			0
	0.29311305	1801.802	975.8	529.80576		0	7.9	82	161.824108	24.8	2.72		0
17.333	0												
17.417 17.500	0												
17.583	0												
17.565	0												
17.750	0												
17.833	0												
17.917	0												
18.000	0.2962044	1801.802	1039.4	529.80576		0	7.9	82	155.664391	24.8	2.72		0
18.083	0.2962044	1801.802	1039.4	529.80576		0	7.9	82	155.664391	24.8	2.72		0
18.125	0.2962044	1801.802	1039.4	529.80576		0	7.9	82	155.664391	24.8	2.72		0
18.250	0.2962044	1801.802	1039.4	529.80576		0	7.9	82	155.664391	24.8	2.72		0
18.292	0.2962044	1801.802	1039.4	529.80576		0	7.9	82	155.664391	24.8	2.72		0
18.333	0												
18.417	0												
18.500	0												
18.583	0												
18.667	0												
18.750	0												
18.833 18.917	0												
	0.22328356	1801.802	1052.2	529.80576		0	7.9	82	214.728131	24.8	2.72		0
	0.22328356		1052.2	529.80576		0	7.9		214.728131	24.8			0
	0.22328356		1052.2	529.80576		0	7.9		214.728131	24.8			0
	0.22328356		1052.2	529.80576		0	7.9		214.728131	24.8			0
	0.22328356		1052.2	529.80576		0	7.9		214.728131	24.8			0
19.333	0												
19.417	0												
19.500	0												
19.583	0												
19.667	0												
19.750	0												
19.833	0												
19.917	0												

		Total COD	Total Kjeldahl Nitrogen	Total P	Nitrate N			Alkalinity		J	Calcium	Magnesium	
Time (days)	Flow	mgCOD/L	mgN/L	mgP/L	mgN/L	рН		mmol/L		S.S. mgISS/L	mg/L	mg/L	mg/L
20.000				529.80576		0	7.9			187.935926	24.8		
20.083	0.2329057	1801.802		529.80576		0	7.9			187.935926	24.8		
20.125	0.2329057	1801.802		529.80576		0	7.9			187.935926	24.8		
20.250	0.2329057	1801.802	985.0	529.80576		0	7.9			187.935926	24.8		
20.292	0.2329057	1801.802	985.0	529.80576		0	7.9	;	82	187.935926	24.8	2.72	0
20.333	0												
20.417	0												
20.500	0												
20.583	0												
20.667	0												
20.750	0												
20.833	0												
20.917	0 20704002	1001 002	020.6	E20 90E76		0	7.0		ດາ	120 127122	24.0	272	0
	0.20704903 0.20704903	1801.802 1801.802	939.6 939.6	529.80576 529.80576		0	7.9 7.9			128.137123 128.137123	24.8 24.8		
	0.20704903	1801.802	939.6	529.80576		0	7.9			128.137123	24.6		
	0.20704903	1801.802	939.6	529.80576		0	7.9			128.137123	24.8		
	0.20704903	1801.802	939.6	529.80576		0	7.9			128.137123	24.8		
21.232	0.20704903	1801.802	333.0	329.80370		U	7.5	'	02	120.13/123	24.0	2.72	U
21.333	0												
21.500	0												
21.583	0												
21.667	0												
21.750	0												
21.833	0												
21.917	0												
22.000	0.24389604	1801.802	938.9	529.80576		0	7.9	;	82	99.0254652	24.8	2.72	0
22.083	0.24389604	1801.802	938.9	529.80576		0	7.9	:	82	99.0254652	24.8	2.72	0
	0.24389604	1801.802	938.9	529.80576		0	7.9	:	82	99.0254652	24.8		
	0.24389604	1801.802	938.9	529.80576		0	7.9			99.0254652	24.8		
	0.24389604	1801.802	938.9	529.80576		0	7.9	;	82	99.0254652	24.8	2.72	0
22.333	0												
22.417	0												
22.500	0												
22.583	0												
22.667 22.750	0												
22.833	0												
22.917	0												
	0.21606118	1801.802	923.5	529.80576		0	7.9	:	82	210.617904	24.8	2.72	0
	0.21606118	1801.802	923.5	529.80576		0	7.9			210.617904	24.8		
	0.21606118	1801.802		529.80576		0	7.9			210.617904	24.8		
23.250	0.21606118	1801.802	923.5	529.80576		0	7.9	:	82	210.617904	24.8	2.72	0
23.292	0.21606118	1801.802	923.5	529.80576		0	7.9	:	82	210.617904	24.8	2.72	0
23.333	0												
23.417	0												
23.500	0												
23.583	0												
23.667	0												
23.750	0												
23.833	0												
23.917		1001 002	000.4	F30 90F7C		0	7.0		0.3	222 161155	24.0	2.72	0
	0.33069352 0.33069352	1801.802 1801.802	900.4 900.4	529.80576 529.80576		0 0	7.9 7.9			232.161155 232.161155	24.8 24.8		
	0.33069352	1801.802		529.80576		0	7.9			232.161155	24.8		
	0.33069352	1801.802		529.80576		0	7.9			232.161155	24.8		
	0.33069352	1801.802		529.80576		0	7.9			232.161155	24.8		
24.333	0								-			-	,
24.417	0												
24.500	0												
24.583	0												
24.667	0												
24.750	0												
24.833	0												
24.917	0												

		Total COD	Total Kjeldahl Nitrogen	Total P	Nitrate N			Alkalinity		Inorganic	Calcium	Magnesium	Dissolved oxygen
Time (days)	Flow	mgCOD/L	mgN/L	mgP/L	mgN/L	рН		mmol/L		S.S. mgISS/L	mg/L	mg/L	mg/L
25.000	0.29928528	1801.802	862.1	529.80576		0	7.9		82	260.189688	24.8	2.72	0
25.083	0.29928528	1801.802	862.1	529.80576		0	7.9		82	260.189688	24.8	2.72	0
	0.29928528	1801.802		529.80576		0	7.9		82	260.189688	24.8	2.72	
	0.29928528	1801.802	862.1	529.80576		0	7.9			260.189688	24.8		
	0.29928528	1801.802	862.1	529.80576		0	7.9		82	260.189688	24.8	2.72	0
25.333	0												
25.417 25.500	0												
25.583	0												
25.667	0												
25.750	0												
25.833	0												
25.917	0												
26.000	0.2804956	1801.802	833.5	529.80576		0	7.9		82	193.228479	24.8	2.72	0
26.083	0.2804956	1801.802	833.5	529.80576		0	7.9		82	193.228479	24.8	2.72	0
26.125	0.2804956	1801.802	833.5	529.80576		0	7.9		82	193.228479	24.8	2.72	0
26.250	0.2804956	1801.802		529.80576		0	7.9			193.228479	24.8		
26.292	0.2804956	1801.802	833.5	529.80576		0	7.9		82	193.228479	24.8	2.72	0
26.333	0												
26.417	0												
26.500	0												
26.583 26.667	0												
26.750	0												
26.833	0												
26.917	0												
	0.15872815	1801.802	872.1	529.80576		0	7.9		82	132.301189	24.8	2.72	0
27.083	0.15872815	1801.802	872.1	529.80576		0	7.9		82	132.301189	24.8	2.72	0
27.125	0.15872815	1801.802	872.1	529.80576		0	7.9		82	132.301189	24.8	2.72	0
27.250	0.15872815	1801.802	872.1	529.80576		0	7.9		82	132.301189	24.8	2.72	0
	0.15872815	1801.802	872.1	529.80576		0	7.9		82	132.301189	24.8	2.72	0
27.333	0												
27.417	0												
27.500	0												
27.583 27.667	0												
27.750	0												
27.833	0												
27.917	0												
	0.25176037	1801.802	855.5	529.80576		0	7.9		82	118.35595	24.8	2.72	0
28.083	0.25176037	1801.802	855.5	529.80576		0	7.9		82	118.35595	24.8	2.72	0
28.125	0.25176037	1801.802	855.5	529.80576		0	7.9		82	118.35595	24.8	2.72	0
	0.25176037	1801.802	855.5	529.80576		0	7.9		82	118.35595	24.8	2.72	
	0.25176037	1801.802	855.5	529.80576		0	7.9		82	118.35595	24.8	2.72	0
28.333	0												
28.417	0												
28.500 28.583	0												
28.667	0												
28.750	0												
28.833	0												
28.917	0												
29.000	0.46389956	1801.802	811.7	529.80576		0	7.9		82	251.949803	24.8	2.72	0
	0.46389956	1801.802	811.7	529.80576		0	7.9			251.949803	24.8	2.72	
	0.46389956	1801.802		529.80576		0	7.9			251.949803	24.8		
	0.46389956	1801.802		529.80576		0	7.9			251.949803	24.8		
	0.46389956	1801.802	811.7	529.80576		0	7.9		82	251.949803	24.8	2.72	0
29.333	0												
29.417 29.500	0												
29.583	0												
29.667	0												
29.750	0												
29.833	0												
29.917	0												

Winter (Dynamic)
Equalize TKN Load and/or COD:TKN Ratio

Manual Entries

Centrate Pumping

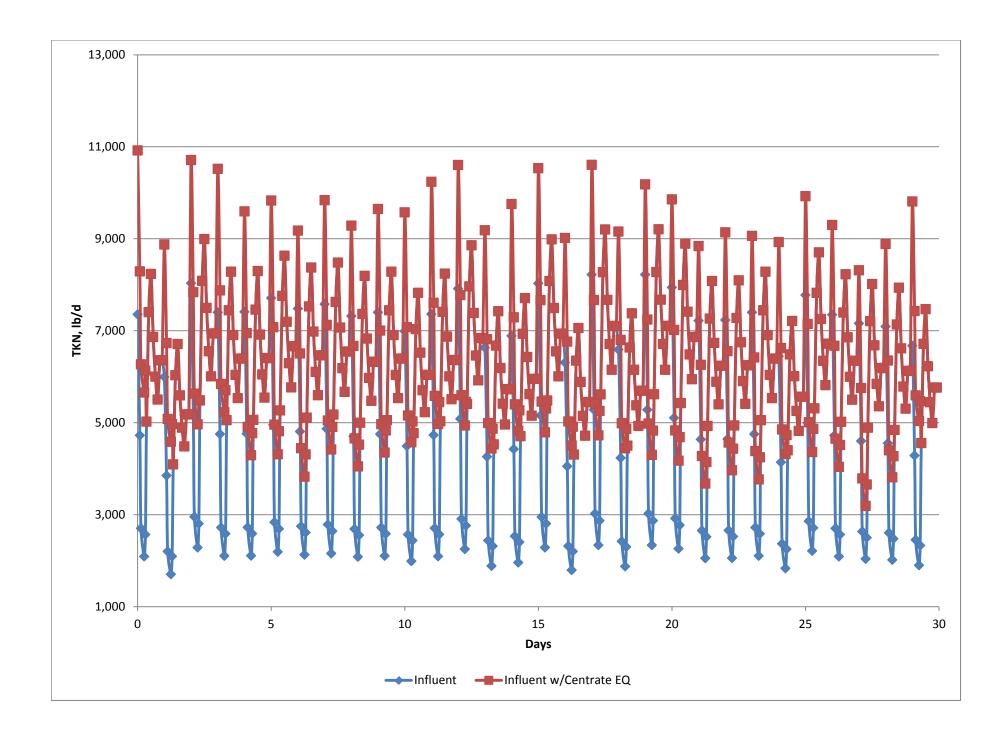
12:00:00 AM

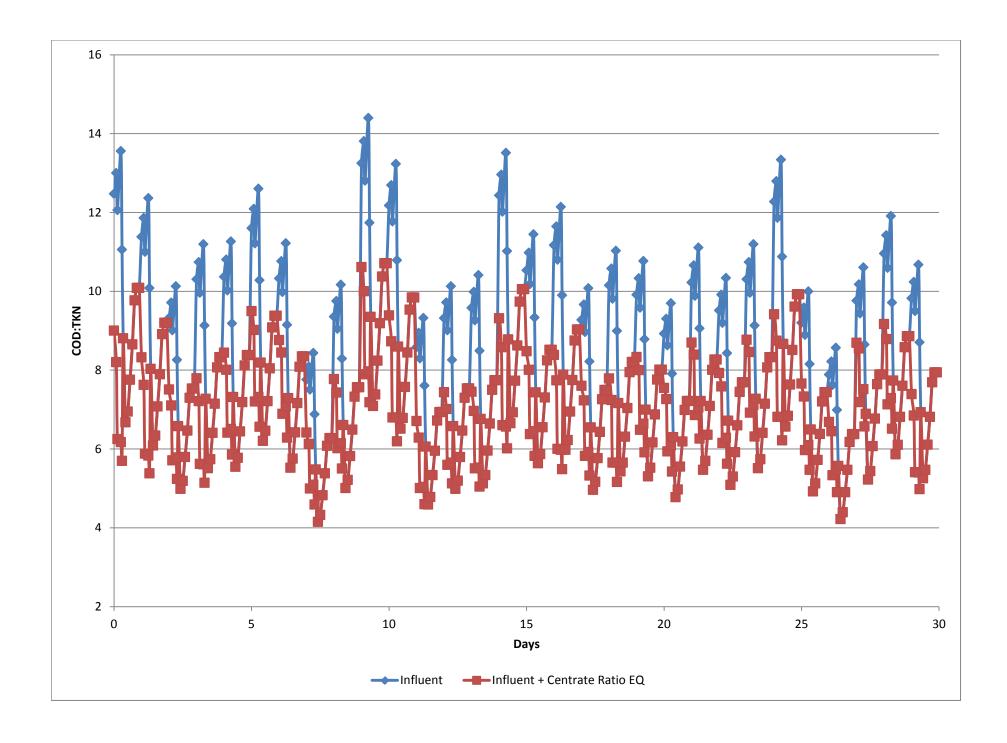
7:30:00 AM

											Manual Entries	_					•
				In	fluent (PE)							EQ Ce	entrate		l:	nfluent + EQ Centra	te
					Flow	COD	TKN		COD Load	COD:TKN	TKN Load	Flow	TKN	COD Load	TKN Load	COD Load	COD:TKN
	_		Time Check	Time Value	mgd	mg/L	mg/L	lb/d	lb/d		lb/d	mgd	mg/L	lb/d	lb/d	lb/d	
0.0	0	0.0	12:00:00 AM	12:00:00 AM	18.5	595.6	47.7	7,353	91,728	12.5	3565.4	0.438	976.3	6580.3	10,919	98,308	9.0
0.1	0	3.0	2:00:00 AM 3:00:00 AM	2:00:00 AM 3:00:00 AM	12.1 6.9	606.2 562.2	46.6 46.6	4,724 2,702	61,422 32,587	13.0 12.1	3565.4 3565.4	0.438 0.438	976.3 976.3	6580.3 6580.3	8,289 6,268	68,003 39,168	8. 6.
0.1	0	6.0	6:00:00 AM	6:00:00 AM	5.4	628.9	46.4	2,702	28,343	13.6	3565.4	0.438	976.3	6580.3	5,656	34,923	6.3
0.3	0	7.0	7:00:00 AM	7:00:00 AM	6.5	522.8	47.3	2,566	28,369	11.1	3565.4	0.438	976.3	6580.3	6,132	34,950	5.7
0.3	0	8.0	8:00:00 AM	8:00:00 AM	13.1	404.6	45.9	5,023	44,233	8.8	0.0	0.000	0.00	0.0	5,023	44,233	8.8
0.4	0	10.0	10:00:00 AM	10:00:00 AM	16.8	353.1	52.9	7,401	49,402	6.7	0.0	0.000		0.0	7,401	49,402	6.7
0.5	0		12:00:00 PM	12:00:00 PM	17.7	388.0	55.8	8,232	57,216	7.0	0.0	0.000		0.0	8,232	57,216	7.0
0.6	_	14.0	2:00:00 PM	2:00:00 PM	15.0	424.3	54.7	6,862	53,239	7.8	0.0	0.000		0.0	6,862	53,239	7.8
0.7	0		4:00:00 PM	4:00:00 PM	13.2	471.3	54.5	6,002	51,929	8.7	0.0	0.000		0.0	6,002	51,929	8.
0.8	0	18.0	6:00:00 PM	6:00:00 PM	12.5	516.8	52.9	5,502	53,745	9.8	0.0	0.000		0.0	5,502	53,745	9.8
0.8	0	20.0	8:00:00 PM	8:00:00 PM	13.9 13.9	551.6	54.7 54.7	6,354 6,354	64,082	10.1 10.1	0.0	0.000		0.0	6,354 6,354	64,082 64,082	10.: 10.:
1.0	1	24.0	10:00:00 PM 12:00:00 AM	10:00:00 PM 12:00:00 AM	16.0	551.6 511.3	44.9	5,993	64,082 68,193	10.1	2879.8	0.000	915.5	5668.1	8,873	73,861	8.3
1.1	1	26.0	2:00:00 AM	2:00:00 AM	10.5	520.4	43.9	3,850	45,663	11.4	2879.8	0.377	915.5	5668.1	6,730	51,331	7.6
1.1	1	27.0	3:00:00 AM	3:00:00 AM	6.0	482.7	43.9	2,202	24,226	11.0	2879.8	0.377	915.5	5668.1	5,082	29,894	5.9
1.3	1	30.0	6:00:00 AM	6:00:00 AM	4.7	539.9	43.7	1,704	21,071	12.4	2879.8	0.377	915.5	5668.1	4,584	26,739	5.8
1.3	1	31.0	7:00:00 AM	7:00:00 AM	5.6	448.8	44.5	2,091	21,091	10.1	2879.8	0.377	915.5	5668.1	4,971	26,759	5.4
1.3	1	32.0	8:00:00 AM	8:00:00 AM	11.4	347.4	43.2	4,094	32,884	8.0	0.0	0.000		0.0	4,094	32,884	8.0
1.4	1	34.0	10:00:00 AM	10:00:00 AM	14.5	303.1	49.8	6,032	36,727	6.1	0.0	0.000		0.0	6,032	36,727	6.1
1.5	1	36.0	12:00:00 PM	12:00:00 PM	15.3	333.1	52.5	6,709	42,536	6.3	0.0	0.000		0.0	6,709	42,536	6.3
1.6	1		2:00:00 PM	2:00:00 PM	13.0	364.3	51.5	5,593	39,579	7.1	0.0	0.000		0.0	5,593	39,579	7.1
1.7	1	40.0	4:00:00 PM	4:00:00 PM	11.4	404.6	51.3	4,891	38,605	7.9	0.0	0.000		0.0	4,891	38,605	7.9
1.8	1	42.0 44.0	6:00:00 PM 8:00:00 PM	6:00:00 PM 8:00:00 PM	10.8 12.1	443.6 473.6	49.8	4,484 5,178	39,956 47,641	8.9 9.2	0.0	0.000		0.0	4,484 5,178	39,956 47,641	8.9 9.7
1.9	1	46.0	10:00:00 PM	10:00:00 PM	12.1	473.6	51.5 51.5	5,178	47,641	9.2	0.0	0.000		0.0	5,178	47,641	9
2.0	2	48.0	12:00:00 AM	12:00:00 AM	18.3	491.1	52.7	8,031	74,837	9.3	2679.2	0.371	865.7	5576.4	10,710	80,413	7.5
2.1	2		2:00:00 AM	2:00:00 AM	12.0	499.8	51.5	5,159	50,112	9.7	2679.2	0.371	865.7	5576.4	7,839	55,688	7.3
2.1		51.0	3:00:00 AM	3:00:00 AM	6.9	463.6	51.5	2,951	26,586	9.0	2679.2	0.371	865.7	5576.4	5,630	32,163	5.7
2.3	2	54.0	6:00:00 AM	6:00:00 AM	5.3	518.6	51.2	2,284	23,123	10.1	2679.2	0.371	865.7	5576.4	4,963	28,700	5.8
2.3	2	55.0	7:00:00 AM	7:00:00 AM	6.4	431.1	52.2	2,803	23,145	8.3	2679.2	0.371	865.7	5576.4	5,482	28,722	5.2
2.3	2	56.0	8:00:00 AM	8:00:00 AM	13.0	333.6	50.7	5,486	36,088	6.6	0.0	0.000		0.0	5,486	36,088	6.6
2.4	2	58.0	10:00:00 AM	10:00:00 AM	16.6	291.1	58.4	8,083	40,304	5.0	0.0	0.000		0.0	8,083	40,304	5.0
2.5	2	60.0	12:00:00 PM	12:00:00 PM	17.5	319.9	61.6	8,991	46,680	5.2	0.0	0.000		0.0	8,991	46,680	5.2
2.6	2		2:00:00 PM	2:00:00 PM	14.9 13.1	349.9 388.6	60.4	7,495 6,555	43,435 42,366	5.8 6.5	0.0	0.000		0.0	7,495 6,555	43,435 42,366	5.8
2.7	2	64.0 66.0	4:00:00 PM 6:00:00 PM	4:00:00 PM 6:00:00 PM	12.3	426.1	60.1 58.4	6,009	43,848	7.3	0.0	0.000		0.0	6,009	43,848	6.5 7.3
2.8	2	68.0	8:00:00 PM	8:00:00 PM	13.8	454.8	60.4	6,940	52,282	7.5	0.0	0.000		0.0	6,940	52,282	7.5
2.9	2	70.0	10:00:00 PM	10:00:00 PM	13.8	454.8	60.4	6,940	52,282	7.5	0.0	0.000		0.0	6,940	52,282	7.5
3.0	3		12:00:00 AM	12:00:00 AM	19.7	464.9	45.1	7,398	76,219	10.3	3122.5	0.383	977.3	5756.7	10,520	81,976	7.8
3.1	3	74.0	2:00:00 AM	2:00:00 AM	12.9	473.2	44.1	4,752	51,037	10.7	3122.5	0.383	977.3	5756.7	7,875	56,794	7.2
3.1	3	75.0	3:00:00 AM	3:00:00 AM	7.4	438.9	44.1	2,718	27,078	10.0	3122.5	0.383	977.3	5756.7	5,841	32,834	5.6
3.3	3	78.0	6:00:00 AM	6:00:00 AM	5.8	491.0	43.9	2,103	23,551	11.2	3122.5	0.383	977.3	5756.7	5,226	29,307	5.6
3.3	3		7:00:00 AM	7:00:00 AM	6.9	408.1	44.7	2,582	23,573	9.1	3122.5	0.383	977.3	5756.7	5,704	29,330	5.1
3.3	3	80.0	8:00:00 AM	8:00:00 AM	14.0	315.9	43.4	5,053	36,754	7.3	0.0	0.000		0.0	5,053	36,754	7.3
3.4	3		10:00:00 AM	10:00:00 AM	17.9	275.6	50.0	7,445	41,049	5.5	0.0	0.000		0.0	7,445	41,049	5.5
3.5	3		12:00:00 PM	12:00:00 PM	18.8	302.9	52.8	8,281	47,542	5.7	0.0	0.000	+	0.0	8,281 6,904	47,542 44,237	5.7
3.6	3		2:00:00 PM 4:00:00 PM	2:00:00 PM 4:00:00 PM	16.0 14.1	331.2 367.9	51.7 51.5	6,904 6,038	44,237 43,149	6.4 7.1	0.0	0.000		0.0	6,904	44,237	6.4
3.8	3	90.0	6:00:00 PM	6:00:00 PM	13.3	403.4	50.0	5,535	44,658	8.1	0.0	0.000		0.0	5,535	44,658	8.3
3.8	3	92.0	8:00:00 PM	8:00:00 PM	14.8	430.6	51.7	6,392	53,248	8.3	0.0	0.000		0.0	6,392	53,248	8.3
3.9	3	94.0	10:00:00 PM	10:00:00 PM	14.8	430.6	51.7	6,392	53,248	8.3	0.0	0.000		0.0	6,392	53,248	8.3
4.0	4		12:00:00 AM	12:00:00 AM	17.4	530.3	51.2	7,410	76,804	10.4	2185.0	0.279	939.1	4192.2	9,595	80,996	8.4
4.1	4	98.0	2:00:00 AM	2:00:00 AM	11.4	539.8	50.0	4,760	51,429	10.8	2185.0	0.279	939.1	4192.2	6,945	55,621	8.
4.1	4	99.0	3:00:00 AM	3:00:00 AM	6.5	500.6	50.0	2,723	27,285	10.0	2185.0	0.279	939.1	4192.2	4,908	31,478	6.
4.3	4	102.0	6:00:00 AM	6:00:00 AM	5.1	560.0	49.7	2,107	23,731	11.3	2185.0	0.279	939.1	4192.2	4,292	27,924	6
4.3	4	103.0	7:00:00 AM	7:00:00 AM	6.1	465.5	50.7	2,586	23,754	9.2	2185.0	0.279	939.1	4192.2	4,771	27,946	5.
4.3	4	104.0	8:00:00 AM	8:00:00 AM	12.3	360.3	49.2	5,061	37,037	7.3	0.0	0.000		0.0	5,061	37,037	7.
4.4	4		10:00:00 AM	10:00:00 AM	15.8	314.4	56.7	7,458	41,364	5.5	0.0	0.000		0.0	7,458	41,364	5.
4.5 4.6	4		12:00:00 PM 2:00:00 PM	12:00:00 PM 2:00:00 PM	16.6 14.1	345.4 377.8	59.8 58.6	8,295 6,915	47,907 44,577	5.8 6.4	0.0	0.000	+	0.0	8,295 6,915	47,907 44,577	5.1
4.6	_	110.0	4:00:00 PM	4:00:00 PM	14.1	377.8 419.7	58.6	6,915 6,047	43,480	7.2	0.0	0.000		0.0	6,915	44,577	6.4
4.7	4	114.0	6:00:00 PM	6:00:00 PM	11.7	460.1	56.7	5,544	45,001	8.1	0.0	0.000	<u> </u>	0.0	5,544	45,001	8.1
	4	116.0	8:00:00 PM	8:00:00 PM	13.1	491.2	58.6	6,402	53,656	8.4	0.0	0.000		0.0	6,402	53,656	8.4

		С	entrate			
	Flow	TKN	TKN Load	COD	COD Load	COD:TKN
Time (days)	mgd	mg/L	lb/d	mg/L	lb/d	
0	0.15	976.3	1188.5	1801.802	2193.4	1.8
1	0.13	915.5	959.9	1801.802	1889.4	2.0
2	0.12	865.7	893.1	1801.802	1858.8	2.1
3	0.13	977.3	1040.8	1801.802	1918.9	1.8
4	0.09	939.1	728.3	1801.802	1397.4	1.9
5	0.09	971.7	707.3	1801.802	1311.6	1.9
6	0.07	954.4	565.9	1801.802	1068.4	1.9
7	0.10	941.3	754.0	1801.802	1443.3	1.9
8	0.08	956.4	655.4	1801.802	1234.9	1.9
9	0.10	922.4	749.4	1801.802	1463.9	2.0
10	0.11	970.2	861.9	1801.802	1600.6	1.9
11	0.12	942.1	958.8	1801.802	1833.7	1.9
12	0.11	944.2	896.7	1801.802	1711.0	1.9
13	0.11	935.0	851.3	1801.802	1640.4	1.9
14	0.12	989.8	955.3	1801.802	1739.0	1.8
15	0.11	946.6	836.0	1801.802	1591.3	1.9
16	0.11	947.2	903.4	1801.802	1718.4	1.9
17	0.10	975.8	795.1	1801.802	1468.2	1.8
18	0.10	1039.4	855.9	1801.802	1483.7	1.7
19	0.07	1052.2	653.2	1801.802	1118.4	1.7
20	0.08	985.0	637.7	1801.802	1166.6	1.8
21	0.07	939.6	540.8	1801.802	1037.1	1.9
22	0.08	938.9	636.6	1801.802	1221.7	1.9
23	0.07	923.5	554.7	1801.802	1082.3	2.0
24	0.11	900.4	827.8	1801.802	1656.4	2.0
25	0.10	862.1	717.2	1801.802	1499.1	2.1
26	0.09	833.5	649.9	1801.802	1405.0	2.2
27	0.05	872.1	384.8	1801.802	795.1	2.1
28	0.08	855.5	598.7	1801.802	1261.1	2.1
29	0.15	811.7	1046.8	1801.802	2323.7	2.2

4.9	4 118.0 10:00:00	M 10:00:00 PM	13.1	491.2	58.6	6,402	53,656	8.4	0.0	0.000		0.0	6,402	53,656	8.4
5.0	5 120.0 12:00:00 /		18.9	565.8	48.8	7,708	89,411	11.6	2121.9	0.262	971.7	3934.7	9,830	93,345	9.5
5.1	5 122.0 2:00:00 A		12.5	575.9	47.6	4,952	59,871	12.1	2121.9	0.262	971.7	3934.7	7,074	63,805	9.0
5.1	5 123.0 3:00:00 A	3:00:00 AM	7.1	534.1	47.6	2,833	31,764	11.2	2121.9	0.262	971.7	3934.7	4,955	35,699	7.2
5.3	5 126.0 6:00:00 A		5.5	597.5	47.4	2,192	27,627	12.6	2121.9	0.262	971.7	3934.7	4,314	31,561	7.3
5.3	5 127.0 7:00:00 A		6.7	496.7	48.3	2,690	27,653	10.3	2121.9	0.262	971.7	3934.7	4,812	31,587	6.6
5.3	5 128.0 8:00:00 A		13.4	384.4	46.9	5,265	43,116	8.2	0.0	0.000		0.0	5,265	43,116	8.2
5.4	5 130.0 10:00:00 /		17.2	335.4	54.0	7,758	48,154	6.2	0.0	0.000		0.0	7,758	48,154	6.2
5.5 5.6	5 132.0 12:00:00 I 5 134.0 2:00:00 P		18.1 15.4	368.6 403.1	57.0 55.9	8,629 7,194	55,770 51,894	6.5 7.2	0.0	0.000		0.0	8,629 7,194	55,770 51,894	6.5 7.2
5.7	5 136.0 4:00:00 P		13.4	447.7	55.6	6,291	50,617	8.0	0.0	0.000		0.0	6,291	50,617	8.0
5.8	5 138.0 6:00:00 P		12.8	490.9	54.0	5,767	52,387	9.1	0.0	0.000		0.0	5,767	52,387	9.1
5.8	5 140.0 8:00:00 P		14.3	524.0	55.9	6,661	62,464	9.4	0.0	0.000		0.0	6,661	62,464	9.4
5.9	5 142.0 10:00:00 1	M 10:00:00 PM	14.3	524.0	55.9	6,661	62,464	9.4	0.0	0.000		0.0	6,661	62,464	9.4
6.0	6 144.0 12:00:00 /	M 12:00:00 AM	17.3	534.8	51.8	7,480	77,230	10.3	1697.8	0.213	954.4	3205.2	9,177	80,435	8.8
6.1	6 146.0 2:00:00 A		11.4	544.3	50.6	4,805	51,714	10.8	1697.8	0.213	954.4	3205.2	6,503	54,920	8.4
6.1	6 147.0 3:00:00 A		6.5	504.8	50.6	2,749	27,437	10.0	1697.8	0.213	954.4	3205.2	4,446	30,642	6.9
6.3	6 150.0 6:00:00 A		5.1	564.7	50.3	2,127	23,863	11.2	1697.8	0.213	954.4	3205.2	3,825	27,068	7.1
6.3	6 151.0 7:00:00 A 6 152.0 8:00:00 A		6.1 12.3	469.4 363.3	51.3 49.8	2,610 5,109	23,886 37,242	9.2 7.3	1697.8 0.0	0.213 0.000	954.4	3205.2 0.0	4,308 5,109	27,091 37,242	6.3 7.3
6.4	6 154.0 10:00:00 A		15.7	317.0	49.8 57.4	7,528	41,594	5.5	0.0	0.000		0.0	7,528	41,594	5.5
6.5	6 156.0 12:00:00 1		16.6	348.3	60.5	8,373	48,173	5.8	0.0	0.000		0.0	8,373	48,173	5.8
6.6	6 158.0 2:00:00 P		14.1	381.0	59.3	6,980	44,824	6.4	0.0	0.000		0.0	6,980	44,824	6.4
6.7	6 160.0 4:00:00 P	4:00:00 PM	12.4	423.2	59.1	6,105	43,721	7.2	0.0	0.000		0.0	6,105	43,721	7.2
6.8	6 162.0 6:00:00 P		11.7	464.0	57.4	5,596	45,251	8.1	0.0	0.000		0.0	5,596	45,251	8.1
6.8	6 164.0 8:00:00 P		13.1	495.3	59.3	6,463	53,954	8.3	0.0	0.000		0.0	6,463	53,954	8.3
6.9	6 166.0 10:00:00		13.1	495.3	59.3	6,463	53,954	8.3	0.0	0.000	04: 5	0.0	6,463	53,954	8.3
7.0	7 168.0 12:00:00 A		17.1 11.2	413.3 420.7	53.3 52.0	7,576 4,867	58,794	7.8 8.1	2262.0 2262.0	0.288 0.288	941.3 941.3	4330.0 4330.0	9,838 7,129	63,124 43,699	6.4
7.1	7 170.0 2:00:00 A 7 171.0 3:00:00 A		6.4	390.2	52.0	2,784	39,369 20,887	7.5	2262.0	0.288	941.3	4330.0	7,129 5,046	25,217	5.0
7.1	7 174.0 6:00:00 A		5.0	436.4	51.8	2,764	18,166	8.4	2262.0	0.288	941.3	4330.0	4,416	22,496	5.1
7.3	7 174.0 0.00.00 A		6.0	362.8	52.8	2,644	18,184	6.9	2262.0	0.288	941.3	4330.0	4,906	22,430	4.6
7.3	7 176.0 8:00:00 A		12.1	280.8	51.3	5,175	28,351	5.5	0.0	0.000	0.1210	0.0	5,175	28,351	5.5
7.4	7 178.0 10:00:00 /	M 10:00:00 AM	15.5	245.0	59.0	7,625	31,664	4.2	0.0	0.000		0.0	7,625	31,664	4.2
7.5	7 180.0 12:00:00 1	M 12:00:00 PM	16.3	269.2	62.3	8,481	36,673	4.3	0.0	0.000		0.0	8,481	36,673	4.3
7.6	7 182.0 2:00:00 P		13.9	294.5	61.0	7,070	34,124	4.8	0.0	0.000		0.0	7,070	34,124	4.8
7.7	7 184.0 4:00:00 P		12.2	327.1	60.8	6,183	33,284	5.4	0.0	0.000		0.0	6,183	33,284	5.4
7.8	7 186.0 6:00:00 P		11.5	358.6	59.0	5,668	34,448	6.1	0.0	0.000		0.0	5,668	34,448	6.1
7.8 7.9	7 188.0 8:00:00 P 7 190.0 10:00:00 I		12.9 12.9	382.8 382.8	61.0 61.0	6,546 6,546	41,074 41,074	6.3	0.0	0.000		0.0	6,546 6,546	41,074 41,074	6.3
8.0	8 192.0 12:00:00 /	VI 10.00.00 PIVI	12.9	302.0	01.0			0.5	0.0	0.000		0.0	0,340		
		M 12.00.00 AM	16.6	/195.1	52.9		68 470	9.4	1966 3	0.247	956.4	3704.6	9 284	· · · · · · · · · · · · · · · · · · ·	
8.1			16.6 10.9	495.1 503.9	52.9 51.7	7,318	68,470 45,849	9.4 9.8	1966.3 1966.3	0.247 0.247	956.4 956.4	3704.6 3704.6	9,284 6,667	72,175	7.8
8.1 8.1	8 194.0 2:00:00 A 8 195.0 3:00:00 A	1 2:00:00 AM	16.6 10.9 6.2	495.1 503.9 467.3	52.9 51.7 51.7		68,470 45,849 24,325	9.4 9.8 9.0	1966.3 1966.3 1966.3	0.247 0.247 0.247	956.4 956.4 956.4	3704.6 3704.6 3704.6	9,284 6,667 4,655	· · · · · · · · · · · · · · · · · · ·	
	8 194.0 2:00:00 A	2:00:00 AM 3:00:00 AM	10.9	503.9	51.7	7,318 4,701	45,849	9.8	1966.3	0.247	956.4	3704.6	6,667	72,175 49,553	7.8 7.4
8.1 8.3 8.3	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 198.0 6:00:00 A 8 199.0 7:00:00 A	2:00:00 AM 3:00:00 AM 6:00:00 AM	10.9 6.2	503.9 467.3	51.7 51.7	7,318 4,701 2,689	45,849 24,325	9.8 9.0 10.2 8.3	1966.3 1966.3	0.247 0.247 0.247 0.247	956.4 956.4	3704.6 3704.6	6,667 4,655	72,175 49,553 28,029	7.8 7.4 6.0 6.1 5.5
8.1 8.3 8.3 8.3	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 198.0 6:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A	2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM	10.9 6.2 4.9 5.8 11.8	503.9 467.3 522.8 434.6 336.3	51.7 51.7 51.4 52.4 50.9	7,318 4,701 2,689 2,081 2,554 4,998	45,849 24,325 21,156 21,176 33,018	9.8 9.0 10.2 8.3 6.6	1966.3 1966.3 1966.3 1966.3 0.0	0.247 0.247 0.247 0.247 0.000	956.4 956.4 956.4	3704.6 3704.6 3704.6 3704.6 0.0	6,667 4,655 4,047 4,520 4,998	72,175 49,553 28,029 24,861 24,881 33,018	7.8 7.4 6.0 6.1 5.5 6.6
8.1 8.3 8.3 8.3 8.4	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 198.0 6:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 A	1 2:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 8:00:00 AM M 10:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1	503.9 467.3 522.8 434.6 336.3 293.5	51.7 51.7 51.4 52.4 50.9 58.6	7,318 4,701 2,689 2,081 2,554 4,998 7,365	45,849 24,325 21,156 21,176 33,018 36,876	9.8 9.0 10.2 8.3 6.6 5.0	1966.3 1966.3 1966.3 1966.3 0.0	0.247 0.247 0.247 0.247 0.000 0.000	956.4 956.4 956.4	3704.6 3704.6 3704.6 3704.6 0.0	6,667 4,655 4,047 4,520 4,998 7,365	72,175 49,553 28,029 24,861 24,881 33,018 36,876	7.8 7.4 6.0 6.1 5.5 6.6 5.0
8.1 8.3 8.3 8.3 8.4 8.5	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 198.0 6:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 A 8 204.0 12:00:00 B	1 2:00:00 AM 1 3:00:00 AM 2 6:00:00 AM 3 7:00:00 AM 4 7:00:00 AM 4 8:00:00 AM 5 10:00:00 AM 6 10:00:00 AM 7 10:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9	503.9 467.3 522.8 434.6 336.3 293.5 322.5	51.7 51.7 51.4 52.4 50.9 58.6 61.9	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192	45,849 24,325 21,156 21,176 33,018 36,876 42,709	9.8 9.0 10.2 8.3 6.6 5.0	1966.3 1966.3 1966.3 1966.3 0.0 0.0	0.247 0.247 0.247 0.247 0.000 0.000	956.4 956.4 956.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0	6,667 4,655 4,047 4,520 4,998 7,365 8,192	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2
8.1 8.3 8.3 8.3 8.4 8.5 8.6	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 198.0 6:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 A 8 204.0 12:00:00 B 8 206.0 2:00:00 B	1 2:00:00 AM 1 3:00:00 AM 2 6:00:00 AM 3 7:00:00 AM 4 8:00:00 AM M 10:00:00 AM M 12:00:00 PM 1 2:00:00 PM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0	0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000	956.4 956.4 956.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2
8.1 8.3 8.3 8.3 8.4 8.5 8.6 8.7	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 198.0 6:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 A 8 204.0 12:00:00 B 8 206.0 2:00:00 P 8 208.0 4:00:00 P	1 2:00:00 AM 1 3:00:00 AM 2 6:00:00 AM 1 7:00:00 AM 2 8:00:00 AM 3 10:00:00 AM 4 10:00:00 AM 4 12:00:00 PM 4 10:00:00 PM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0	0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000	956.4 956.4 956.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5
8.1 8.3 8.3 8.3 8.4 8.5 8.6 8.7 8.8	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 198.0 6:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 A 8 204.0 12:00:00 B 8 206.0 2:00:00 B 8 208.0 4:00:00 B 8 210.0 6:00:00 B	1 2:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 8:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 4:00:00 PM 1 6:00:00 PM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0	0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.000	956.4 956.4 956.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3
8.1 8.3 8.3 8.3 8.4 8.5 8.6 8.7	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 198.0 6:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 A 8 204.0 12:00:00 B 8 206.0 2:00:00 B 8 208.0 4:00:00 B 8 210.0 6:00:00 B	1 2:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 2 10:00:00 AM 2 10:00:00 AM 3 10:00:00 PM 4 10:00:00 PM 1 4:00:00 PM 1 8:00:00 PM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0	0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000	956.4 956.4 956.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5
8.1 8.3 8.3 8.3 8.4 8.5 8.6 8.7 8.8	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 198.0 6:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 A 8 204.0 12:00:00 B 8 206.0 2:00:00 B 8 208.0 4:00:00 B 8 212.0 8:00:00 B	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 4:00:00 PM 1 8:00:00 PM 1 8:00:00 PM 1 10:00:00 PM 1 10:00:00 PM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	956.4 956.4 956.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 6:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 204.0 12:00:00 B 8 208.0 4:00:00 P 8 212.0 8:00:00 P 8 212.0 8:00:00 P 8 214.0 10:00:00 D 9 216.0 12:00:00 A	1 2:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 4:00:00 PM 1 8:00:00 PM 1 10:00:00 PM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 17.5 11.5	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 458.5 671.2 683.1	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 7,398 4,752	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 97,996 65,619	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 13.2 13.8	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	956.4 956.4 956.4 956.4 956.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 6:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 204.0 12:00:00 B 8 208.0 4:00:00 P 8 210.0 6:00:00 P 8 212.0 8:00:00 P 8 214.0 10:00:00 P 9 216.0 12:00:00 A	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 4:00:00 PM 1 8:00:00 PM 1 10:00:00 AM 1 10:00:00 AM 1 10:00:00 AM 1 10:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 17.5 11.5 6.6	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 458.5 671.2 683.1 633.6	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 7,398 4,752 2,718	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 97,996 65,619 34,814	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 13.2 13.8 12.8	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2	0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	956.4 956.4 956.4 956.4 956.4 922.4 922.4 922.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.1 9.3	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 6:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 204.0 12:00:00 B 8 208.0 4:00:00 P 8 212.0 8:00:00 P 8 212.0 8:00:00 P 8 214.0 10:00:00 P 9 216.0 12:00:00 A 9 219.0 3:00:00 A	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 4:00:00 PM 1 8:00:00 PM 1 10:00:00 PM 1 10:00:00 PM 1 2:00:00 AM 1 3:00:00 AM 1 10:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 12.5 17.5 6.6 5.1	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 458.5 671.2 683.1 633.6 708.7	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5 49.5	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 7,398 4,752 2,718 2,103	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 97,996 65,619 34,814 30,279	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 13.2 13.8 12.8	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2	0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292	956.4 956.4 956.4 956.4 956.4 922.4 922.4 922.4 922.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0
8.1 8.3 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.1 9.3 9.3	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 A 8 204.0 12:00:00 P 8 208.0 4:00:00 P 8 212.0 8:00:00 P 8 212.0 8:00:00 P 8 214.0 10:00:00 P 9 216.0 12:00:00 A 9 219.0 3:00:00 A 9 222.0 6:00:00 A	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 4:00:00 PM 1 8:00:00 PM 1 10:00:00 PM 1 10:00:00 PM 1 3:00:00 AM 1 12:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 12.5 17.5 6.6 5.1 6.2	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 458.5 671.2 683.1 633.6 708.7 589.2	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5 49.5 49.2 50.2	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 7,398 4,752 2,718 2,103 2,582	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 97,996 65,619 34,814 30,279 30,308	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 13.2 13.8 12.8 14.4 11.7	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2	0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292	956.4 956.4 956.4 956.4 956.4 922.4 922.4 922.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352 4,830	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.1 9.3 9.3	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 204.0 12:00:00 P 8 208.0 4:00:00 P 8 210.0 6:00:00 P 8 212.0 8:00:00 P 8 214.0 10:00:00 A 9 216.0 12:00:00 A 9 219.0 3:00:00 A 9 222.0 6:00:00 A 9 223.0 7:00:00 A	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 4:00:00 PM 1 10:00:00 PM 1 10:00:00 PM 1 2:00:00 AM 1 3:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 12.5 17.5 6.6 5.1 6.2 12.4	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 671.2 683.1 633.6 708.7 589.2 456.0	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5 49.2 50.2 48.8	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 7,398 4,752 2,718 2,103 2,582 5,053	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 47,834 97,996 65,619 34,814 30,279 30,308 47,256	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 13.2 13.8 12.8 14.4 11.7 9.4	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2 0.0	0.247 0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292 0.292 0.292 0.000	956.4 956.4 956.4 956.4 956.4 922.4 922.4 922.4 922.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352 4,830 5,053	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700 47,256	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0 7.2 9.4
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.1 9.3 9.3 9.3	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 204.0 12:00:00 P 8 208.0 4:00:00 P 8 210.0 6:00:00 P 8 212.0 8:00:00 P 8 214.0 10:00:00 A 9 216.0 12:00:00 A 9 219.0 3:00:00 A 9 222.0 6:00:00 A 9 223.0 7:00:00 A 9 224.0 8:00:00 A	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 4:00:00 PM 1 10:00:00 PM 1 10:00:00 PM 1 2:00:00 AM 1 10:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 17.5 6.6 5.1 6.2 12.4 15.9	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 458.5 671.2 683.1 633.6 708.7 589.2 456.0 397.9	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5 49.5 49.2 50.2	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 7,398 4,752 2,718 2,103 2,582 5,053 7,445	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 47,834 97,996 65,619 34,814 30,279 30,308 47,256 52,777	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 13.2 13.8 12.8 14.4 11.7 9.4 7.1	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2 0.0 0.0	0.247 0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292 0.292 0.000 0.000	956.4 956.4 956.4 956.4 956.4 922.4 922.4 922.4 922.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4391.8 4391.8 4391.8 4391.8 0.0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352 4,830 5,053 7,445	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700 47,256 52,777	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0 7.2 9.4 7.1
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.1 9.3 9.3	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 204.0 12:00:00 P 8 208.0 4:00:00 P 8 210.0 6:00:00 P 8 212.0 8:00:00 P 8 214.0 10:00:00 A 9 216.0 12:00:00 A 9 219.0 3:00:00 A 9 222.0 6:00:00 A 9 223.0 7:00:00 A 9 224.0 8:00:00 A	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 4:00:00 PM 1 10:00:00 PM 1 10:00:00 PM 1 10:00:00 PM 1 10:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 12.5 17.5 6.6 5.1 6.2 12.4	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 671.2 683.1 633.6 708.7 589.2 456.0	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5 49.2 50.2 48.8	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 7,398 4,752 2,718 2,103 2,582 5,053	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 47,834 97,996 65,619 34,814 30,279 30,308 47,256	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 13.2 13.8 12.8 14.4 11.7 9.4	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2 0.0	0.247 0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292 0.292 0.292 0.000	956.4 956.4 956.4 956.4 956.4 922.4 922.4 922.4 922.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 9,646 7,001 4,967 4,352 4,830 5,053 7,445 8,281	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700 47,256	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0 7.2 9.4
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.1 9.3 9.3 9.3 9.4	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 A 8 204.0 12:00:00 P 8 208.0 4:00:00 P 8 212.0 8:00:00 P 8 214.0 10:00:00 A 9 218.0 2:00:00 A 9 222.0 6:00:00 A 9 222.0 6:00:00 A 9 224.0 8:00:00 A 9 224.0 8:00:00 A 9 224.0 8:00:00 A	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 4:00:00 PM 1 8:00:00 PM 1 10:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 17.5 6.6 5.1 6.2 12.4 15.9 16.8	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 671.2 683.1 633.6 708.7 589.2 456.0 397.9	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5 49.5 49.2 50.2 48.8 56.1 59.2	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 7,398 4,752 2,718 2,103 2,582 5,053 7,445 8,281	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 97,996 65,619 34,814 30,279 30,308 47,256 52,777 61,125	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 13.2 13.8 12.8 14.4 11.7 9.4 7.1	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2 0.0 0.0 0.0	0.247 0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292 0.292 0.000 0.000 0.000	956.4 956.4 956.4 956.4 956.4 922.4 922.4 922.4 922.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4391.8 4391.8 4391.8 4391.8 0.0 0.0 0.0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352 4,830 5,053 7,445	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700 47,256 52,777 61,125	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0 7.2 9.4 7.1
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.1 9.3 9.3 9.3 9.4 9.5 9.6	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 A 8 204.0 12:00:00 P 8 208.0 4:00:00 P 8 212.0 8:00:00 P 8 214.0 10:00:00 A 9 218.0 2:00:00 A 9 229.0 6:00:00 A 9 229.0 7:00:00 A 9 229.0 10:00:00 A 9 229.0 10:00:00 A 9 229.0 12:00:00 A	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 4:00:00 PM 1 8:00:00 PM 1 10:00:00 AM 1 12:00:00 PM 1 10:00:00 PM 1 10:00:00 AM 1 10:00:00 AM 1 12:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 17.5 6.6 5.1 6.2 12.4 15.9 16.8 14.3	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 671.2 683.1 633.6 708.7 589.2 456.0 397.9 437.2 478.2	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5 49.2 50.2 48.8 56.1 59.2 58.0	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 7,398 4,752 2,718 2,103 2,582 5,053 7,445 8,281 6,904	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 47,834 97,996 65,619 34,814 30,279 30,308 47,256 52,777 61,125 56,877	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 13.2 13.8 12.8 14.4 11.7 9.4 7.1 7.4 8.2	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2 0.0 0.0 0.0 0.0	0.247 0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292 0.292 0.000 0.000 0.000 0.000	956.4 956.4 956.4 956.4 956.4 922.4 922.4 922.4 922.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4391.8 4391.8 4391.8 4391.8 0.0 0.0 0.0 0.0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352 4,830 5,053 7,445 8,281 6,904	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700 47,256 52,777 61,125 56,877	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 10.6 10.0 7.9 8.0 7.2 9.4 7.1 7.4 8.2
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.1 9.3 9.3 9.3 9.4 9.5 9.6 9.7 9.8	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 204.0 12:00:00 B 8 208.0 4:00:00 P 8 212.0 8:00:00 A 8 212.0 8:00:00 A 9 216.0 12:00:00 A 9 223.0 6:00:00 A 9 224.0 8:00:00 A 9 224.0 8:00:00 A 9 224.0 8:00:00 A 9 224.0 8:00:00 A 9 228.0 12:00:00 A	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 3:00:00 PM 1 10:00:00 AM 1 10:00:00 PM 1 3:00:00 PM 1 10:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 17.5 16.6 5.1 6.2 12.4 15.9 16.8 14.3 12.5 11.8 13.2	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 671.2 683.1 633.6 708.7 589.2 456.0 397.9 437.2 478.2 531.1 582.4 621.6	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.6 60.6 50.7 49.5 49.2 50.2 48.8 56.1 59.2 58.0 57.8	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 7,398 4,752 2,718 2,103 2,582 5,053 7,445 8,281 6,004 6,038 5,535 6,392	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 47,834 97,996 65,619 34,814 30,279 30,308 47,256 52,777 61,125 56,877 55,477	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 13.2 13.8 12.8 14.4 11.7 9.4 7.1 7.4 8.2 9.2 10.4 10.7	1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2 0.0 0.0 0.0 0.0 0.0	0.247 0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292 0.292 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	956.4 956.4 956.4 956.4 956.4 922.4 922.4 922.4 922.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4391.8 4391.8 4391.8 4391.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352 4,830 5,053 7,445 8,281 6,904 6,038 5,535 6,392	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700 47,256 52,777 61,125 56,877 55,477 57,418	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0 7.2 9.4 7.1 7.4 8.2 9.2 10.4
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.1 9.3 9.3 9.3 9.4 9.5 9.6 9.7 9.8 9.9	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 206.0 2:00:00 B 8 210.0 6:00:00 B 8 212.0 8:00:00 B 8 212.0 8:00:00 A 9 216.0 12:00:00 A 9 222.0 6:00:00 A 9 222.0 6:00:00 A 9 224.0 8:00:00 A 9 224.0 8:00:00 A 9 228.0 10:00:00 A 9 228.0 10:00:00 A 9 228.0 10:00:00 A 9 228.0 12:00:00 A 9 228.0 12:00:00 A 9 228.0 12:00:00 A 9 228.0 12:00:00 A 9 230.0 2:00:00 B 9 230.0 2:00:00 B 9 234.0 6:00:00 B 9 236.0 8:00:00 B 9 236.0 8:00:00 B	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 3:00:00 AM 1 10:00:00 PM 1 10:00:00 PM 1 10:00:00 AM 1 10:00:00 PM 1 10:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 17.5 16.6 5.1 6.2 12.4 15.9 16.8 14.3 12.5 11.8 13.2	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 671.2 683.1 633.6 708.7 589.2 456.0 397.9 437.2 478.2 531.1 582.4 621.6 621.6	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 50.7 49.5 49.5 49.2 50.2 48.8 56.1 59.2 58.0 57.8 56.1	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 7,398 4,752 2,718 2,103 2,582 5,053 7,445 8,281 6,038 5,535 6,392 6,392	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 97,996 65,619 34,814 30,279 30,308 47,256 52,777 61,125 56,877 55,477 57,418 68,461 68,461	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 13.2 13.8 12.8 14.4 11.7 9.4 7.1 7.4 8.2 9.2 10.4 10.7	1966.3 1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2 2248.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.247 0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292 0.292 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	956.4 956.4 956.4 956.4 956.4 922.4 922.4 922.4 922.4 922.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352 4,830 5,053 7,445 8,281 6,904 6,038 5,535 6,392 6,392	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700 47,256 52,777 61,125 56,877 55,477 57,418 68,461	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0 7.2 9.4 7.1 7.4 8.2 9.2 10.4 10.7
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.1 9.3 9.3 9.3 9.4 9.5 9.6 9.7 9.8 9.8 9.9 10.0	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 204.0 12:00:00 B 8 208.0 4:00:00 P 8 210.0 6:00:00 P 8 212.0 8:00:00 P 8 214.0 10:00:00 A 9 216.0 12:00:00 A 9 219.0 3:00:00 A 9 222.0 6:00:00 A 9 223.0 7:00:00 A 9 224.0 8:00:00 A 9 225.0 10:00:00 A 9 228.0 12:00:00 A 9 230.0 2:00:00 P 9 234.0 6:00:00 P	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 10:00:00 AM 1 10:00:00 PM 1 10:00:00 AM 1 10:00:00 PM 1 10:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 12.5 17.5 11.5 6.6 5.1 6.2 12.4 15.9 16.8 14.3 12.5 11.8 13.2 13.2 17.8	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 671.2 683.1 633.6 708.7 589.2 456.0 397.9 437.2 478.2 531.1 582.4 621.6 621.6 572.3	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5 49.5 49.2 50.2 48.8 56.1 59.2 58.0 58.0 58.0 47.0	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 7,398 4,752 2,718 2,103 2,582 5,053 7,445 8,281 6,904 6,038 5,535 6,392 6,392 6,392 6,392	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 97,996 65,619 34,814 30,279 30,308 47,256 52,777 61,125 56,877 55,477 55,477 57,418 68,461 68,461 85,075	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 13.2 13.8 12.8 14.4 11.7 9.4 7.1 7.4 8.2 9.2 10.4 10.7 10.7 12.2	1966.3 1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2 2248.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.247 0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292 0.292 0.000	956.4 956.4 956.4 956.4 956.4 922.4 922.4 922.4 922.4 922.4 922.4 922.4	3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352 4,830 5,053 7,445 8,281 6,904 6,038 5,535 6,392 6,392 6,392	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700 47,256 52,777 61,125 56,877 55,478 57,418 68,461 68,461	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0 7.2 9.4 7.1 7.4 8.2 9.2 10.4 10.7 9.4
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.1 9.3 9.3 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 10.1	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 204.0 12:00:00 B 8 208.0 4:00:00 P 8 210.0 6:00:00 P 8 212.0 8:00:00 P 8 214.0 10:00:00 A 9 216.0 12:00:00 A 9 219.0 3:00:00 A 9 222.0 6:00:00 A 9 223.0 7:00:00 A 9 224.0 8:00:00 A 9 224.0 8:00:00 A 9 225.0 10:00:00 A 9 226.0 10:00:00 A 9 230.0 2:00:00 P 9 234.0 6:00:00 P	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 10:00:00 PM 1 10:00:00 AM 1 10:00:00 PM 1 10:00:00 PM 1 10:00:00 PM 1 10:00:00 PM 1 10:00:00 AM 1 10:00:00 PM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 12.5 17.5 6.6 5.1 6.2 12.4 15.9 16.8 14.3 12.5 11.8 13.2 13.2 17.8	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 671.2 683.1 633.6 708.7 589.2 456.0 397.9 437.2 478.2 531.1 582.4 621.6 621.6 572.3 582.5	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 50.7 49.5 49.5 49.2 50.2 48.8 56.1 59.2 58.0 58.0 47.0 45.9	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 7,398 4,752 2,718 2,103 2,582 5,053 7,445 8,281 6,904 6,038 5,535 6,392 6,392 6,392 6,392 6,987 4,489	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 97,996 65,619 34,814 30,279 30,308 47,256 52,777 61,125 56,877 55,477 55,477 55,471 68,461 85,075 56,968	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 13.2 13.8 12.8 14.4 11.7 9.4 7.1 7.4 8.2 9.2 10.4 10.7 10.7 12.2 12.7	1966.3 1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2 2248.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.247 0.247 0.247 0.247 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292 0.292 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.320 0.320	956.4 956.4 956.4 956.4 956.4 922.4 922.4 922.4 922.4 922.4 922.4 922.4 922.4 922.4	3704.6 3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4391.8 4391.8 4391.8 4391.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352 4,830 5,053 7,445 8,281 6,9048 6,0048 5,535 6,392 6,392 9,573 7,074	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700 47,256 52,777 61,125 56,877 55,477 57,418 68,461 68,461 89,877 61,769	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0 7.2 9.4 7.1 7.4 8.2 9.2 10.4 10.7 9.4 8.7
8.1 8.3 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.8 8.9 9.0 9.1 9.1 9.3 9.3 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.1	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 204.0 12:00:00 B 8 208.0 4:00:00 B 8 212.0 8:00:00 B 8 212.0 8:00:00 B 8 214.0 10:00:00 A 9 216.0 12:00:00 A 9 219.0 3:00:00 A 9 222.0 6:00:00 A 9 222.0 6:00:00 A 9 222.0 6:00:00 A 9 222.0 6:00:00 A 9 222.0 10:00:00 A 9 222.0 10:00:00 A 9 223.0 7:00:00 A 9 224.0 8:00:00 B 9 232.0 4:00:00 B 9 234.0 6:00:00 B 9 238.0 10:00:00 B 10 240.0 12:00:00 B 10 242.0 2:00:00 B	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 10:00:00 AM 1 10:00:00 PM 1 10:00:00 AM 1 10:00:00 PM 1 10:00:00 PM 1 10:00:00 AM 1 10:00:00 PM 1 10:00:00 AM 1 10:00:00 AM 1 10:00:00 PM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 12.5 12.5 17.5 16.6 5.1 6.2 12.4 15.9 16.8 14.3 12.5 11.8 13.2 13.2 17.8 11.7 6.7	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 671.2 683.1 633.6 708.7 589.2 456.0 397.9 437.2 478.2 531.1 582.4 621.6 621.6 572.3 582.5 540.3	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5 49.2 50.2 48.8 56.1 59.2 58.0 57.8 56.1 58.0 58.0 47.0 45.9 45.9	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 7,398 4,752 2,718 2,103 2,582 5,053 7,445 8,281 6,904 6,038 5,535 6,392 6,392 6,392 6,987 4,489 2,568	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 97,996 65,619 34,814 30,279 30,308 47,256 52,777 61,125 56,877 55,477 57,418 68,461 68,461 85,075 56,968 30,224	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 13.2 13.8 12.8 14.4 11.7 9.4 7.1 7.4 8.2 9.2 10.4 10.7 10.7 12.2 12.7 11.8	1966.3 1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2 2248.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.247 0.247 0.247 0.247 0.247 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292 0.292 0.000	956.4 956.4 956.4 956.4 956.4 920.4	3704.6 3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4391.8 4391.8 4391.8 4391.8 4391.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352 4,830 5,053 7,445 8,281 6,903 6,903 6,932 6,392 6,392 6,392 9,573 7,074 5,153	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700 47,256 52,777 61,125 56,877 55,477 57,418 68,461 68,461 89,877 61,769 35,026	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0 7.2 9.4 7.1 7.4 8.2 9.2 10.4 10.7 10.7 9.4 8.7 6.8
8.1 8.3 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.8 8.9 9.0 9.1 9.1 9.3 9.3 9.3 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.1 10.3	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 204.0 12:00:00 B 8 208.0 4:00:00 B 8 212.0 8:00:00 B 8 212.0 8:00:00 B 8 212.0 8:00:00 A 9 218.0 12:00:00 A 9 219.0 3:00:00 A 9 222.0 6:00:00 A 9 223.0 7:00:00 A 9 224.0 8:00:00 A 9 225.0 10:00:00 A 9 226.0 10:00:00 B 9 232.0 4:00:00 B 9 232.0 4:00:00 B 9 234.0 6:00:00 B 9 234.0 6:00:00 B 9 234.0 6:00:00 B 9 234.0 6:00:00 B 9 236.0 8:00:00 B 9 236.0 8:00:00 B 9 238.0 10:00:00 B 9 238.0 10:00:00 B 9 238.0 10:00:00 B 10 240.0 12:00:00 B 10 243.0 3:00:00 B	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 4:00:00 PM 1 10:00:00 AM 1 10:00:00 AM 1 10:00:00 PM 1 4:00:00 PM 1 4:00:00 PM 1 10:00:00 AM 1 10:00:00 PM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 11.2 12.5 12.5 17.5 6.6 5.1 6.2 12.4 15.9 16.8 14.3 12.5 11.8 13.2 13.2 17.8 11.7 6.7 5.2	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 671.2 683.1 633.6 708.7 589.2 456.0 397.9 437.2 478.2 531.1 582.4 621.6 621.6 572.3 582.5 540.3 604.4	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5 49.2 50.2 48.8 56.1 59.2 58.0 57.8 56.1 59.2 58.0 47.0 45.9 45.9 45.9	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 7,398 4,752 2,718 2,103 2,582 5,053 7,445 8,281 6,904 6,038 5,535 6,392 6,392 6,392 6,987 4,489 2,568 1,987	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 97,996 65,619 34,814 30,279 30,308 47,256 52,777 61,125 56,877 55,477 57,418 68,461 68,461 85,075 56,968 30,224 26,287	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 13.2 13.8 12.8 14.4 11.7 9.4 7.1 7.4 8.2 9.2 10.4 10.7 10.7 12.2 12.7 11.8 13.2	1966.3 1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2 2248.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.247 0.247 0.247 0.247 0.247 0.207 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292 0.292 0.000	956.4 956.4 956.4 956.4 956.4 920.4 922.4 922.4 922.4 922.4 922.4 922.4 922.4 920.2 970.2 970.2 970.2 970.2	3704.6 3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4391.8 4391.8 4391.8 4391.8 4391.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352 4,830 5,053 7,445 8,281 6,904 6,038 5,535 6,392 6,392 9,573 7,074 5,153	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700 47,256 52,777 61,125 56,877 57,418 68,461 68,461 68,461 89,877 61,769 35,026 31,089	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0 7.2 9.4 7.1 7.4 8.2 9.2 10.4 10.7 10.7 9.4 8.7 6.8
8.1 8.3 8.3 8.4 8.5 8.6 8.7 8.8 8.8 8.9 9.0 9.1 9.1 9.3 9.3 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.1	8 194.0 2:00:00 A 8 195.0 3:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 199.0 7:00:00 A 8 200.0 8:00:00 A 8 202.0 10:00:00 B 8 204.0 12:00:00 B 8 208.0 4:00:00 B 8 212.0 8:00:00 B 8 212.0 8:00:00 B 8 214.0 10:00:00 A 9 216.0 12:00:00 A 9 219.0 3:00:00 A 9 222.0 6:00:00 A 9 222.0 6:00:00 A 9 222.0 6:00:00 A 9 222.0 6:00:00 A 9 222.0 10:00:00 A 9 222.0 10:00:00 A 9 223.0 7:00:00 A 9 224.0 8:00:00 B 9 232.0 4:00:00 B 9 234.0 6:00:00 B 9 238.0 10:00:00 B 10 240.0 12:00:00 B 10 242.0 2:00:00 B	1 2:00:00 AM 1 3:00:00 AM 1 3:00:00 AM 1 6:00:00 AM 1 7:00:00 AM 1 7:00:00 AM 1 10:00:00 AM 1 12:00:00 PM 1 2:00:00 PM 1 4:00:00 PM 1 10:00:00 AM 1 12:00:00 AM 1 10:00:00 PM 1 10:00:00 AM 1 10:00:00 PM 1 10:00:00 AM	10.9 6.2 4.9 5.8 11.8 15.1 15.9 13.5 11.9 12.5 12.5 17.5 16.6 5.1 6.2 12.4 15.9 16.8 14.3 12.5 11.8 13.2 13.2 17.8 11.7 6.7	503.9 467.3 522.8 434.6 336.3 293.5 322.5 352.7 391.8 429.6 458.5 671.2 683.1 633.6 708.7 589.2 456.0 397.9 437.2 478.2 531.1 582.4 621.6 621.6 572.3 582.5 540.3	51.7 51.7 51.4 52.4 50.9 58.6 61.9 60.6 60.4 58.6 60.6 60.6 50.7 49.5 49.2 50.2 48.8 56.1 59.2 58.0 57.8 56.1 58.0 58.0 47.0 45.9 45.9	7,318 4,701 2,689 2,081 2,554 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 7,398 4,752 2,718 2,103 2,582 5,053 7,445 8,281 6,904 6,038 5,535 6,392 6,392 6,392 6,987 4,489 2,568	45,849 24,325 21,156 21,176 33,018 36,876 42,709 39,740 38,762 40,118 47,834 97,996 65,619 34,814 30,279 30,308 47,256 52,777 61,125 56,877 55,477 57,418 68,461 68,461 85,075 56,968 30,224	9.8 9.0 10.2 8.3 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 13.2 13.8 12.8 14.4 11.7 9.4 7.1 7.4 8.2 9.2 10.4 10.7 10.7 12.2 12.7 11.8	1966.3 1966.3 1966.3 1966.3 1966.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2248.2 2248.2 2248.2 2248.2 2248.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.247 0.247 0.247 0.247 0.247 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.292 0.292 0.292 0.292 0.000	956.4 956.4 956.4 956.4 956.4 920.4	3704.6 3704.6 3704.6 3704.6 3704.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4391.8 4391.8 4391.8 4391.8 4391.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6,667 4,655 4,047 4,520 4,998 7,365 8,192 6,829 5,972 5,475 6,323 6,323 9,646 7,001 4,967 4,352 4,830 5,053 7,445 8,281 6,903 6,903 6,932 6,392 6,392 6,392 9,573 7,074 5,153	72,175 49,553 28,029 24,861 24,881 33,018 36,876 42,709 39,740 38,762 40,118 47,834 47,834 102,388 70,011 39,206 34,671 34,700 47,256 52,777 61,125 56,877 55,477 57,418 68,461 68,461 89,877 61,769 35,026	7.8 7.4 6.0 6.1 5.5 6.6 5.0 5.2 5.8 6.5 7.3 7.6 7.6 10.6 10.0 7.9 8.0 7.2 9.4 7.1 7.4 8.2 9.2 10.4 10.7 10.7 9.4 8.7 6.8


10.4	10 250.0	10:00:00 AM	10:00:00 AM	16.2	339.3	52.1	7,032	45,819	6.5	0.0	0.000	1	0.0	7,032	45,819	6.5
10.4	10 250.0	12:00:00 PM	12:00:00 PM	17.1	372.8	55.0	7,032	53,066	6.8	0.0	0.000		0.0	7,822	53,066	6.8
10.6	10 254.0	2:00:00 PM	2:00:00 PM	14.5	407.8	53.8	6,521	49,378	7.6	0.0	0.000		0.0	6,521	49,378	7.6
10.7	10 256.0	4:00:00 PM	4:00:00 PM	12.8	452.9	53.6	5,703	48,162	8.4	0.0	0.000		0.0	5,703	48,162	8.4
10.8	10 258.0	6:00:00 PM	6:00:00 PM	12.0	496.6	52.1	5,228	49,847	9.5	0.0	0.000		0.0	5,228	49,847	9.5
10.8	10 260.0	8:00:00 PM	8:00:00 PM	13.4	530.1	53.8	6,038	59,435	9.8	0.0	0.000		0.0	6,038	59,435	9.8
10.9	10 262.0	10:00:00 PM	10:00:00 PM	13.4	530.1	53.8	6,038	59,435	9.8	0.0	0.000		0.0	6,038	59,435	9.8
11.0	11 264.0	12:00:00 AM	12:00:00 AM	17.3	438.8	51.1	7,362	63,171	8.6	2876.3	0.366	942.1	5501.1	10,238	68,672	6.7
11.1 11.1	11 266.0 11 267.0	2:00:00 AM 3:00:00 AM	2:00:00 AM 3:00:00 AM	11.4 6.5	446.6 414.2	49.9 49.9	4,729 2,705	42,300 22,442	8.9 8.3	2876.3 2876.3	0.366 0.366	942.1 942.1	5501.1 5501.1	7,606 5,582	47,801 27,943	6.3 5.0
11.3	11 270.0	6:00:00 AM	6:00:00 AM	5.1	463.4	49.7	2,703	19,519	9.3	2876.3	0.366	942.1	5501.1	4,970	25,020	5.0
11.3	11 271.0	7:00:00 AM	7:00:00 AM	6.1	385.2	50.7	2,569	19,537	7.6	2876.3	0.366	942.1	5501.1	5,446	25,038	4.6
11.3	11 272.0	8:00:00 AM	8:00:00 AM	12.3	298.1	49.2	5,029	30,462	6.1	0.0	0.000		0.0	5,029	30,462	6.1
11.4	11 274.0	10:00:00 AM	10:00:00 AM	15.7	260.2	56.7	7,409	34,022	4.6	0.0	0.000		0.0	7,409	34,022	4.6
11.5	11 276.0	12:00:00 PM	12:00:00 PM	16.5	285.8	59.8	8,241	39,403	4.8	0.0	0.000		0.0	8,241	39,403	4.8
11.6	11 278.0	2:00:00 PM	2:00:00 PM	14.1	312.6	58.6	6,870	36,664	5.3	0.0	0.000		0.0	6,870	36,664	5.3
11.7	11 280.0	4:00:00 PM	4:00:00 PM	12.3	347.3	58.3	6,008	35,762	6.0	0.0	0.000		0.0	6,008	35,762	6.0
11.8	11 282.0	6:00:00 PM	6:00:00 PM	11.7	380.7	56.7	5,508	37,013	6.7	0.0	0.000		0.0	5,508	37,013	6.7
11.8 11.9	11 284.0 11 286.0	8:00:00 PM 10:00:00 PM	8:00:00 PM 10:00:00 PM	13.0 13.0	406.4 406.4	58.6 58.6	6,361 6,361	44,132 44,132	6.9 6.9	0.0	0.000		0.0	6,361 6,361	44,132 44,132	6.9 6.9
12.0	12 288.0	12:00:00 AM	12:00:00 AM	16.9	523.6	56.2	7,912	73,746	9.3	2690.0	0.342	944.2	5133.1	10,602	78,879	7.4
12.1	12 290.0	2:00:00 AM	2:00:00 AM	11.1	532.9	54.9	5,083	49,382	9.7	2690.0	0.342	944.2	5133.1	7,773	54,515	7.0
12.1	12 291.0	3:00:00 AM	3:00:00 AM	6.4	494.3	54.9	2,908	26,199	9.0	2690.0	0.342	944.2	5133.1	5,598	31,332	5.6
12.3	12 294.0	6:00:00 AM	6:00:00 AM	4.9	552.9	54.6	2,250	22,787	10.1	2690.0	0.342	944.2	5133.1	4,940	27,920	5.7
12.3	12 295.0	7:00:00 AM	7:00:00 AM	5.9	459.7	55.7	2,761	22,808	8.3	2690.0	0.342	944.2	5133.1	5,451	27,941	5.1
12.3	12 296.0	8:00:00 AM	8:00:00 AM	12.0	355.7	54.1	5,405	35,562	6.6	0.0	0.000		0.0	5,405	35,562	6.6
12.4	12 298.0	10:00:00 AM	10:00:00 AM	15.3	310.4	62.2	7,963	39,717	5.0	0.0	0.000		0.0	7,963	39,717	5.0
12.5 12.6	12 300.0	12:00:00 PM 2:00:00 PM	12:00:00 PM	16.2	341.1	65.7	8,857	45,999	5.2	0.0	0.000	1	0.0	8,857	45,999	5.2 5.8
12.6	12 302.0 12 304.0	4:00:00 PM	2:00:00 PM 4:00:00 PM	13.8 12.1	373.1 414.4	64.4	7,384 6,458	42,802 41,749	5.8 6.5	0.0	0.000		0.0	7,384 6,458	42,802 41,749	6.5
12.7	12 306.0	6:00:00 PM	6:00:00 PM	11.4	454.3	64.1 62.2	5,920	43,209	7.3	0.0	0.000		0.0	5,920	43,209	7.3
12.8	12 308.0	8:00:00 PM	8:00:00 PM	12.7	485.0	64.4	6,837	51,520	7.5	0.0	0.000		0.0	6,837	51,520	7.5
12.9	12 310.0	10:00:00 PM	10:00:00 PM	12.7	485.0	64.4	6,837	51,520	7.5	0.0	0.000		0.0	6,837	51,520	7.5
13.0	13 312.0	12:00:00 AM	12:00:00 AM	16.8	452.7	47.3	6,630	63,518	9.6	2553.9	0.327	935.0	4921.3	9,184	68,440	7.5
13.1	13 314.0	2:00:00 AM	2:00:00 AM	11.1	460.8	46.1	4,260	42,533	10.0	2553.9	0.327	935.0	4921.3	6,813	47,454	7.0
13.1	13 315.0	3:00:00 AM	3:00:00 AM	6.3	427.4	46.1	2,437	22,566	9.3	2553.9	0.327	935.0	4921.3	4,990	27,487	5.5
13.3	13 318.0	6:00:00 AM	6:00:00 AM	4.9	478.1	45.9	1,885	19,626	10.4	2553.9	0.327	935.0	4921.3	4,439	24,548	5.5
13.3	13 319.0	7:00:00 AM	7:00:00 AM	5.9	397.4	46.8	2,314	19,645	8.5	2553.9	0.327	935.0	4921.3	4,868 4,529	24,566	5.0 6.8
13.3 13.4	13 320.0 13 322.0	8:00:00 AM 10:00:00 AM	8:00:00 AM 10:00:00 AM	11.9 15.3	307.6 268.4	45.5 52.4	4,529 6,673	30,630 34,209	6.8 5.1	0.0	0.000		0.0	6,673	30,630 34,209	5.1
13.5	13 324.0	12:00:00 PM	12:00:00 PM	16.1	294.9	55.2	7,423	39,620	5.3	0.0	0.000		0.0	7,423	39,620	5.3
13.6	13 326.0	2:00:00 PM	2:00:00 PM	13.7	322.6	54.1	6,188	36,866	6.0	0.0	0.000		0.0	6,188	36,866	6.0
13.7	13 328.0	4:00:00 PM	4:00:00 PM	12.0	358.3	53.9	5,411	35,959	6.6	0.0	0.000		0.0	5,411	35,959	6.6
13.8	13 330.0	6:00:00 PM	6:00:00 PM	11.4	392.8	52.4	4,961	37,217	7.5	0.0	0.000		0.0	4,961	37,217	7.5
13.8	13 332.0	8:00:00 PM	8:00:00 PM	12.7	419.3	54.1	5,729	44,375	7.7	0.0	0.000		0.0	5,729	44,375	7.7
13.9	13 334.0	10:00:00 PM	10:00:00 PM	12.7	419.3	54.1	5,729	44,375	7.7	0.0	0.000		0.0	5,729	44,375	7.7
14.0	14 336.0	12:00:00 AM	12:00:00 AM	18.3	561.5	45.2	6,887	85,630	12.4	2865.8	0.347	989.8	5217.0	9,753	90,847	9.3
14.1 14.1	14 338.0 14 339.0	2:00:00 AM	2:00:00 AM	12.0	571.5	44.1	4,424 2,531	57,339	13.0	2865.8	0.347	989.8	5217.0	7,290 5,397	62,556	8.6
14.1	14 339.0 14 342.0	3:00:00 AM 6:00:00 AM	3:00:00 AM 6:00:00 AM	6.9 5.4	530.1 592.9	44.1 43.9	1,958	30,421 26,458	12.0 13.5	2865.8 2865.8	0.347 0.347	989.8 989.8	5217.0 5217.0	4,824	35,638 31,675	6.6 6.6
14.3	14 343.0	7:00:00 AM	7:00:00 AM	6.4	492.9	44.7	2,404	26,483	11.0	2865.8	0.347	989.8	5217.0	5,269	31,700	6.0
14.3	14 344.0	8:00:00 AM	8:00:00 AM	13.0	381.5	43.5	4,704	41,293	8.8	0.0	0.000	555.0	0.0	4,704	41,293	8.8
14.4	14 346.0	10:00:00 AM	10:00:00 AM	16.6	332.9	50.0	6,932	46,117	6.7	0.0	0.000		0.0	6,932	46,117	6.7
14.5	14 348.0	12:00:00 PM	12:00:00 PM	17.5	365.8	52.8	7,710	53,412	6.9	0.0	0.000		0.0	7,710	53,412	6.9
14.6	14 350.0	2:00:00 PM	2:00:00 PM	14.9	400.1	51.7	6,427	49,700	7.7	0.0	0.000		0.0	6,427	49,700	7.7
14.7	14 352.0	4:00:00 PM	4:00:00 PM	13.1	444.4	51.5	5,621	48,477	8.6	0.0	0.000		0.0	5,621	48,477	8.6
14.8	14 354.0	6:00:00 PM	6:00:00 PM	12.3	487.2	50.0	5,153	50,172	9.7	0.0	0.000		0.0	5,153	50,172	9.7
14.8 14.9	14 356.0 14 358.0	8:00:00 PM	8:00:00 PM 10:00:00 PM	13.8 13.8	520.1 520.1	51.7	5,951 5,951	59,822 59,822	10.1 10.1	0.0	0.000		0.0	5,951 5,951	59,822 59,822	10.1 10.1
15.0	14 358.0 15 360.0	10:00:00 PM 12:00:00 AM	12:00:00 PM	13.8	520.1	51.7 50.2	8,027	84,539	10.1	2507.9	0.000	946.6	4773.8	10,535	89,312	8.5
15.1	15 362.0	2:00:00 AM	2:00:00 AM	12.6	538.2	49.0	5,157	56,608	11.0	2507.9	0.318	946.6	4773.8	7,665	61,382	8.0
15.1	15 363.0	3:00:00 AM	3:00:00 AM	7.2	499.2	49.0	2,950	30,033	10.2	2507.9	0.318	946.6	4773.8	5,458	34,807	6.4
15.3	15 366.0	6:00:00 AM	6:00:00 AM	5.6	558.4	48.8	2,282	26,121	11.4	2507.9	0.318	946.6	4773.8	4,790	30,895	6.4
15.3	15 367.0	7:00:00 AM	7:00:00 AM	6.8	464.2	49.7	2,801	26,146	9.3	2507.9	0.318	946.6	4773.8	5,309	30,920	5.8
	15 368.0	8:00:00 AM	8:00:00 AM	13.6	359.3	48.3	5,483	40,766	7.4	0.0	0.000		0.0	5,483	40,766	7.4
15.3		10:00:00 AM	10:00:00 AM	17.4	313.5	55.6	8,079	45,530	5.6	0.0	0.000		0.0	8,079	45,530	5.6
15.4	15 370.0			18.4	344.5	58.7	8,986	52,731	5.9	0.0	0.000	ļ	0.0	8,986	52,731	5.9
15.4 15.5	15 372.0	12:00:00 PM	12:00:00 PM			F7 F	7 404	40 000	Ć -	0 0	0.000		0.0			
15.4 15.5 15.6	15 372.0 15 374.0	12:00:00 PM 2:00:00 PM	2:00:00 PM	15.6	376.8	57.5 57.3	7,491 6,551	49,066	6.5	0.0	0.000		0.0	7,491	49,066	6.5
15.4 15.5 15.6 15.7	15 372.0 15 374.0 15 376.0	12:00:00 PM 2:00:00 PM 4:00:00 PM	2:00:00 PM 4:00:00 PM	15.6 13.7	376.8 418.5	57.3	6,551	47,859	7.3	0.0	0.000		0.0	6,551	47,859	7.3
15.4 15.5 15.6 15.7 15.8	15 372.0 15 374.0 15 376.0 15 378.0	12:00:00 PM 2:00:00 PM 4:00:00 PM 6:00:00 PM	2:00:00 PM 4:00:00 PM 6:00:00 PM	15.6 13.7 12.9	376.8 418.5 458.8	57.3 55.6	6,551 6,006	47,859 49,533	7.3 8.2	0.0	0.000 0.000		0.0	6,551 6,006	47,859 49,533	7.3 8.2
15.4 15.5 15.6 15.7	15 372.0 15 374.0 15 376.0	12:00:00 PM 2:00:00 PM 4:00:00 PM	2:00:00 PM 4:00:00 PM	15.6 13.7	376.8 418.5	57.3	6,551	47,859	7.3	0.0	0.000		0.0	6,551	47,859	7.3


16.0	16 384.0	12:00:00 AM	12:00:00 AM	17.7	476.1	42.6	6,306	70,444	11.2	2710.1	0.343	947.2	5155.1	9,016	75,599	8.4
16.1	16 386.0	2:00:00 AM	2:00:00 AM	11.7	484.6	41.6	4,051	47,170	11.6	2710.1	0.343	947.2	5155.1	6,761	52,326	7.7
16.1	16 387.0	3:00:00 AM	3:00:00 AM	6.7	449.4	41.6	2,317	25,026	10.8	2710.1	0.343	947.2	5155.1	5,027	30,181	6.0
16.3	16 390.0	6:00:00 AM	6:00:00 AM	5.2	502.7	41.4	1,793	21,766	12.1	2710.1	0.343	947.2	5155.1	4,503	26,921	6.0
16.3	16 391.0	7:00:00 AM	7:00:00 AM	6.3	417.9	42.2	2,201	21,787	9.9	2710.1	0.343	947.2	5155.1	4,911	26,942	5.5
16.3	16 392.0	8:00:00 AM	8:00:00 AM	12.6	323.5	41.0	4,307	33,970	7.9	0.0	0.000		0.0	4,307	33,970	7.9
16.4	16 394.0	10:00:00 AM	10:00:00 AM	16.1	282.3	47.2	6,346	37,939	6.0	0.0	0.000		0.0	6,346	37,939	6.0
16.5	16 396.0	12:00:00 PM	12:00:00 PM	17.0	310.1	49.8	7,059	43,940	6.2	0.0	0.000		0.0	7,059	43,940	6.2
16.6	16 398.0	2:00:00 PM	2:00:00 PM	14.5	339.2	48.8	5,884	40,886	6.9	0.0	0.000		0.0	5,884	40,886	6.9
16.7 16.8	16 400.0 16 402.0	4:00:00 PM 6:00:00 PM	4:00:00 PM 6:00:00 PM	12.7 12.0	376.8 413.1	48.6 47.2	5,146 4,718	39,880 41,274	7.7 8.7	0.0	0.000		0.0	5,146 4,718	39,880 41,274	7.7 8.7
16.8	16 404.0	8:00:00 PM	8:00:00 PM	13.4	441.0	48.8	5,448	49,213	9.0	0.0	0.000		0.0	5,448	49,213	9.0
16.9	16 406.0	10:00:00 PM	10:00:00 PM	13.4	441.0	48.8	5,448	49,213	9.0	0.0	0.000		0.0	5,448	49,213	9.0
17.0	17 408.0	12:00:00 AM	12:00:00 AM	17.5	522.0	56.3	8,220	76,219	9.3	2385.3	0.293	975.8	4404.6	10,605	80,624	7.6
17.1	17 410.0	2:00:00 AM	2:00:00 AM	11.5	531.3	55.0	5,280	51,037	9.7	2385.3	0.293	975.8	4404.6	7,666	55,442	7.2
17.1	17 411.0	3:00:00 AM	3:00:00 AM	6.6	492.8	55.0	3,020	27,078	9.0	2385.3	0.293	975.8	4404.6	5,406	31,482	5.8
17.3	17 414.0	6:00:00 AM	6:00:00 AM	5.1	551.2	54.7	2,337	23,551	10.1	2385.3	0.293	975.8	4404.6	4,723	27,955	5.9
17.3	17 415.0	7:00:00 AM	7:00:00 AM	6.2	458.3	55.8	2,869	23,573	8.2	2385.3	0.293	975.8	4404.6	5,254	27,977	5.3
17.3	17 416.0	8:00:00 AM	8:00:00 AM	12.4	354.7	54.2	5,615	36,754	6.5	0.0	0.000		0.0	5,615	36,754	6.5
17.4	17 418.0	10:00:00 AM	10:00:00 AM	15.9	309.5	62.4	8,273	41,049	5.0	0.0	0.000		0.0	8,273	41,049	5.0
17.5	17 420.0	12:00:00 PM	12:00:00 PM	16.8	340.0	65.8	9,202	47,542	5.2	0.0	0.000		0.0	9,202	47,542	5.2
17.6	17 422.0 17 424.0	2:00:00 PM 4:00:00 PM	2:00:00 PM 4:00:00 PM	14.3	371.9	64.5 64.2	7,671	44,237	5.8	0.0	0.000		0.0	7,671 6,708	44,237	5.8
17.7 17.8	17 424.0 17 426.0	4:00:00 PM 6:00:00 PM	4:00:00 PM 6:00:00 PM	12.5 11.8	413.1 453.0	62.4	6,708 6,150	43,149 44,658	6.4 7.3	0.0	0.000		0.0	6,708	43,149 44,658	6.4 7.3
17.8	17 428.0	8:00:00 PM	8:00:00 PM	13.2	483.5	64.5	7,102	53,248	7.5	0.0	0.000		0.0	7,102	53,248	7.5
17.9	17 430.0	10:00:00 PM	10:00:00 PM	13.2	483.5	64.5	7,102	53,248	7.5	0.0	0.000		0.0	7,102	53,248	7.5
18.0	18 432.0	12:00:00 AM	12:00:00 AM	17.0	470.9	46.4	6,589	66,877	10.1	2567.6	0.296	1039.4	4451.1	9,157	71,328	7.8
18.1	18 434.0	2:00:00 AM	2:00:00 AM	11.2	479.3	45.3	4,233	44,782	10.6	2567.6	0.296	1039.4	4451.1	6,801	49,233	7.2
18.1	18 435.0	3:00:00 AM	3:00:00 AM	6.4	444.5	45.3	2,421	23,759	9.8	2567.6	0.296	1039.4	4451.1	4,989	28,210	5.7
18.3	18 438.0	6:00:00 AM	6:00:00 AM	5.0	497.2	45.1	1,874	20,664	11.0	2567.6	0.296	1039.4	4451.1	4,441	25,115	5.7
18.3	18 439.0	7:00:00 AM	7:00:00 AM	6.0	413.4	46.0	2,300	20,683	9.0	2567.6	0.296	1039.4	4451.1	4,867	25,135	5.2
18.3	18 440.0	8:00:00 AM	8:00:00 AM	12.1	319.9	44.7	4,501	32,249	7.2	0.0	0.000		0.0	4,501	32,249	7.2
18.4	18 442.0	10:00:00 AM	10:00:00 AM	15.5	279.2	51.4	6,632	36,018	5.4	0.0	0.000		0.0	6,632	36,018	5.4
18.5	18 444.0	12:00:00 PM	12:00:00 PM 2:00:00 PM	16.3 13.9	306.7	54.2	7,377	41,715	5.7	0.0	0.000		0.0	7,377 6,149	41,715	5.7 6.3
					335.5	53.2	6,149	38,815	6.3	0.0	()()()()		0.0	6 1/14	38,815	b.3
18.6	18 446.0	2:00:00 PM													,	
18.7	18 448.0	4:00:00 PM	4:00:00 PM	12.2	372.6	52.9	5,378	37,860	7.0	0.0	0.000		0.0	5,378	37,860	7.0
18.7 18.8	18 448.0 18 450.0	4:00:00 PM 6:00:00 PM	4:00:00 PM 6:00:00 PM	12.2 11.5	372.6 408.6	52.9 51.4	5,378 4,930	37,860 39,184	7.0 7.9	0.0	0.000 0.000		0.0 0.0	5,378 4,930	37,860 39,184	7.0 7.9
18.7	18 448.0	4:00:00 PM	4:00:00 PM	12.2	372.6	52.9	5,378 4,930 5,694	37,860	7.0	0.0	0.000		0.0	5,378	37,860 39,184 46,721	7.0 7.9 8.2
18.7 18.8 18.8	18 448.0 18 450.0 18 452.0	4:00:00 PM 6:00:00 PM 8:00:00 PM	4:00:00 PM 6:00:00 PM 8:00:00 PM	12.2 11.5 12.8	372.6 408.6 436.1	52.9 51.4 53.2	5,378 4,930	37,860 39,184 46,721	7.0 7.9 8.2	0.0 0.0 0.0	0.000 0.000 0.000	1052.2	0.0 0.0 0.0	5,378 4,930 5,694	37,860 39,184	7.0 7.9
18.7 18.8 18.8 18.9	18 448.0 18 450.0 18 452.0 18 454.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM	12.2 11.5 12.8 12.8	372.6 408.6 436.1 436.1	52.9 51.4 53.2 53.2	5,378 4,930 5,694 5,694	37,860 39,184 46,721 46,721	7.0 7.9 8.2 8.2	0.0 0.0 0.0 0.0	0.000 0.000 0.000 0.000	1052.2 1052.2	0.0 0.0 0.0 0.0	5,378 4,930 5,694 5,694	37,860 39,184 46,721 46,721	7.0 7.9 8.2 8.2
18.7 18.8 18.8 18.9 19.0 19.1	18 448.0 18 450.0 18 452.0 18 454.0 19 456.0 19 458.0 19 459.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM	12.2 11.5 12.8 12.8 18.6 12.2 7.0	372.6 408.6 436.1 436.1 526.6 536.0 497.1	52.9 51.4 53.2 53.2 53.1 51.9 51.9	5,378 4,930 5,694 5,694 8,221 5,281 3,021	37,860 39,184 46,721 46,721 81,478 54,559 28,946	7.0 7.9 8.2 8.2 9.9	0.0 0.0 0.0 0.0 1959.5 1959.5	0.000 0.000 0.000 0.000 0.223 0.223	1052.2 1052.2	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3	5,378 4,930 5,694 5,694 10,180 7,241 4,980	37,860 39,184 46,721 46,721 84,833 57,914 32,301	7.0 7.9 8.2 8.2 8.3 8.0 6.5
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3	18 448.0 18 450.0 18 452.0 18 454.0 19 456.0 19 458.0 19 459.0 19 462.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1	52.9 51.4 53.2 53.2 53.1 51.9 51.9 51.6	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338	37,860 39,184 46,721 46,721 81,478 54,559 28,946 25,175	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223	1052.2 1052.2 1052.2	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3	18 448.0 18 450.0 18 452.0 18 454.0 19 456.0 19 458.0 19 459.0 19 462.0 19 463.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869	37,860 39,184 46,721 46,721 81,478 54,559 28,946 25,175 25,199	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 1959.5	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223	1052.2 1052.2	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 3355.3	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3	18 448.0 18 450.0 18 452.0 19 456.0 19 458.0 19 459.0 19 462.0 19 464.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616	37,860 39,184 46,721 46,721 81,478 54,559 28,946 25,175 25,199 39,290	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 1959.5 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000	1052.2 1052.2 1052.2	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 3355.3	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4	18 448.0 18 450.0 18 452.0 19 456.0 19 456.0 19 458.0 19 462.0 19 464.0 19 466.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274	37,860 39,184 46,721 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 1959.5 0.0 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000	1052.2 1052.2 1052.2	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 3355.3 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5	18 448.0 18 450.0 18 452.0 19 456.0 19 458.0 19 459.0 19 462.0 19 464.0 19 466.0 19 468.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM 10:00:00 AM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 62.1	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203	37,860 39,184 46,721 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 1959.5 0.0 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000	1052.2 1052.2 1052.2	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822	7.0 7.9 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6	18 448.0 18 450.0 18 452.0 19 456.0 19 456.0 19 462.0 19 462.0 19 463.0 19 464.0 19 466.0 19 468.0 19 470.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 62.1 60.9	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672	37,860 39,184 46,721 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000	1052.2 1052.2 1052.2	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5	18 448.0 18 450.0 18 452.0 19 456.0 19 458.0 19 459.0 19 462.0 19 464.0 19 466.0 19 468.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM 10:00:00 AM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 62.1	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203	37,860 39,184 46,721 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 1959.5 0.0 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000	1052.2 1052.2 1052.2	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822	7.0 7.9 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7	18 448.0 18 450.0 18 452.0 19 456.0 19 456.0 19 462.0 19 463.0 19 464.0 19 466.0 19 468.0 19 472.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 62.1 60.9 60.6	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710	37,860 39,184 46,721 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000	1052.2 1052.2 1052.2	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.4 19.5 19.6 19.7 19.8	18 448.0 18 450.0 18 452.0 19 456.0 19 458.0 19 462.0 19 463.0 19 464.0 19 466.0 19 466.0 19 472.0 19 472.0 19 474.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 6:00:00 AM 7:00:00 AM 8:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 6:00:00 PM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 6:00:00 PM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 62.1 60.9 60.6 58.9	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151	37,860 39,184 46,721 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000	1052.2 1052.2 1052.2	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8
18.7 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8	18 448.0 18 450.0 18 452.0 19 456.0 19 456.0 19 458.0 19 462.0 19 464.0 19 466.0 19 466.0 19 470.0 19 472.0 19 474.0 19 478.0 20 480.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 10:00:00 PM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 60.9 60.9 60.9 49.3	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 70,887	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1052.2 1052.2 1052.2 1052.2 1052.2	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,739 46,126 47,739 56,921 56,921 74,386	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.0
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8 19.9 20.0 20.1	18 448.0 18 450.0 18 452.0 19 456.0 19 456.0 19 458.0 19 462.0 19 463.0 19 464.0 19 466.0 19 468.0 19 470.0 19 470.0 19 472.0 19 478.0 20 480.0 20 482.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 10:00:00 AM 12:00:00 PM 4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 10:00:00 PM 2:00:00 PM 10:00:00 PM 10:00:00 PM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 60.9 60.9 60.9 49.3 48.2	5,378 4,930 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 70,887 47,467	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.9 9.9	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233	1052.2 1052.2 1052.2 1052.2 1052.2	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856 7,016	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,739 46,126 47,739 56,921 74,386 50,967	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8 19.9 20.0 20.1	18 448.0 18 450.0 18 452.0 19 456.0 19 456.0 19 462.0 19 462.0 19 464.0 19 466.0 19 466.0 19 470.0 19 470.0 19 470.0 19 474.0 19 478.0 20 482.0 20 483.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 6:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 8:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 62.1 60.9 60.6 58.9 60.9 49.3 48.2	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 70,887 47,467 25,183	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233	1052.2 1052.2 1052.2 1052.2 1052.2 985.0 985.0 985.0	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856 7,016 4,832	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 74,386 50,967 28,683	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8 19.9 20.0 20.1 20.1 20.3	18 448.0 18 450.0 18 452.0 19 456.0 19 458.0 19 462.0 19 463.0 19 464.0 19 466.0 19 470.0 19 470.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 4:00:00 PM 8:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 6:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 62.1 60.9 60.9 49.3 48.2 47.9	5,378 4,930 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919 2,259	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 70,887 47,467 25,183 21,903	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.9	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233	1052.2 1052.2 1052.2 1052.2 1052.2 1052.2 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856 7,016 4,832 4,172	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 74,386 50,967 28,683 25,403	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20.0 20.1 20.1 20.3 20.3	18 448.0 18 450.0 18 452.0 19 456.0 19 458.0 19 462.0 19 462.0 19 464.0 19 466.0 19 466.0 19 472.0 19 472.0 19 476.0 19 478.0 20 480.0 20 482.0 20 483.0 20 486.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 8:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 AM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6 6.8	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9 386.5	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 62.1 60.9 60.6 58.9 60.9 49.3 48.2 47.9 48.9	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919 2,259 2,772	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 70,887 47,467 25,183 21,903 21,924	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.3 8.6 9.7	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233	1052.2 1052.2 1052.2 1052.2 1052.2 985.0 985.0 985.0	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856 7,016 4,832 4,172 4,685	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 74,386 50,967 28,683 25,403 25,424	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20.0 20.1 20.1 20.3 20.3	18 448.0 18 450.0 18 452.0 19 456.0 19 456.0 19 458.0 19 462.0 19 463.0 19 466.0 19 466.0 19 472.0 19 472.0 19 474.0 19 478.0 20 480.0 20 482.0 20 483.0 20 486.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 6:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 AM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 19.3 12.7 7.3 5.6 6.8 13.7	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9 386.5 299.1	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 60.1 60.9 60.9 49.3 48.2 47.9 48.9 47.5	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919 2,259 2,772 5,426	37,860 39,184 46,721 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 70,887 47,467 25,183 21,903 21,924 34,183	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.3 8.6 9.7 7.9 6.3	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 1913.2	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.233	1052.2 1052.2 1052.2 1052.2 1052.2 1052.2 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,103 7,103 9,856 7,016 4,832 4,172 4,685 5,426	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 74,386 50,967 28,683 25,403 25,424 34,183	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3 5.9 6.1 5.4
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20.0 20.1 20.3 20.3 20.3	18 448.0 18 450.0 18 452.0 19 456.0 19 456.0 19 459.0 19 462.0 19 462.0 19 463.0 19 464.0 19 466.0 19 470.0 19 470.0 20 480.0 20 480.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 6:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6 6.8 13.7 17.5	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9 386.5 299.1 261.0	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 62.1 60.9 60.6 58.9 60.9 49.3 48.2 47.9 48.9 47.5 54.7	5,378 4,930 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 2,259 2,272 5,426 7,994	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 70,887 47,467 25,183 21,903 21,924 34,183 38,177	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.3 8.6 9.7 7.9 6.3	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 0.0 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.000 0.000	1052.2 1052.2 1052.2 1052.2 1052.2 1052.2 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,103 7,103 4,832 4,172 4,685 5,426 7,994	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 74,386 50,967 28,683 25,403 25,424 34,183 38,177	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3 5.9 6.1 5.4 6.3
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20.0 20.1 20.1 20.3 20.3	18 448.0 18 450.0 18 452.0 19 456.0 19 456.0 19 458.0 19 462.0 19 463.0 19 466.0 19 466.0 19 472.0 19 472.0 19 474.0 19 478.0 20 480.0 20 482.0 20 483.0 20 486.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 6:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 AM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 19.3 12.7 7.3 5.6 6.8 13.7	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9 386.5 299.1	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 60.1 60.9 60.9 49.3 48.2 47.9 48.9 47.5	5,378 4,930 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919 2,259 2,772 5,426 7,994 8,892	37,860 39,184 46,721 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 70,887 47,467 25,183 21,903 21,924 34,183	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.3 8.6 9.7 7.9 6.3	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 1913.2	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.233	1052.2 1052.2 1052.2 1052.2 1052.2 1052.2 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856 7,016 4,832 4,172 4,685 5,426 7,994 8,892	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 74,386 50,967 28,683 25,403 25,424 34,183	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3 5.9 6.1 5.4 6.3 4.8
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8 19.9 20.0 20.1 20.1 20.1 20.3 20.3 20.3 20.4 20.5	18 448.0 18 450.0 18 452.0 19 456.0 19 456.0 19 458.0 19 462.0 19 463.0 19 464.0 19 466.0 19 470.0 19 470.0 20 480.0 20 480.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 PM 4:00:00 PM 4:00:00 PM 8:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 2:00:00 AM 2:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 PM 2:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM	12.2 11.5 12.8 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6 6.8 13.7 17.5 18.5	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9 386.5 299.1 261.0 286.8	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 62.1 60.9 60.6 58.9 60.9 49.3 48.2 48.2 47.9 48.9 47.5 54.7	5,378 4,930 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 2,259 2,272 5,426 7,994	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 70,887 47,467 47,467 25,183 21,903 21,924 34,183 38,177 44,216	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.3 8.6 9.7 7.9 6.3 4.8	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 0.0 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.203 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.000 0.000 0.000	1052.2 1052.2 1052.2 1052.2 1052.2 1052.2 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3499.9 3499.9 3499.9 3499.9 3499.9 0.0 0.0 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,103 7,103 4,832 4,172 4,685 5,426 7,994	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 74,386 50,967 28,683 25,403 25,424 34,183 38,177 44,216	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3 5.9 6.1 5.4 6.3
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8 19.9 20.0 20.1 20.1 20.3 20.3 20.4 20.5 20.6	18 448.0 18 450.0 18 452.0 19 456.0 19 458.0 19 462.0 19 462.0 19 463.0 19 464.0 19 466.0 19 464.0 19 470.0 19 470.0 20 480.0 20 490.0 20 490.0 20 490.0 20 490.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 PM 2:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 PM 2:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 2:00:00 AM 2:00:00 AM 2:00:00 AM 10:00:00 AM 10:00:00 AM 2:00:00 AM 2:00:00 AM 2:00:00 AM 2:00:00 AM 3:00:00 AM 3:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM	12.2 11.5 12.8 12.8 12.8 12.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6 6.8 13.7 17.5 18.5	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9 386.5 299.1 261.0 286.8 313.6	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 60.9 60.6 58.9 60.9 49.3 48.2 48.2 47.9 48.9 47.5 54.7 55.6	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919 2,259 2,772 5,426 7,994 8,892 7,413	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 70,887 47,467 25,183 21,903 21,924 34,183 38,177 44,216 41,143	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.3 8.6 9.7 7.9 6.3 4.8 5.0 5.6	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 190.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.200 0.000 0.000	1052.2 1052.2 1052.2 1052.2 1052.2 1052.2 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3499.9 3499.9 3499.9 3499.9 3499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856 7,016 4,832 4,172 4,685 5,426 7,994 8,892 7,413	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 74,386 50,967 28,683 25,403 25,424 34,183 38,177 44,216 41,143	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3 5.9 6.1 5.4 6.3 4.8
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8 19.9 20.0 20.1 20.1 20.3 20.3 20.3 20.4 20.5 20.6 20.7	18 448.0 18 450.0 18 452.0 19 456.0 19 458.0 19 462.0 19 462.0 19 463.0 19 464.0 19 466.0 19 466.0 19 470.0 19 470.0 20 480.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 PM 2:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 12:00:00 PM 2:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 2:00:00 AM 2:00:00 AM 3:00:00 AM 3:00:00 AM 3:00:00 AM 4:00:00 AM 10:00:00 AM 2:00:00 AM 10:00:00 AM 3:00:00 AM 4:00:00 AM 4:00:00 AM 8:00:00 AM 8:00:00 AM 8:00:00 AM	12.2 11.5 12.8 12.8 12.8 12.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6 6.8 13.7 17.5 18.5 15.7 13.8	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9 386.5 299.1 261.0 286.8 313.6 348.4	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 60.9 60.6 58.9 60.9 49.3 48.2 47.9 48.2 47.5 54.7 57.7 56.5 56.3	5,378 4,930 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919 2,259 2,772 5,426 7,994 8,892 7,413 6,483	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 70,887 47,467 25,183 21,903 21,924 34,183 38,177 44,216 41,143 40,130	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.3 8.6 9.7 7.9 6.3 4.8 5.0 5.6 6.2	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 190.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.000 0.000 0.000 0.000 0.000	1052.2 1052.2 1052.2 1052.2 1052.2 1052.2 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3499.9 3499.9 3499.9 3499.9 3499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856 7,016 4,832 4,172 4,685 5,426 7,994 8,892 7,413 6,483	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 74,386 50,967 28,683 25,403 25,424 34,183 38,177 44,216 41,143	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 7.5 7.3 5.9 6.1 5.4 6.3 4.8 5.0 5.6
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8 19.9 20.0 20.1 20.1 20.3 20.3 20.3 20.3 20.4 20.5 20.6 20.7 20.8 20.8 20.9	18 448.0 18 450.0 18 450.0 19 456.0 19 456.0 19 458.0 19 462.0 19 464.0 19 464.0 19 464.0 19 470.0 19 470.0 19 470.0 19 478.0 20 480.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 500.0 20 500.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 2:00:00 PM 4:00:00 PM 6:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 PM 2:00:00 AM 10:00:00 PM 10:00:00 AM 10:00:00 AM 2:00:00 AM 10:00:00 AM 8:00:00 AM 10:00:00 AM 8:00:00 AM 10:00:00 AM 8:00:00 AM 10:00:00 AM 8:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM	4:00:00 PM 6:00:00 PM 8:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 2:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 PM	12.2 11.5 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6 6.8 13.7 17.5 18.5 15.7 13.8 13.0 14.6 14.6	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9 386.5 299.1 261.0 286.8 313.6 348.4	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 60.9 60.6 58.9 60.9 49.3 48.2 47.9 48.9 47.5 54.7 56.5 56.3 54.7	5,378 4,930 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,103 7,943 5,103 2,919 2,259 2,772 5,426 7,994 8,892 7,413 6,483 5,943 6,863 6,863	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 70,887 47,467 25,183 21,903 21,924 34,183 38,177 44,216 41,143 40,130 41,534 49,522 49,522	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.3 8.6 9.7 7.9 6.3 4.8 5.0 5.6 6.2 7.0 7.2	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 1913.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1052.2 1052.2 1052.2 1052.2 1052.2 1052.2 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3499.9 3499.9 3499.9 3499.9 3499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856 7,016 4,832 4,172 4,685 5,426 7,994 8,892 7,413 6,483 5,943 6,863 6,863	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 74,386 50,967 28,683 25,403 25,424 34,183 38,177 44,216 41,143 40,130 41,534 49,522	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3 5.9 6.1 5.4 6.3 4.8 5.0 6.2 7.0 7.2
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8 19.9 20.0 20.1 20.1 20.3 20.3 20.3 20.3 20.4 20.5 20.6 20.7 20.8 20.8 20.9 21.0	18 448.0 18 450.0 18 450.0 19 450.0 19 456.0 19 458.0 19 462.0 19 464.0 19 466.0 19 466.0 19 470.0 19 470.0 19 470.0 19 478.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 480.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 490.0 20 500.0 20 500.0 20 500.0 21 504.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 PM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM	4:00:00 PM 6:00:00 PM 8:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 2:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 AM 3:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM	12.2 11.5 12.8 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6 6.8 13.7 17.5 18.5 15.7 13.8 13.0 14.6 14.6 17.3	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9 386.5 299.1 261.0 286.8 313.6 348.4 382.0 407.7 407.7 511.1	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 60.9 60.9 49.3 48.2 47.9 48.9 47.5 54.7 57.7 56.5 56.5 56.5 50.0	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919 2,259 2,772 5,426 7,994 8,892 7,413 6,483 5,943 6,863 7,217	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 70,887 47,467 25,183 21,903 21,924 34,183 38,177 44,216 41,143 40,130 41,534 49,522 49,522 73,790	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.3 8.6 9.7 7.9 6.3 4.8 5.0 5.6 6.2 7.0 7.2 7.2 10.2	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 1913.2 190.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.203 0.000	985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3499.9 3499.9 3499.9 3499.9 3499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856 7,016 4,832 4,172 4,685 5,426 7,994 8,892 7,413 6,483 5,943 6,863 6,863 6,863	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 74,386 50,967 28,683 25,403 25,424 34,183 38,177 44,216 41,143 40,130 41,534 49,522 49,522 76,902	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3 5.9 6.1 5.4 6.3 4.8 5.0 5.6 6.2 7.0 7.2 7.2
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8 19.9 20.0 20.1 20.1 20.3 20.3 20.3 20.3 20.4 20.5 20.6 20.7 20.8 20.8 20.9 21.0	18 448.0 18 450.0 18 450.0 19 450.0 19 456.0 19 458.0 19 460.0 19 466.0 19 466.0 19 472.0 19 472.0 19 478.0 20 480.0 20 490.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 AM 2:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 2:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 AM 2:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 PM	12.2 11.5 12.8 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6 6.8 13.7 17.5 18.5 15.7 13.8 13.0 14.6 14.6 17.3 11.4	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9 386.5 299.1 261.0 286.8 313.6 348.4 382.0 407.7 407.7 511.1 520.2	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 60.9 60.9 60.9 49.3 48.2 47.9 48.9 47.5 54.7 57.7 56.5 56.5 56.5 50.0 48.8	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919 2,259 2,772 5,426 7,994 8,892 7,413 6,483 5,943 6,863 7,217 4,636	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 70,887 47,467 25,183 21,903 21,924 34,183 38,177 44,216 41,143 40,130 41,534 49,522 49,522 73,790 49,411	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.3 8.6 9.7 7.9 6.3 4.8 5.0 5.6 6.2 7.0 7.2 7.2 10.2	0.0 0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 1913.2 190.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.203 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	985.0 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3499.9 3499.9 3499.9 3499.9 3499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856 7,016 4,832 4,172 4,685 5,426 7,994 8,892 7,413 6,483 5,943 6,863 6,863 8,840 6,259	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 74,386 50,967 28,683 25,403 25,424 34,183 38,177 44,216 41,143 40,130 41,534 49,522 49,522 76,902 52,522	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 7.3 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.0 8.0 8.0 7.5 7.3 4.8 5.0 6.1 5.4 6.3 4.8 5.0 5.6 6.2 7.0 7.2 7.2
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8 19.9 20.0 20.1 20.1 20.3 20.3 20.3 20.3 20.4 20.5 20.6 20.7 20.8 20.8 20.9 21.0 21.1	18 448.0 18 450.0 18 450.0 19 450.0 19 456.0 19 459.0 19 462.0 19 466.0 19 466.0 19 472.0 19 472.0 19 478.0 20 480.0 20 490.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 PM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM	4:00:00 PM 6:00:00 PM 8:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 4:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 AM 2:00:00 AM 2:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM	12.2 11.5 12.8 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6 6.8 13.7 17.5 18.5 15.7 13.8 13.0 14.6 17.3 11.4 6.5	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9 386.5 299.1 261.0 286.8 313.6 348.4 382.0 407.7 407.7 511.1 520.2 482.5	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 60.9 60.9 49.3 48.2 47.9 48.9 47.5 54.7 57.7 56.5 56.5 50.0 48.8 48.8	5,378 4,930 5,694 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919 2,259 2,772 5,426 7,994 8,892 7,413 6,483 5,943 6,863 6,863 7,217 4,636 2,652	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 70,887 47,467 25,183 21,903 21,924 34,183 38,177 44,216 41,143 40,130 41,534 49,522 73,790 49,411 26,215	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.3 8.6 9.7 7.9 6.3 4.8 5.0 5.6 6.2 7.0 7.2 7.2 10.2 10.7 9.9	0.0 0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.203 0.000	985.0 985.0 985.0 985.0 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3499.9 3499.9 3499.9 3499.9 3499.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5,378 4,930 5,694 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856 7,016 4,832 4,172 4,685 5,426 7,994 8,892 7,413 6,483 5,943 6,863 6,863 8,840 6,259 4,275	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 74,386 50,967 28,683 25,403 25,424 34,183 38,177 44,216 41,143 40,130 41,534 49,522 49,522 76,902 52,522 29,326	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3 5.9 6.1 5.4 6.3 4.8 5.0 5.6 6.2 7.0 7.2 7.2 8.7
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8 19.9 20.0 20.1 20.1 20.3 20.3 20.3 20.4 20.5 20.6 20.7 20.8 20.8 20.9 21.0 21.1 21.1	18 448.0 18 450.0 18 450.0 19 456.0 19 456.0 19 459.0 19 462.0 19 463.0 19 466.0 19 466.0 19 466.0 19 467.0 19 470.0 19 470.0 19 470.0 19 470.0 19 470.0 20 480.0 20 490.0 20 490.0 20 490.0 21 500.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 2:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 PM	12.2 11.5 12.8 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6 6.8 13.7 17.5 18.5 15.7 13.8 13.0 14.6 17.3 11.4 6.5 5.1	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 446.2 448.1 415.6 464.9 386.5 299.1 261.0 286.8 313.6 348.4 382.0 407.7 407.7 511.1 520.2 482.5 539.7	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 60.9 60.9 60.9 49.3 48.2 47.9 48.9 47.5 54.7 56.5 56.5 56.5 50.0 48.8 48.8 48.6	5,378 4,930 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919 2,259 2,772 5,426 7,994 8,892 7,413 6,483 5,943 6,863 7,217 4,636 2,652 2,052	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 70,887 47,467 25,183 21,903 21,924 34,183 38,177 44,216 41,143 40,130 41,534 49,522 49,522 73,790 49,411 26,215 22,800	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.0 8.0 8.0 8.0 6.2 7.9 6.3 4.8 5.0 5.6 6.2 7.0 7.2 7.2 10.7 9.9 11.1	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.207 0.000	985.0 985.0 985.0 985.0 985.0 985.0 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5,378 4,930 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,103 7,103 4,832 4,172 4,685 5,426 7,994 8,892 7,413 6,483 5,943 6,863 6,863 8,840 6,259 4,275 3,675	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 74,386 50,967 28,683 25,403 25,424 34,183 38,177 44,216 41,143 40,130 41,534 49,522 49,522 76,902 52,522 29,326 25,911	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3 5.9 6.1 5.4 6.3 4.8 5.0 5.6 6.2 7.0 7.2 7.2 7.2 8.7 8.4
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.8 19.9 20.0 20.1 20.1 20.3 20.3 20.3 20.4 20.5 20.6 20.7 20.8 20.8 20.9 21.0 21.1 21.3 21.3	18 448.0 18 450.0 18 450.0 18 450.0 19 456.0 19 456.0 19 459.0 19 462.0 19 463.0 19 464.0 19 466.0 19 468.0 19 470.0 19 470.0 19 470.0 19 470.0 19 470.0 20 480.0 20 490.0 20 490.0 21 500.0 21 500.0 21 504.0 21 504.0 21 504.0 21 507.0 21 507.0 21 507.0 21 507.0 21 510.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM	12.2 11.5 12.8 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6 6.8 13.7 17.5 18.5 15.7 13.8 13.0 14.6 17.3 11.4 6.5 5.1 6.1	372.6 408.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 440.2 448.1 415.6 464.9 386.5 299.1 261.0 286.8 313.6 348.4 382.0 407.7 407.7 511.1 520.2 482.5 539.7	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 62.1 60.9 60.6 58.9 60.9 49.3 48.2 47.9 48.9 47.5 56.5 56.3 54.7 56.5 56.5 56.5 50.0 48.8 48.8 48.6 49.5	5,378 4,930 5,694 8,221 5,281 3,021 2,338 2,669 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919 2,259 2,772 5,426 7,994 8,892 7,413 6,483 5,943 6,863 7,217 4,636 2,652 2,052 2,519	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 70,887 47,467 25,183 21,903 21,924 34,183 38,177 44,216 41,143 40,130 41,534 49,522 49,522 73,790 49,411 26,215 22,800 22,822	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.9 9.3 4.8 5.0 5.6 6.2 7.0 7.9 6.3 4.8 5.0 5.6 6.2 7.0 7.2 10.7 9.9 11.1	0.0 0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.207 0.000	985.0 985.0 985.0 985.0 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5,378 4,930 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 9,856 7,016 4,832 4,172 4,685 5,426 7,994 8,892 7,413 6,483 5,943 6,863 8,840 6,259 4,275 3,675	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 74,386 50,967 28,683 25,403 25,424 34,183 38,177 44,216 41,143 40,130 41,534 49,522 49,522 76,902 52,522 29,326 25,911 25,933	7.0 7.9 8.2 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 7.5 7.3 5.9 6.1 5.4 6.3 4.8 5.0 6.2 7.0 7.2 7.2 7.2 8.7 8.4 6.9 7.1 6.3
18.7 18.8 18.8 18.9 19.0 19.1 19.1 19.3 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20.0 20.1 20.1 20.3 20.3 20.3 20.4 20.5 20.6 20.7 20.8 20.8 20.9 21.0 21.1 21.1	18 448.0 18 450.0 18 450.0 19 456.0 19 456.0 19 459.0 19 462.0 19 463.0 19 466.0 19 466.0 19 466.0 19 467.0 19 470.0 19 470.0 19 470.0 19 470.0 19 470.0 20 480.0 20 490.0 20 490.0 20 490.0 21 500.0	4:00:00 PM 6:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM	4:00:00 PM 6:00:00 PM 8:00:00 PM 8:00:00 PM 10:00:00 PM 12:00:00 AM 2:00:00 AM 3:00:00 AM 6:00:00 AM 7:00:00 AM 10:00:00 AM 10:00:00 AM 10:00:00 PM 2:00:00 PM 4:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 PM 10:00:00 AM 10:00:00 PM	12.2 11.5 12.8 12.8 12.8 18.6 12.2 7.0 5.4 6.5 13.2 16.9 17.8 15.1 13.3 12.5 14.0 14.0 19.3 12.7 7.3 5.6 6.8 13.7 17.5 18.5 15.7 13.8 13.0 14.6 17.3 11.4 6.5 5.1	372.6 408.6 436.1 436.1 526.6 536.0 497.1 556.1 462.3 357.8 312.2 343.0 375.2 416.7 456.9 487.7 446.2 448.1 415.6 464.9 386.5 299.1 261.0 286.8 313.6 348.4 382.0 407.7 407.7 511.1 520.2 482.5 539.7	52.9 51.4 53.2 53.2 53.1 51.9 51.6 52.6 51.1 58.9 60.9 60.9 60.9 49.3 48.2 47.9 48.9 47.5 54.7 56.5 56.5 56.5 50.0 48.8 48.8 48.6	5,378 4,930 5,694 8,221 5,281 3,021 2,338 2,869 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,943 5,103 2,919 2,259 2,772 5,426 7,994 8,892 7,413 6,483 5,943 6,863 7,217 4,636 2,652 2,052	37,860 39,184 46,721 81,478 54,559 28,946 25,175 25,199 39,290 43,881 50,822 47,290 46,126 47,739 56,921 56,921 70,887 47,467 25,183 21,903 21,924 34,183 38,177 44,216 41,143 40,130 41,534 49,522 49,522 73,790 49,411 26,215 22,800	7.0 7.9 8.2 8.2 9.9 10.3 9.6 10.8 8.8 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.0 8.0 8.0 8.0 6.2 7.9 6.3 4.8 5.0 5.6 6.2 7.0 7.2 7.2 10.7 9.9 11.1	0.0 0.0 0.0 0.0 1959.5 1959.5 1959.5 1959.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2 1913.2	0.000 0.000 0.000 0.000 0.223 0.223 0.223 0.223 0.223 0.223 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.233 0.233 0.233 0.233 0.233 0.207 0.000	985.0 985.0 985.0 985.0 985.0 985.0 985.0 985.0 985.0 985.0 985.0	0.0 0.0 0.0 0.0 0.0 0.0 3355.3 3355.3 3355.3 3355.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5,378 4,930 5,694 10,180 7,241 4,980 4,297 4,828 5,616 8,274 9,203 7,672 6,710 6,151 7,103 7,103 7,103 7,103 4,832 4,172 4,685 5,426 7,994 8,892 7,413 6,483 5,943 6,863 6,863 8,840 6,259 4,275 3,675	37,860 39,184 46,721 46,721 84,833 57,914 32,301 28,531 28,555 39,290 43,881 50,822 47,290 46,126 47,739 56,921 74,386 50,967 28,683 25,403 25,424 34,183 38,177 44,216 41,143 40,130 41,534 49,522 49,522 76,902 52,522 29,326 25,911	7.0 7.9 8.2 8.3 8.0 6.5 6.6 5.9 7.0 5.3 5.5 6.2 6.9 7.8 8.0 8.0 8.0 8.0 7.5 7.3 7.3 5.9 6.1 5.4 6.3 4.8 5.0 5.6 6.2 7.0 7.2 7.2 8.7 8.4

1.5 1.6 1.6 200 200 200 200 200 200 200 2.7	24.5	1 2	4 546	0 4	2.00.00.014	12.00.00 014	46.6	222.0	FO 4	0.070	46.027	1	0.0	0.000		0.0	0.070	46.027	
12 12 12 12 12 12 12 12	21.5					12:00:00 PM	16.6	332.9	58.4	8,079	46,027	5.7	0.0	0.000		0.0	8,079	46,027	5.7
131 131		_	_																
121 12 1346 1800 PM 1000 PM 121 474 277 1250											-						·		
120 120																	,		
220 12 12 12 12 12 12 12		_	_								-						·		
22.1 27.2															938.9				7.9
27 17 17 17 17 17 17 17											,						,	· · · · · · · · · · · · · · · · · · ·	7.6
221 22 24 24 24 25 25 25 25																			
223 12 1950 750000M 75000 M 75000		_																	
20.20 10.0	22.3	2:	2 535	.0 7	7:00:00 AM	7:00:00 AM	5.9	430.3	51.0		-	8.4	1909.8	0.244	938.9	3665.0	·	24,936	
1.5 1.5	22.3				3:00:00 AM	8:00:00 AM	11.9	333.1	49.6		33,165	6.7	0.0	0.000		0.0	4,939	33,165	
128 22 280 1290 1290 1200	22.4	2	2 538	.0 10	0:00:00 AM	10:00:00 AM	15.3	290.6	57.1	7,277	37,040	5.1	0.0	0.000		0.0	7,277	37,040	
22 12 15 16 10000 10 10 10 10 10	22.5	2	2 540	.0 12	2:00:00 PM	12:00:00 PM	16.1	319.3	60.2	8,094	42,899	5.3	0.0	0.000		0.0	8,094	42,899	5.3
228 23 5468 Andrew Center 14 4954 571 5.96 62.97 7.24 60.0 0.000 0.0 5.00 5.00 6.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.77 7.00 7.00 7.77 7.00 7.00 7.77 7.00 7.00 7.77 7.00 7	22.6	22	2 542	.0 2	2:00:00 PM	2:00:00 PM	13.7	349.3	59.0	6,747	39,917	5.9	0.0	0.000		0.0	6,747	39,917	5.9
228 27 5400 0.0000 PM 0.0000 PM 1.0000 PM					1:00:00 PM	4:00:00 PM	12.0	387.9	58.8	5,901	38,935	6.6	0.0	0.000		0.0	·		
22 12 15 15 15 15 15 15						6:00:00 PM					-								7.4
220 221 2250 120000 PM 120000 PM 173 2220 267 7,288 76,289 100 3064.2 0.216 921.5 324.6 6.17 57,246 52.5					-												·		
221 22 SAC		_	_														· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
221 22 SCC 20000 AM 80000 AM 1 SCC 475 A 52																			
233 23 580 C. GOROMAN 60000 AM 5.1 551 30 22 2408 23575 11.2 5864 2 C.216 2325 33468 3.788 26.777 7.1 2331 7.2 7.7																			
223 22 5599 7,000 DAM 7,000 DAM 6.2 4583 592 2,582 2,572 9.1 1064.2 0.216 92.5 2246 4,246 6,268 6.32 2,242 2,372 9.1 1064.2 0.216 92.5 2,248 4,246 6,268 7.3 2,248 2,272 9.1 2,248 2,272 9.1 2,248 2,272 9.1 2,248 2,272 9.1 2,248 2,272 9.1 2,248 2																			
734 234 500																			7.1
224 22 502 25000 24000 24000 24000 2400 2400 2500 24000 2400 2400 24000 2400 24000 2400 24000 24					-						-				923.5		·		
225 22 5640 122000 PM 120000 PM 143 371 380 692 8,281 47,542 3.7 0.00 0.00 0.00 0.00 8,281 47,542 3.7 2.7 2.8 2.					-												·		
221 22 5860 2000 OPM 2000 OPM 215 313 528 6500 41277 54 50 5000 5000 5000 6000 6000 6000 6400 727 728					-						,						· · · · · · · · · · · · · · · · · · ·		5.5
23.8 22.5 70.0 \$6.000 PM \$4.000																			
228 23 700 60000PM 60000PM 118 4510 56.1 5.535 44,558 8.1 0.0 0.00 0.0 0.0 5.535 44,558 8.1 23 23 27 27 28 2000PM 100000PM 10000PM 112 4815 580 6.697 53,466 8.3 0.0 0.000 0.0 6.397 53,468 8.3 23 23 23 23 23 23 23											-						·		
239 23 720 8.000 PM 8.000 PM 13.2 481.5 8.0 6.392 33.248 8.3 0.0 0.000 0.0 6.392 53.248 8.3 240 241.575 24																			
23.9 23 774.0 1200000 M 120000 M 13.2 483.5 50.0 6,392 53,248 8.3 0.0 0.000 0.0 6,392 53,248 8.3 2.0 1 2.0 12 75.0 12 20000 M 120000 M 13.6 50.5 4 65.1 6,441 79,054 12.3 263.1 0.331 900.4 969.3 8,225 84,023 54.2 1.2 12 79.7 0.0000 M 20000 M 10.0 575.4 15.0 1.18 52.99 12.8 268.3 0.331 900.4 969.3 6,21 57,005 8.7 3.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12																		· · · · · · · · · · · · · · · · · · ·	
240 24 78-60 120,000 AM 20,000 AM 18.8 565.3 46.1 6,401 79,054 12.8 248.3 0.331 900.4 4969.3 6,671 57,905 8.7 241 24 79.00 30,000 AM 30,000 AM 6.000		_	_																
24.1 24 5780 200000 AM 200000 AM 11.0 575.4 45.0 4,138 57,986 12.8 24833 0.331 900.4 4969.3 6,621 57,905 8.7 24.1 24 570 300000 AM 300000 AM 6.3 533.7 45.0 4,138 57,986 11.9 24833 0.331 900.4 4969.3 4,530 33,056 6.8 24.3 24 582.0 60000 AM 6.3 59.7 44.8 1,812 24.406 13.3 2481.3 0.331 900.4 4969.3 4,115 29,966 6.8 24.3 24 583.0 70000 AM 7,0000 AM 5.9 965.3 45.6 2.248 24.406 10.9 2481.3 0.331 900.4 4969.3 4,115 29,196 6.8 24.3 24 584.0 8,000 AM 8,000 AM 4.9 597.0 44.8 1,812 24.406 10.9 2481.3 0.331 900.4 4969.3 4,731 29,110 6.2 24.3 24 584.0 8,000 AM 6.3 8.845 4.43 4.43 4.40 30,121 8.7 4.0 4.															900.4			· · · · · · · · · · · · · · · · · · ·	9.4
24.1 24 5790 3.0000 AM 5.0000 AM 6.000 AM 6.3 533 7 45.0 2,367 28,088 119 2483 3 0.331 900.4 4969.3 4,850 33.054 5.8 24.3 24 5820 6.0000 AM 6.0000	24.1				2:00:00 AM	2:00:00 AM	11.0	575.4	45.0			12.8	2483.3		900.4	4969.3		57,905	
24.3 24 \$82.0 \$0.000 AM \$0.000 AM \$4.9 \$97.0 \$44.8 \$1.812 \$24.426 \$1.31 \$24813 \$0.331 \$90.4 \$499.3 \$4,711 \$29,396 \$6.8 \$24.24 \$24.50 \$1.000 AM \$4.000 \$3.121 \$8.7 \$0.0 \$0.000 \$0.0 \$4.400 \$3.121 \$8.7 \$0.0 \$0.000 \$0.0 \$4.400 \$3.121 \$8.7 \$0.0 \$0.000 \$0.0 \$0.0 \$4.400 \$3.121 \$8.7 \$0.0 \$0.000 \$0.0 \$0.0 \$0.0 \$0.0 \$4.500 \$3.121 \$8.7 \$0.0 \$0.000 \$0.0 \$0	24.1				3:00:00 AM	3:00:00 AM	6.3	533.7	45.0	2,367	28,085	11.9	2483.3	0.331	900.4	4969.3	4,850	33,054	
24.4 24 584.0 8.0000 AM 1.90 384.1 44.3 4.400 38,121 8.7 0.0 0.000 0.0 4.400 38,121 8.7 24.4 24 586.0 10.0000 AM 1.52 335.2 51.0 6.88 4.2756 6.6 0.0 0.000 0.0 0.0 6.883 42.576 6.6 6.245 24 580.0 12.0000 AM 1.500 AM 1.50	24.3	24	4 582	.0 6	5:00:00 AM	6:00:00 AM	4.9	597.0	44.8	1,832	24,426	13.3	2483.3	0.331	900.4	4969.3	4,315	29,396	6.8
24.6 24 586 100000 MM 100000 MM 15.2 335.2 51.0 6.483 42.576 6.6 0.0 0.000 0.0 0.0 6.483 42.576 6.6 24.6 24 590 2.0000 PM 2.0000 PM 13.7 40.28 52.8 6.011 45.883 7.6 0.0 0.000 0.0 0.0 6.011 45.883 7.6 24.7 24 590 2.0000 PM 2.0000 PM 13.7 40.28 52.8 6.011 45.883 7.6 0.0 0.000 0.0 0.0 5.577 44.784 8.5 24.8 24 594 0.6000 PM 6.0000 PM 11.3 400.5 51.0 4.819 46.319 9.6 0.0 0.000 0.0 0.0 4.819 46.319 9.6 24.8 24 596 8.0000 PM 6.0000 PM 11.3 400.5 51.0 4.819 46.519 9.6 0.0 0.000 0.0 0.0 5.566 55.228 9.9 24.9 24 596 8.0000 PM 10.0000 PM 12.6 523.6 52.8 5.566 55.228 9.9 0.0 0.000 0.0 0.0 5.566 55.228 9.9 24.9 24 596 8.0000 PM 10.0000 PM 12.6 523.6 52.8 5.566 55.228 9.9 0.0 0.000 0.0 0.0 5.566 55.228 9.9 25.0 25 600 10.0000 PM 10.0000 PM 12.6 523.6 52.8 5.566 55.228 9.9 0.0 0.000 0.0 0.0 5.566 55.228 9.9 25.1 25 600.1 10.0000 PM 10.0000 PM 13.5 10.3 53.2 4.994 47.899 9.6 2151.7 0.299 862.1 4497.4 7.146 52.387 7.3 25.1 25 600.0 10.0000 PM 13.5 10.3 53.2 2.875 2.5407 8.9 5.6 2151.7 0.299 862.1 4497.4 7.146 52.387 7.3 25.3 25 600.0 10.0000 PM 13.6 40.000 PM 13.5 10.000 PM 13.5	24.3	24	4 583	.0 7	7:00:00 AM	7:00:00 AM	5.9	496.3	45.6	2,248	24,450	10.9	2483.3	0.331	900.4	4969.3	4,731	29,419	6.2
24.6 24 9860 12:00:00 PM 12:00:00 PM 16:1 86.83 51.9 7.711 49;310 6.8 0.0 0.000 0.0 0.0 7.711 49;310 6.8 24.6 24 9900 20:00 PM 40:00:00 PM 12:0 447.4 52.6 5.257 44.74 8.5 0.0 0.000 0.0 0.0 5.257 44.74 8.5 24.8 24 9940 60:00:00 PM 60:00 PM 12:0 447.4 52.6 5.257 44.74 8.5 0.0 0.000 0.0 0.0 5.257 44.74 8.5 24.8 24 9940 60:00:00 PM 60:00 PM 12:0 523.6 52.8 5.96 55.228 9.9 0.0 0.000 0.0 0.0 5.566 55.228 9.9 25.0 25 60:00 12:00:00 AM 12:00:00 AM 17:1 50:14 54.5 7.774 71.518 9.2 2151.7 0.299 862.1 4497.4 9.026 76:015 7.7 25.1 25 60:00 20:00 AM 20:00 AM 17:1 50:14 54.5 7.774 71.518 9.2 2151.7 0.299 862.1 4497.4 9.026 76:015 7.7 25.3 25 60:00 60:00 AM 60:00 AM 50:00 AM 50	24.3	24	4 584	.0 8	3:00:00 AM	8:00:00 AM	11.9	384.1	44.3	4,400	38,121	8.7	0.0	0.000		0.0	4,400	38,121	
24.6 24 59.0 2.00.00 PM 3.00.00 PM 13.7 40.28 52.8 5.51 5.52 5.57 44,754 5.55 5.57 44,754 5.55 5.57 44,754 5.50																	·		
24.7 24 \$92.0 400.00 PM 4.00.00 PM					-												·		
24.8 24 594.0 600.00 PM 600.00 PM 11.3 490.5 51.0 4.819 46.319 9.6 0.0 0.000 0.0 0.0 4.819 46.319 9.6 24.8 24 596.0 8.000 PM 12.6 523.6 52.8 5.566 55.228 9.9 0.0 0.000 0.0 5.566 55.228 9.9 25.0 25.0 0.000 0.0 5.566 55.228 9.9 25.0 25.0 0.000 0.0 5.566 55.228 9.9 25.0 25.0 0.000 0.0 5.566 55.228 9.9 25.0 25.0 0.000 0.0 5.566 55.228 9.9 0.0 0.000 0.0 5.566 55.228 9.9 0.0 0.000 0.0 5.566 55.228 9.9 0.0 0.000 0.0 5.566 55.228 9.9 0.0 0.000 0.0 5.566 55.228 9.9 0.0 0.000 0.0 5.566 55.228 9.9 0.0 0.000 0.0 5.566 55.228 9.9 0.0 0.000 0.0 5.566 55.228 9.9 0.0 0.000 0.0 5.566 55.228 9.9 0.0 0.000 0.0 5.566 55.228 9.9 0.0 0.000 0.0 0.0 5.566 55.228 9.9 0.0 0.000 0.0																	·		7.6
24.8 24 596.0 8.00.00 PM 10.000 PM 12.6 523.6 52.8 5.566 55.228 9.9 0.0 0.000 0.0 5.566 55.228 9.9 25.0											-								
249 24 598.0 1000.00 PM 10.00 0 PM 12.6 523.6 52.8 5.566 53.228 9.9 0.0 0.000 0.0 5.566 55.228 9.9 25.0 25.5 50.00 12.000 0 AM 20.000 AM 20.000 AM 11.3 510.3 53.2 4.99 47.889 9.6 2151.7 0.299 862.1 4497.4 7.146 52.337 7.3					-												·		
25.0 25 600.0 12:00:00 AM 12:00:00 AM 17.1 501.4 54.5 77.74 77.18 92 2151.7 0.299 86.21 4497.4 7.146 52.387 7.3		_	_		-												·		9.9
25.1 25 602.0 20000 AM 20000 AM 20000 AM 11.3 510.3 53.2 4.994 47,889 9.6 2151.7 0.299 862.1 4497.4 7,146 52,887 7.3															962.1		· · · · · · · · · · · · · · · · · · ·		9.9
25.1 25 603.0 300.00 AM 300.00 AM 5.0 473.3 53.2 2,857 25,407 8.9 2151.7 0.299 862.1 4497.4 4,362 26,595 6.1																			
25.3 25 606.0 600000 AM 6.00000 AM 5.00 529.4 53.0 2.211 22,098 10.0 2151.7 0.299 86.21 4497.4 4.865 26.616 5.5																			
25.3 25 607.0 7.00000 AM 7.00000 AM 6.0 4401.1 540 2,713 22,119 8.2 2151.7 0.299 862.1 4497.4 4,865 26,616 5.5																	·		
25.3 25 680.0 8.00.00 AM 8.00.00 AM 12.1 340.6 52.4 5.311 34.487 6.5 0.0 0.000 0.0 0.0 5.311 34.487 6.5											-							·	
25.4 25 610.0 10:00:00 AM 10:00:00 AM 10:00:00 AM 15:5 297.2 60.4 7,825 38,517 4.9 0.0 0.000 0.0 0.0 7,825 38,517 4.9 25:5 25 612.0 12:00:00 PM 12:00:00 PM 16.4 326.6 63.7 8,703 44,609 5.1 0.0 0.000 0.0 0.0 8,703 44,609 5.1 25:6 25 614.0 2:00:00 PM 2:00:00 PM 13:9 357.2 62.4 7,255 41,509 5.7 0.0 0.000 0.0 0.0 0.0 7,255 41,509 5.7 25:7 25 616.0 4:00:00 PM 4:00:00 PM 12:2 396.7 62.2 6,345 40,487 6.4 0.0 0.000 0.0 0.0 6,345 40,487 6.4 25:8 25 618.0 6:00:00 PM 6:00:00 PM 11:5 435.0 60.4 5,816 41,904 7.2 0.0 0.000 0.0 0.0 5,816 41,904 7.2 25:8 25 620.0 8:00:00 PM 8:00:00 PM 12:9 464.4 62.4 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 26.0 26 624.0 12:00:00 AM 12:00:00 AM 12:9 464.4 62.4 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 26.0 26 624.0 12:00:00 AM 12:00:00 AM 16:9 410.2 52.0 7,348 57,942 7.9 1949.8 0.280 833.5 4215.0 9,298 62,157 6.7 26.1 26 626.0 2:00:00 AM 2:00:00 AM 16:9 410.2 52.0 7,348 57,942 7.9 1949.8 0.280 833.5 4215.0 6,670 43,014 6.4 62.4 62.4 67.18 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718																			6.5
25.5 25 612.0 12:00:00 PM 12:00:00 PM 16.4 326.6 63.7 8,703 44,609 5.1 0.0 0.000 0.0 8,703 44,609 5.1 25.6 25 614.0 2:00:00 PM 4:00:00 PM 13:9 357.2 62.4 7,255 41,509 5.7 0.0 0.000 0.0 0.0 7,255 41,509 5.7 25.7 25 616.0 4:00:00 PM 4:00:00 PM 11:2 396.7 62.2 6,345 40,487 6.4 0.0 0.000 0.0 6,345 40,487 6.4 25.8 25 618.0 6:00:00 PM 60:00 PM 11:5 435.0 60.4 5,816 41,904 7.2 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4					0:00:00 AM														4.9
25.6 25 614.0 2:00:00 PM 2:00:00 PM 13.9 357.2 62.4 7,255 41,509 5.7 0.0 0.000 0.00 7,255 41,509 5.7 25.7 25 616.0 4:00:00 PM 4:00:00 PM 12:2 396.7 62.2 6,345 40,487 6.4 0.0 0.000 0.0 0.0 5,345 40,487 6.4 25.8 25 618.0 6:00:00 PM 6:00:00 PM 11:5 435.0 60.4 5,816 41,904 7.2 0.0 0.000 0.00 0.0 5,816 41,904 7.2 25.8 25 620.0 8:00:00 PM 8:00:00 PM 12:9 464.4 62.4 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 25.9 25 62.0 1:00:00 PM 10:00:00 PM 12:9 464.4 62.4 6,718 49,963 7.4 0.0 0.000 0.0 6,718 49,963 7.4 26.0 26 624.0 12:00:00 AM 12:00:00 AM 16:9 410.2 52.0 7,348 57,942 7.9 1949.8 0.280 833.5 4215.0 9,298 62,157 6.7 6.7 26.1 26 627.0 3:00:00 AM 2:00:00 AM 11.1 447.5 50.8 4,720 38,799 8.2 1949.8 0.280 833.5 4215.0 6,670 43,014 6.4 26.1 26 627.0 3:00:00 AM 3:00:00 AM 6:00:00 AM 6:00:	25.5				2:00:00 PM	12:00:00 PM	16.4	326.6	63.7		44,609	5.1	0.0	0.000		0.0	8,703	44,609	5.1
25.8 25 618.0 6:00:00 PM 6:00:00 PM 11.5 435.0 60.4 5,816 41,904 7.2 0.0 0.000 0.0 0.0 5,816 41,904 7.2																			5.7
25.8 25 620.0 8:00:00 PM 8:00:00 PM 12.9 464.4 62.4 6,718 49,963 7.4 0.0 0.000 0.00 6,718 49,963 7.4 25.9 25 622.0 10:00:00 PM 10:00:00 PM 12.9 464.4 62.4 6,718 49,963 7.4 0.0 0.000 0.0 0.0 6,718 49,963 7.4 26.0 26 624.0 12:00:00 AM 12:00:00 AM 16.9 410.2 52.0 7,348 57,942 7.9 1949.8 0.280 833.5 4215.0 9,298 62,157 6.7 26.1 26 626.0 2:00:00 AM 11.1 417.5 50.8 4,720 38,799 8.2 1949.8 0.280 833.5 4215.0 6,670 43,014 6.6 4.6 48,00 48,00 48,00 80 833.5 4215.0 4,650 24,799 5.3 46,61 26,61 6,670 43,014 6.6 4.0		_	_																6.4
25.9 25 622.0 10:00:00 PM 10:00:00 PM 12.9 464.4 62.4 6,718 49,963 7.4 0.0 0.000 0.000 6,718 49,963 7.4 26.0 26 624.0 12:00:00 AM 12:00:00 AM 16.9 410.2 52.0 7,348 57,942 7.9 1949.8 0.280 833.5 4215.0 9,298 62,157 6.7 26.1 26 626.0 2:00:00 AM 2:00:00 AM 11.1 417.5 50.8 4,720 38,799 8.2 1949.8 0.280 833.5 4215.0 6,670 43,014 6.4 26.1 26 627.0 3:00:00 AM 6.00:00 AM 6.4 387.3 50.8 2,700 20,584 7.6 1949.8 0.280 833.5 4215.0 4,650 24,799 5.3 26.3 26 630.0 6:00:00 AM 6:00:00 AM 5.0 433.2 50.6 2,089 17,903 8.6 1949.8 0.280 <		_	_															· · · · · · · · · · · · · · · · · · ·	7.2
26.0 26 624.0 12:00:00 AM 12:00:00 AM 16.9 410.2 52.0 7,348 57,942 7.9 1949.8 0.280 833.5 4215.0 9,298 62,157 6.7 26.1 26 626.0 2:00:00 AM 2:00:00 AM 11.1 417.5 50.8 4,720 38,799 8.2 1949.8 0.280 833.5 4215.0 6,670 43,014 6.4 26.1 26 627.0 3:00:00 AM 3:00:00 AM 6.4 387.3 50.8 2,700 20,584 7.6 1949.8 0.280 833.5 4215.0 4,650 24,799 5.3 26.3 26 630.0 6:00:00 AM 6:00:00 AM 6.0 380.1 51.5 2,564 17,920 7.0 1949.8 0.280 833.5 4215.0 4,039 22,1118 5.5 26.3 26 631.0 7:00:00 AM 7:00:00 AM 8:00:00 AM 12.0 278.7 50.1 5,019 27,941 5.6 0.0 0.000 5.0 10.0 5,019 27,941 5.6 26.4 26 634.0 10:00:00 AM 10:00:00 AM 15.4 243.2 57.6 7,395 31,206 4.2 0.0 0.000 10.0 5,019 27,941 5.6 26.6 26 638.0 12:00:00 PM 12:00:00 PM 16.2 267.2 60.8 8,226 36,141 4.4 0.0 0.000 10.0 8,226 36,141 4.4 0.0 0.000 10.0 5,997 32,802 5.5 26.8 26 642.0 10:00:00 PM 10:00:00 PM 12.1 324.6 59.3 5,997 32,802 5.5 0.0 0.000 10.0 5,997 32,802 5.5 26.8 26 644.0 8:00:00 PM 8:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 10.0 0.0 0.0 6,349 40,479 6.4 26.9 26 646.0 10:00:00 PM 10:00:00 PM 10:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 10.0 0.0 0.0 0.0 0.0 0.0 0.0																		,	
26.1 26 626.0 2:00:00 AM 2:00:00 AM 11.1 417.5 50.8 4,720 38,799 8.2 1949.8 0.280 833.5 4215.0 6,670 43,014 6.4 26.1 26 627.0 3:00:00 AM 3:00:00 AM 6.4 387.3 50.8 2,700 20,584 7.6 1949.8 0.280 833.5 4215.0 4,650 24,799 5.3 26.3 26 630.0 6:00:00 AM 6:00:00 AM 5.0 433.2 50.6 2,089 17,903 8.6 1949.8 0.280 833.5 4215.0 4,039 22,118 5.5 26.3 26 631.0 7:00:00 AM 6.0 360.1 51.5 2,564 17,920 7.0 1949.8 0.280 833.5 4215.0 4,039 22,118 5.5 26.3 26 632.0 8:00:00 AM 8:00:00 AM 12.0 278.7 50.1 5,019 27,941 5.6 0.0 0.00 0.0 <td></td>																			
26.1 26 627.0 3:00:00 AM 3:00:00 AM 6.4 387.3 50.8 2,700 20,584 7.6 1949.8 0.280 833.5 4215.0 4,650 24,799 5.3 26.3 26 630.0 6:00:00 AM 6:00:00 AM 5.0 433.2 50.6 2,089 17,903 8.6 1949.8 0.280 833.5 4215.0 4,039 22,118 5.5 26.3 26 631.0 7:00:00 AM 7:00:00 AM 6.0 360.1 51.5 2,564 17,920 7.0 1949.8 0.280 833.5 4215.0 4,514 22,135 4.9 26.3 26 632.0 8:00:00 AM 8:00:00 AM 12.0 278.7 50.1 5,019 27,941 5.6 0.0 0.00 0.0 5,019 27,941 5.6 26.4 26 634.0 10:00:00 AM 10:00:00 AM 15.4 243.2 57.6 7,395 31,206 4.2 0.0 0.00 0.00 <td></td> <td>6.7</td>																			6.7
26.3 26 630.0 6:00:00 AM 6:00:00 AM 5.0 433.2 50.6 2,089 17,903 8.6 1949.8 0.280 833.5 4215.0 4,039 22,118 5.5 26.3 26 631.0 7:00:00 AM 7:00:00 AM 6.0 360.1 51.5 2,564 17,920 7.0 1949.8 0.280 833.5 4215.0 4,514 22,135 4.9 26.3 26 632.0 8:00:00 AM 8:00:00 AM 12.0 278.7 50.1 5,019 27,941 5.6 0.0 0.000 0.0 5,019 27,941 5.6 26.4 26 634.0 10:00:00 AM 10:00:00 AM 15.4 243.2 57.6 7,395 31,206 4.2 0.0 0.000 0.0 0.0 7,395 31,206 4.2 26.5 26 636.0 12:00:00 PM 16.2 267.2 60.8 8,226 36,141 4.4 0.0 0.000 0.0 8,226																	·		
26.3 26 631.0 7:00:00 AM 7:00:00 AM 6.0 360.1 51.5 2,564 17,920 7.0 1949.8 0.280 833.5 4215.0 4,514 22,135 4.9 26.3 26 632.0 8:00:00 AM 8:00:00 AM 12.0 278.7 50.1 5,019 27,941 5.6 0.0 0.000 0.0 5,019 27,941 5.6 26.4 26 634.0 10:00:00 AM 10:00:00 AM 15.4 243.2 57.6 7,395 31,206 4.2 0.0 0.000 0.0 0.0 7,395 31,206 4.2 26.5 26 636.0 12:00:00 PM 16.2 267.2 60.8 8,226 36,141 4.4 0.0 0.000 0.0 8,226 36,141 4.4 26.6 26 638.0 2:00:00 PM 13.8 292.3 59.6 6,857 33,629 4.9 0.0 0.000 0.0 6,857 33,629 4.9		_	_		-														
26.3 26 632.0 8:00:00 AM 8:00:00 AM 12.0 278.7 50.1 5,019 27,941 5.6 0.0 0.000 0.000 0.00 5,019 27,941 5.6 26.4 26 634.0 10:00:00 AM 10:00:00 AM 15.4 243.2 57.6 7,395 31,206 4.2 0.0 0.000 0.00 0.0 7,395 31,206 4.2 26.5 26 636.0 12:00:00 PM 12:00:00 PM 16.2 267.2 60.8 8,226 36,141 4.4 0.0 0.000 0.00 8,226 36,141 4.4 26.6 26 638.0 2:00:00 PM 13.8 292.3 59.6 6,857 33,629 4.9 0.0 0.000 0.0 6,857 33,629 4.9 26.7 26 640.0 4:00:00 PM 4:00:00 PM 12.1 324.6 59.3 5,997 32,802 5.5 0.0 0.000 0.0 5,997 32,802		_	_																5.5
26.4 26 634.0 10:00:00 AM 10:00:00 AM 15.4 243.2 57.6 7,395 31,206 4.2 0.0 0.000 0.000 0.0 7,395 31,206 4.2 26.5 26 636.0 12:00:00 PM 12:00:00 PM 16.2 267.2 60.8 8,226 36,141 4.4 0.0 0.000 0.00 8,226 36,141 4.4 26.6 26 638.0 2:00:00 PM 2:00:00 PM 13.8 292.3 59.6 6,857 33,629 4.9 0.0 0.000 0.0 6,857 33,629 4.9 26.7 26 640.0 4:00:00 PM 4:00:00 PM 12.1 324.6 59.3 5,997 32,802 5.5 0.0 0.000 0.0 5,997 32,802 5.5 26.8 26 642.0 6:00:00 PM 6:00:00 PM 11.4 355.9 57.6 5,497 33,949 6.2 0.0 0.000 0.0 5,497 33,949 6.2 26.8 26 644.0 8:00:00 PM 8:00:00 PM 12.8 <td></td> <td>033.3</td> <td></td> <td></td> <td></td> <td>4.9</td>															033.3				4.9
26.5 26 636.0 12:00:00 PM 12:00:00 PM 16.2 267.2 60.8 8,226 36,141 4.4 0.0 0.000 0.000 0.0 8,226 36,141 4.4 26.6 26 638.0 2:00:00 PM 2:00:00 PM 13.8 292.3 59.6 6,857 33,629 4.9 0.0 0.000 0.0 6,857 33,629 4.9 26.7 26 640.0 4:00:00 PM 4:00:00 PM 12.1 324.6 59.3 5,997 32,802 5.5 0.0 0.000 0.0 5,997 32,802 5.5 26.8 26 642.0 6:00:00 PM 6:00:00 PM 11.4 355.9 57.6 5,497 33,949 6.2 0.0 0.000 0.0 5,497 33,949 6.2 26.8 26 644.0 8:00:00 PM 8:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 0.0 0.0 6,349 4																			
26.6 26 638.0 2:00:00 PM 2:00:00 PM 13.8 292.3 59.6 6,857 33,629 4.9 0.0 0.000 0.000 0.0 6,857 33,629 4.9 26.7 26 640.0 4:00:00 PM 4:00:00 PM 12.1 324.6 59.3 5,997 32,802 5.5 0.0 0.000 0.0 5,997 32,802 5.5 26.8 26 642.0 6:00:00 PM 6:00:00 PM 11.4 355.9 57.6 5,497 33,949 6.2 0.0 0.000 0.0 5,497 33,949 6.2 26.8 26 644.0 8:00:00 PM 8:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 0.0 6,349 40,479 6.4 26.9 26 646.0 10:00:00 PM 10:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 0.0 0.0 6,349 4																			4.2
26.7 26 640.0 4:00:00 PM 4:00:00 PM 12.1 324.6 59.3 5,997 32,802 5.5 0.0 0.000 0.00 5,997 32,802 5.5 26.8 26 642.0 6:00:00 PM 6:00:00 PM 11.4 355.9 57.6 5,497 33,949 6.2 0.0 0.000 0.0 5,497 33,949 6.2 26.8 26 644.0 8:00:00 PM 8:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 0.00 0.0 6,349 40,479 6.4 26.9 26 646.0 10:00:00 PM 10:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 0.0 0.0 6,349 40,479 6.4 26.9 26 646.0 10:00:00 PM 10:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 0.0 0.0 6,349 40,479 6.4																			
26.8 26 642.0 6:00:00 PM 6:00:00 PM 11.4 355.9 57.6 5,497 33,949 6.2 0.0 0.000 0.00 5,497 33,949 6.2 26.8 26 644.0 8:00:00 PM 8:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 0.0 6,349 40,479 6.4 26.9 26 646.0 10:00:00 PM 10:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 0.00 0.0 6,349 40,479 6.4 26.9 26 646.0 10:00:00 PM 10:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 0.0 0.0 6,349 40,479 6.4																		·	
26.8 26 644.0 8:00:00 PM 8:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 0.00 6,349 40,479 6.4 26.9 26 646.0 10:00:00 PM 10:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 0.00 0.00 6,349 40,479 6.4 6.4 0.0 0.000 0.00 0.00 6,349 40,479 6.4 6.4 0.0 0.000 0.00 0.00 0.00 0.00 0					-													·	6.2
26.9 26 646.0 10:00:00 PM 10:00:00 PM 12.8 379.9 59.6 6,349 40,479 6.4 0.0 0.000 0.00 6,349 40,479 6.4		_	_																
27.0 27 648.0 12:00:00 AM 12:00:00 AM 17.4 482.9 49.5 7,160 69,889 9.8 1154.5 0.159 872.1 2385.2 8,315 72,274 8.7																	·	· ·	6.4
															872.1				8.7

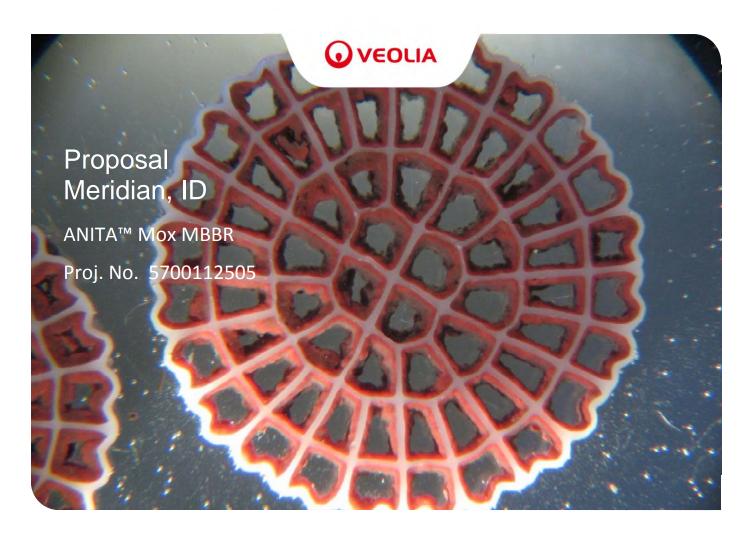
Centrate EQ Load Calcs

27.1	27 650.0	2.00.00 444	2:00:00 AM	11.4	491.6	48.3	4.000	46,798	10.2	11545	0.159	072.1	2205.2	5,754	49,184	0.5
27.1 27.1		2:00:00 AM 3:00:00 AM	3:00:00 AM	11.4 6.5	491.6	48.3	4,600	24,829	10.2 9.4	1154.5 1154.5		872.1 872.1	2385.2 2385.2	3,786	27,214	8.5 7.2
27.1	27 651.0 27 654.0	6:00:00 AM			455.9 510.0		2,631	,	10.6	1154.5	0.159	872.1 872.1	2385.2	,	,	7.5
27.3	27 654.0		6:00:00 AM	5.1		48.1	2,036	21,595			0.159		2385.2	3,190	23,980 24,000	
		7:00:00 AM	7:00:00 AM	6.1	424.0	49.0	2,499	21,615	8.7	1154.5	0.159	872.1		3,653		6.6
27.3	27 656.0	8:00:00 AM	8:00:00 AM	12.3	328.1	47.6	4,891	33,702	6.9	0.0	0.000		0.0	4,891	33,702	6.9
27.4	27 658.0	10:00:00 AM	10:00:00 AM	15.8	286.3	54.8	7,206	37,640	5.2	0.0	0.000		0.0	7,206	37,640	5.2
27.5	27 660.0	12:00:00 PM	12:00:00 PM	16.6	314.6	57.8	8,016	43,593	5.4	0.0	0.000		0.0	8,016	43,593	5.4
27.6	27 662.0	2:00:00 PM	2:00:00 PM	14.1	344.1	56.7	6,682	40,563	6.1	0.0	0.000		0.0	6,682	40,563	6.1
27.7	27 664.0	4:00:00 PM	4:00:00 PM	12.4	382.2	56.4	5,844	39,565	6.8	0.0	0.000		0.0	5,844	39,565	6.8
27.8	27 666.0	6:00:00 PM	6:00:00 PM	11.7	419.0	54.8	5,357	40,949	7.6	0.0	0.000		0.0	5,357	40,949	7.6
27.8	27 668.0	8:00:00 PM	8:00:00 PM	13.1	447.3	56.7	6,187	48,825	7.9	0.0	0.000		0.0	6,187	48,825	7.9
27.9	27 670.0	10:00:00 PM	10:00:00 PM	13.1	447.3	56.7	6,187	48,825	7.9	0.0	0.000		0.0	6,187	48,825	7.9
28.0	28 672.0	12:00:00 AM	12:00:00 AM	17.3	538.8	49.2	7,088	77,679	11.0	1796.2	0.252	855.5	3783.2	8,885	81,462	9.2
28.1	28 674.0	2:00:00 AM	2:00:00 AM	11.4	548.4	48.0	4,554	52,015	11.4	1796.2	0.252	855.5	3783.2	6,350	55,798	8.8
28.1	28 675.0	3:00:00 AM	3:00:00 AM	6.5	508.7	48.0	2,605	27,596	10.6	1796.2	0.252	855.5	3783.2	4,401	31,379	7.1
28.3	28 678.0	6:00:00 AM	6:00:00 AM	5.1	569.0	47.8	2,016	24,002	11.9	1796.2	0.252	855.5	3783.2	3,812	27,785	7.3
28.3	28 679.0	7:00:00 AM	7:00:00 AM	6.1	473.0	48.7	2,474	24,024	9.7	1796.2	0.252	855.5	3783.2	4,270	27,808	6.5
28.3	28 680.0	8:00:00 AM	8:00:00 AM	12.3	366.1	47.3	4,842	37,458	7.7	0.0	0.000		0.0	4,842	37,458	7.7
28.4	28 682.0	10:00:00 AM	10:00:00 AM	15.7	319.5	54.5	7,134	41,835	5.9	0.0	0.000		0.0	7,134	41,835	5.9
28.5	28 684.0	12:00:00 PM	12:00:00 PM	16.6	351.0	57.5	7,935	48,452	6.1	0.0	0.000		0.0	7,935	48,452	6.1
28.6	28 686.0	2:00:00 PM	2:00:00 PM	14.1	383.9	56.3	6,615	45,085	6.8	0.0	0.000		0.0	6,615	45,085	6.8
28.7	28 688.0	4:00:00 PM	4:00:00 PM	12.4	426.4	56.1	5,785	43,975	7.6	0.0	0.000		0.0	5,785	43,975	7.6
28.8	28 690.0	6:00:00 PM	6:00:00 PM	11.7	467.6	54.5	5,303	45,513	8.6	0.0	0.000		0.0	5,303	45,513	8.6
28.8	28 692.0	8:00:00 PM	8:00:00 PM	13.0	499.1	56.3	6,125	54,268	8.9	0.0	0.000		0.0	6,125	54,268	8.9
28.9	28 694.0	10:00:00 PM	10:00:00 PM	13.0	499.1	56.3	6,125	54,268	8.9	0.0	0.000		0.0	6,125	54,268	8.9
29.0	29 696.0	12:00:00 AM	12:00:00 AM	16.8	467.8	47.6	6,671	65,522	9.8	3140.3	0.464	811.7	6971.0	9,811	72,493	7.4
29.1	29 698.0	2:00:00 AM	2:00:00 AM	11.0	476.1	46.5	4,285	43,875	10.2	3140.3	0.464	811.7	6971.0	7,426	50,846	6.8
29.1	29 699.0	3:00:00 AM	3:00:00 AM	6.3	441.6	46.5	2,451	23,277	9.5	3140.3	0.464	811.7	6971.0	5,592	30,248	5.4
29.3	29 702.0	6:00:00 AM	6:00:00 AM	4.9	494.0	46.3	1,897	20,245	10.7	3140.3	0.464	811.7	6971.0	5,037	27,216	5.4
29.3	29 703.0	7:00:00 AM	7:00:00 AM	5.9	410.7	47.2	2,328	20,265	8.7	3140.3	0.464	811.7	6971.0	5,468	27,236	5.0
29.3	29 704.0	8:00:00 AM	8:00:00 AM	11.9	317.8	45.8	4,557	31,596	6.9	0.0	0.000		0.0	4,557	31,596	6.9
29.4	29 706.0	10:00:00 AM	10:00:00 AM	15.3	277.4	52.8	6,714	35,288	5.3	0.0	0.000		0.0	6,714	35,288	5.3
29.5	29 708.0	12:00:00 PM	12:00:00 PM	16.1	304.7	55.7	7,468	40,870	5.5	0.0	0.000		0.0	7,468	40,870	5.5
29.6	29 710.0	2:00:00 PM	2:00:00 PM	13.7	333.3	54.6	6,225	38,029	6.1	0.0	0.000		0.0	6,225	38,029	6.1
29.7	29 712.0	4:00:00 PM	4:00:00 PM	12.0	370.2	54.3	5,444	37,093	6.8	0.0	0.000		0.0	5,444	37,093	6.8
29.8	29 714.0	6:00:00 PM	6:00:00 PM	11.3	405.9	52.8	4,991	38,391	7.7	0.0	0.000		0.0	4,991	38,391	7.7
29.8	29 716.0	8:00:00 PM	8:00:00 PM	12.7	433.3	54.6	5,764	45,775	7.9	0.0	0.000		0.0	5,764	45,775	7.9
29.9	29 718.0	10:00:00 PM	10:00:00 PM	12.7	433.3	54.6	5,764	45,775	7.9	0.0	0.000		0.0	5,764	45,775	7.9

30-day Simulation CEN EQ_12SRT_7hr_AB4_M2.xlsxDaily Data

					Aer 1 Air		Aer 3 Air	Swing 1 Air	WAS Mas			Purchased
	Eff NH3	Eff NO3	Eff TN	Eff TP	flow rate		flow rate	flow rate	Rate	MeOH	MeOH	MeOH
Date	mg/L	mg/L	mg/L	mg/L	scfm	scfm	scfm	scfm	lb/d	Flow mgd	Flow gpd	Flow gpd
1/5/2015							1355.48		18095.87			
1/6/2015							1028.75		18181.18			
1/7/2015							1184.26		18078.59			
1/8/2015							1463.24		18140.62			
1/9/2015							1129.32		18141.64			
1/10/2015							1197.19		18145.65			
1/11/2015							1157.77		18247.50			
1/12/2015							1272.12		18211.69			
1/13/2015				0.47			1295.90		17924.84			
1/14/2015							1131.51		17849.04			
1/15/2015							1114.86		18138.21			
1/16/2015									18261.05			
1/17/2015							1370.96		18061.55			
1/18/2015				0.47			1295.57		17954.58			
1/19/2015							1041.86		17848.28			
1/20/2015							1200.96		18023.04			
1/21/2015							1171.58		18188.69			
1/22/2015				0.45			1171.44		18093.16			
1/23/2015				0.45			1350.70		18052.33			
1/24/2015							1159.40		17910.25			
1/25/2015				0.45			1400.19		17979.75			
1/26/2015				0.44					17911.22			
1/27/2015				0.44	7940.55	4247.00	1083.71		17825.99	0.05		
1/28/2015				0.44	7893.90	4273.48	1111.29	3495.18	17691.50	0.06	55094	551
1/29/2015							1035.94		17759.70			
1/30/2015					8008.14	4192.24	1099.34		17807.95	0.05		
1/31/2015		6.50	9.90	0.44			1305.20	3376.01	17724.62	0.05		542
2/1/2015	0.36	7.10	10.28	0.46	7443.49	4099.56	1137.26	3341.20	17438.63	0.05	54892	549
2/2/2015	0.18	4.39	6.83	0.44	7788.23		1025.83	3453.95	17364.46	0.06	55204	552
2/3/2015	0.19	3.92	6.43	0.44	7935.02	4304.54	1090.07	3432.84	17543.88	0.05	54099	541
2/4/2015	0.26	6.61	9.38	0.45	7570.16	3796.03	958.26	3339.49	17336.45	0.05	54775	548
Average	0.30	4.75			8,100	4,418	1,185	3,543	17,933	0.06	56,066	561
Max	0.63	7.92	11.77	0.50	8,652	4,978	1,463	3,759	18,261	0.06	61,191	612

Total Ave Air 17,247 scfm
Total Max Air 18,852 scfm


Total MeOH 16,820 gallons

Ave WAS calc

23,313 lb/d

\\bcboifp01\projects_Meridian, City of\147571 - COM Alternatives Analysis_Working\Centrate EQ\Basin Volume Reduction\30-day Simulation CEN EQ_12SRT_7hr_AB4_M2.xlsx

Info from :	30-DaySimulat	ionWithQAir	
power/scfm/yr \$/kwhr		350 0.069	
WAS Rate increase		1.3	
Methanol Solution Purchased Methanol	mg COD/L	11880 1188000	
Methanol Price \$/ga	\$	2.25	corrected per TM1 - SMF
Monthly Ave Air Cost Ave MeOH Cost	\$ \$	35,000.00 38,000.00	

Submitted to: Lynn Williams, P.E.

Brown and Caldwell

Submitted by: Daniel Hurt

Application Engineer

Date: 5/11/2015

This document is confidential and may contain proprietary information.

It is not to be disclosed to a third party without the written consent of Veolia Water Technologies.

Kruger Inc.
4001 Weston Parkway
Cary, NC 27513
tel. +1 919-677-8310 • fax +1 919-677-0082
www.krugerusa.com

Introduction

I. Kruger Inc. (a subsidiary of Veolia Water Technologies) is pleased to present this preliminary budgetary proposal for our ANITA™ Mox MBBR process for deammonification of Conventional Anaerobic Digester rejection water at Meridian, ID WWTP. This design is based upon influent flows and loads, design temperatures and other information we have received from you.

In order to achieve the expected removals as summarized in Table 2, we recommend constructing one (1) ANITA Mox MBBR process train with one (1) ANITA Mox MBBR reactor for deammonification of NH₃-N. The tank dimensions along with other important process parameters are summarized in Table 3. A preliminary Layout Sketch is included in Process Configuration Section in Page 5.

Please note that a partial nitritation processes with ammonia oxidizing bacteria (AOB) in aerobic conditions consume a significant amount of alkalinity. To ensure that the best performance of the process is achieved, we have included the minimum alkalinity needed in Table 3. If the dewatering schedule does not allow for continuous flow to the process, equalization upstream of the ANITA Mox reactor is recommended.

We appreciate the opportunity to provide this proposal to you. If you have any questions or need further information, please don't hesitate to contact our local representative, Steve Reilly of W.H. Reilly & Co., or our regional sales manager, Brad Mrdjenovich at (brad.mrdjenovich@veolia.com) or (919)-931-5978.

Cc: CT, BM, GAT, LGW, JH, project file (Kruger) Steve Reilly (W.H. Reilly & Co.)

Revision	Date	Process Eng.	Comments
0	05/04/2015	JH_GAT	Initial, budgetary proposal.

We Know Water

Kruger Inc. (Kruger) is a water and wastewater solutions provider specializing in advanced and differentiating technologies. Kruger provides complete processes and systems ranging from biological nutrient removal to mobile surface water treatment. The ACTIFLO® Microsand Ballasted Clarifier, BioCon® Dryer, BIOSTYR® Biological Aerated Filter (BAF) and NEOSEP™ MBR are just a few of the innovative technologies offered by Kruger.

Kruger Inc. is a Veolia Water Solutions & Technologies' (VWS) company providing innovative water and wastewater treatment solutions for the U.S. municipal market. As a global company with 135 Business Units in 57 countries, Veolia Water with nearly 10,000 employees worldwide and with over 250 proprietary technologies is the world leader in water and wastewater treatment.

Kruger delivers unequalled Service to our customers delivering and creating Value while being environmentally Responsible with a focus on safety. Since 1986, Kruger has been providing leading edge technologies for biological wastewater treatment, High Rate Clarification for phosphorus removal and water treatment, filtration for TSS removal, water reuse and drinking water and Biosolids processing. Based in Cary, North Carolina, Kruger's 120 plus professionals are dedicated to providing the most technically sound solution to meet our customers' needs while following our principles of SVR.

Energy Focus

Kruger, along with Veolia Water Solutions & Technologies (VWS) is dedicated to delivering sustainable and innovative technologies and solutions. We offer our customers integrated solutions which include resource-efficient technology to improve operations, reduce costs, achieve sustainability goals, decrease dependency on limited resources, and comply with current and anticipated regulations.

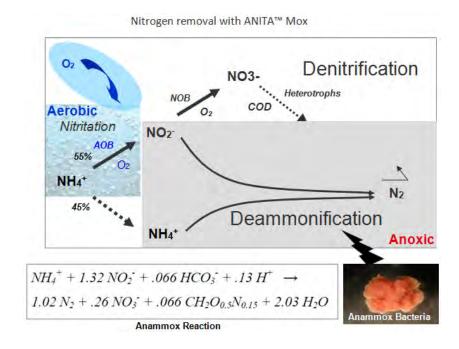
Veolia's investments in R&D outpace that of our competition. Our focus is on delivering

- neutral or positive energy solutions
- migration towards green chemicals or zero chemical consumption
- water-footprint-efficient technologies with high recovery rates

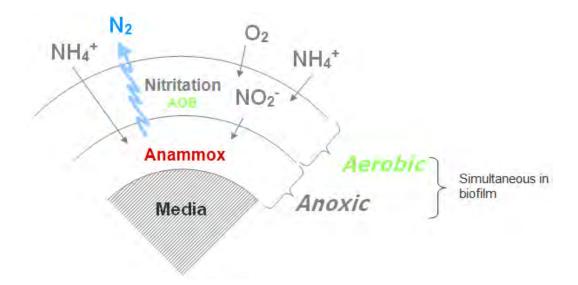
Our carbon footprint reduction program drives innovation, accelerates adoption and development of clean technologies, and offers our customers sustainable solutions.

Kruger is benchmarking its technologies and solutions by working with our customers and performing total carbon cost analysis over the lifetime of the installation.

By committing to the innovative development of clean and sustainable technologies and solutions worldwide, Kruger and VWS will continue to maximize the financial benefits for every customer.

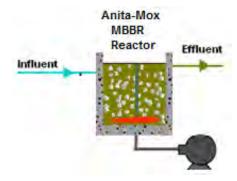

Process Description

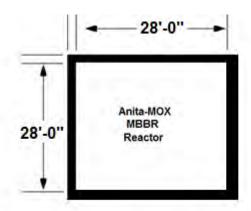
AnoxKaldnes MBBR


The MBBR process is a continuous-flow, non-clogging biofilm reactor containing moving "carrier elements" or media. The media flows with the water currents in the reactor and does not require backwashing or cleaning.

The biomass that treats the wastewater is attached to the surfaces of the media. The media is designed to provide a large protected surface area for the biofilm and optimal conditions for biological activity when suspended in water. AnoxKaldnes media is made from polyethylene and has a density slightly less then water.

The ANITATM Mox process is a single-stage nitrogen removal process based on the MBBR platform. The process is specifically designed for treatment of waste streams with high ammonia concentrations. The system can achieve ammonia removals of 80-90% and total nitrogen removals of 75-85%. The treatment method uses only 40% of the oxygen demand of conventional nitrification, and it requires no external carbon source.

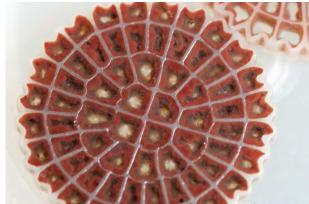

The ANITA Mox process consists of an aerobic nitritation reaction and an anoxic ammonia oxidation (anammox) reaction. The two steps take place simultaneously in different layers of the biofilm. Nitritation occurs in the outer layer of the biofilm. Approximately 55% of the influent ammonia is oxidized to nitrite (NO_2^-) . Anammox activity occurs in the inner layer. In this step, the nitrite produced and the remaining ammonia are utilized by the anammox bacteria and converted to nitrogen gas (N_2) and a small amount of nitrate (NO_3^-) .


The aerobic and anoxic reactions occur in a single MBBR reactor. The combined biomass grows attached to the AnoxKaldnes media and is retained in the reactor by media screens. This biomass retention is an important characteristic of the system, since the anammox bacteria growth rate is very slow when compared to conventional wastewater bacteria growth rates.

AnoxKaldnes ANITA™ Mox System Configuration

Kruger proposes the ANITA™ Mox process for deammonification of centrate at Meridian, ID. We recommend constructing one (1) ANITA Mox process train with one (1) ANITA Mox MBBR reactor for deammonification.

Proposed ANITA Mox MBBR Process Configuration



Preliminary Layout Sketch - NOT FOR CONSTRUCTION

Design Summary

The design assumes that the side stream entering into the proposed ANITA Mox system contains no toxic compounds and has sufficient alkalinity and that none of the equipment provided would be used in a classified area (e.g. Class 1, Division 1 or Class 1, Division 2).

The ANITA Mox influent design basis is summarized in Table 1. The target effluent criteria for the ANITA Mox system are listed in Table 2. The process design is summarized in Table 3.

Table 1: Influent Design Basis

Parameter	Units	Value
Flow, Design	MGD	0.103
COD, Design Flow	mg/L	1,802
TSS, Design Flow ¹	mg/L	1,000
TKN, Design Flow	mg/L	960
NH₄-N, Design Flow¹	mg/L	884
Elevation ²	ft	2,600
Design Temperature	°C	30

¹Assumed values

Table 2: Expected Removals

Parameter	Units	% Removal
NH ₄ -N (mg/L)	%	80-85
Total Inorganic Nitrogen (mg/L)	%	70-75

²Assumed valves based on the best available information

Table 3: Process Design Summary

Parameter	Units	Values
Number of Process Trains	-	1
Number of ANITA Mox Reactor per Train	-	1
ANITA Mox MBBR Reactor		
Dimensions (Each)	ft	28 L × 28 W × 20 SWD
Volume (Each)	ft ³	15,680
Total Volume (All Reactors, All Trains)	ft ³	15,680
Recommended Freeboard	ft	2 - 3
Media Type:	-	K5
Fill of Biofilm Carriers, All Reactors	%	41
Media Volume (All Reactors, All Trains)	ft ³	6,710
Aeration System Type	-	Medium Bubble
Residual DO, Max. Month	mg/L	1.5
Total Process Air Requirement (All Reactors, All Trains)	SCFM	~600
Discharge Pressure (From Top of Drop Pipe)	psi	9.0
Minimum Alkalinity Required in influent	mg/L	4,000
Estimated Effluent TSS Concentration at Design Condition	mg/L	1,200
Sludge Production at Design Conditions	lb/day	1,030

Scope of Supply

Kruger is pleased to present our scope of supply which includes process engineering design, equipment procurement, and field services required for the proposed treatment system, as related to the equipment specified. The work will be performed to Kruger's high standards under the direction of a Project Manager. All matters related to the design, installation, or performance of the system shall be communicated through the Kruger representative giving the Engineer and Owner ready access to Kruger's extensive capabilities.

Process and Design Engineering

Kruger will provide process engineering and design support for the system as follows:

- Process Engineering consisting of aeration system sizing and configuration, sieve and outlet design.
- Review and approval of P&I Diagram for the AnoxKaldnes ANITA Mox portion of the process. Preliminary General Arrangement Drawings and review and approval of final General Arrangement Drawings for the process. Review of reactor drawings with respect to penetrations and dimensions, excluding structural design.
- Equipment installation instructions for all equipment supplied by Kruger.

Field Services

Kruger will furnish a Service Engineer to perform the following tasks:

- Inspect installation of key pieces of equipment during construction.
- Inspect the completed system prior to startup.
- Assist the Contractor with initial startup of the system.
- Train the Owner's staff in the proper operation and maintenance of the AnoxKaldnes ANITA Mox system.
- Test and start any Kruger-supplied control equipment, including PLC programming and SCADA systems.

AnoxKaldnes ANITA™ Mox System Equipment

Mechanical Equipment Items	Qty	Description
AnoxKaldnes K5 Media, (ft ³)	6,710	Carrier elements are made of high density polyethylene. The total media quantity will include a volume of ~5% seeded media.
Cylindrical Screen Assemblies	2	Two (2) per reactor. 304L SS. 23"ø perforated plate pipes terminated in ANSI flanges for mounting directly to the tank wall.
Medium Bubble Aeration System	1 lot	304L SS including header, lateral piping, and hardware (excluding concrete anchor bolts).
Specially Designed Mechanical Mixers	1	One (1) top entry mixer per ANITA Mox Reactor
Airlift Pumps	2	Two airlift pumps per ANITA Mox reactor for foam suppression.
Positive Displacement Blowers	1 + 1	One (1) duty plus one (1) standby. Each blower will be rated for 599 SCFM and 40 HP with a VFD.
Instrumentation and Controls Equipment Items	Qty	Description
PLC Control Panel	1	NEMA 12 Freestanding or Wall Mount Control Panel (For Indoor Use). ControlLogix PLC; Panelview HMI; 120V Feed
High Level Float Switch	1	One (1) for each media zone.
DO Probe (LDO)	1	One (1) for each Aerobic zone. Aerobic Zone DO Monitoring
pH/Temp. meter	1	One (1) pH meter for each ANITA Mox reactor.
Thermal Mass Flowmeter	1	One (1) for each ANITA Mox reactor for air flow control
Instrumentation and Controls (NOT INCLUDED)*	Qty	Description
Influent Ammonia Nitrogen Probe	1	One (1) ammonia nitrogen probe for all process trains. For nutrient monitoring
Combination Ammonia / Nitrate Nitrogen Analyzer	1	One (1) combination ammonia / nitrate nitrogen probe for each ANITA Mox reactor. For nutrient monitoring.

^{*} Kruger can supply these items if required, but are not part of our standard offering. Please contact Kruger if you would like this included in Kruger's Scope of supply.

Notes Regarding System Design and Installation

• For any MBBR or IFAS system, regardless of manufacturer, the quality and finish of reactor surfaces is important for the long-term longevity of the system. AnoxKaldnes has years of experience in the design and manufacture of MBBR and IFAS systems, with the quality and texture of the finished reactor walls is important. It is particularly important to prevent chipping, holidays, or rough areas that would leave open any annular spaces around media retention screens.

Scope of Supply BY INSTALLER/PURCHASER

The scope of supply by others for the AnoxKaldnes ANITA™ Mox system should include, but is not limited to, the following items:

- All civil/site and electrical work.
- A concrete foundation for the tanks.
- Reactors to house the MBBR treatment equipment.
- All provisions for interconnecting piping.
- Unloading, storage and installation of equipment.
- Centrate equalization tanks
- Cover for reactor tanks
- Temporary provisions for screened primary or secondary effluent during startup.
- Temporary reactor heating during startup.
- Mixer bridges and other structural modifications for the reactors.

Design Options

In addition to the proposed system as detailed herein, Kruger is able to further incorporate our process and controls expertise into wastewater treatment plants, allowing municipalities to meet stringent effluent requirements and future plant upgrades. Kruger is also able to offer our instrumentation and controls expertise to build upon the proposed system by providing a **customized plant-wide SCADA system** or designing a **Motor Control Center (MCC)**, providing clients a single source responsibility for plant controls. Please contact Kruger if the options above are of interest or to be included in the current proposed system or future upgrades. **Please note that the design options listed above are not included in the pricing noted herein.

Schedule

- Shop drawings will be submitted within 6-8 weeks of receipt of an executed contract by all parties.
- All equipment will be delivered within 18-20 weeks after receipt of written approval of the shop drawings.
- Installation manuals will be furnished upon delivery of equipment.
- Operation and Maintenance Manuals will be submitted within 90 days after receipt of approved shop drawings.

Pricing

The price for the AnoxKaldnes ANITA™ Mox MBBR system, as defined herein, including process and design engineering, field services, and equipment supply is: **\$710,300**

Pricing is FOB shipping point, with freight allowed to the job site. This pricing does not include any sales or use taxes. In addition, pricing is valid for ninety (90) days from the date of issue and is subject to negotiation of a mutually acceptable contract.

Please note that the above pricing is expressly contingent upon the items in this proposal and are subject to I. Kruger Inc. Standard Terms of Sale detailed herein.

Kruger Standard Terms of Payment

The terms of payment are as follows:

- 10% on receipt of fully executed contract
- 15% on submittal of shop drawings
- 75% on the delivery of equipment to the site

Payment shall not be contingent upon receipt of funds by the Contractor from the Owner. There shall be no retention in payments due to I. Kruger Inc. All other terms per our Standard Terms of Sale are attached.

All payment terms are net 30 days from the date of invoice. Final payment not to exceed 120 days from delivery of equipment.

I. Kruger Inc. Standard Terms of Sale

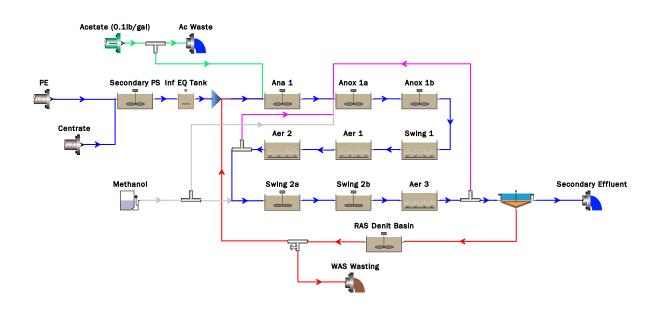
- 1. <u>Applicable Terms.</u> These terms govern the purchase and sale of the equipment and related services, if any (collectively, "Equipment"), referred to in Seller's purchase order, quotation, proposal or acknowledgment, as the case may be ("Seller's Documentation"). Whether these terms are included in an offer or an acceptance by Seller, such offer or acceptance is conditioned on Buyer's assent to these terms. Seller rejects all additional or different terms in any of Buyer's forms or documents.
- 2. <u>Payment.</u> Buyer shall pay Seller the full purchase price as set forth in Seller's Documentation. Unless Seller's Documentation provides otherwise, freight, storage, insurance and all taxes, duties or other governmental charges relating to the Equipment shall be paid by Buyer. If Seller is required to pay any such charges, Buyer shall immediately reimburse Seller. All payments are due within 30 days after receipt of invoice. Buyer shall be charged the lower of 1 ½% interest per month or the maximum legal rate on all amounts not received by the due date and shall pay all of Seller's reasonable costs (including attorneys' fees) of collecting amounts due but unpaid. All orders are subject to credit approval.
- 3. <u>Delivery.</u> Delivery of the Equipment shall be in material compliance with the schedule in Seller's Documentation. Unless Seller's Documentation provides otherwise, Delivery terms are F.O.B. Seller's facility.
- 4. Ownership of Materials. All devices, designs (including drawings, plans and specifications), estimates, prices, notes, electronic data and other documents or information disclosed by Seller or prepared solely by Seller or Buyer or jointly by Seller and Buyer in connection with this Agreement, and all intellectual property rights therein, shall be and remain the confidential and proprietary property of Seller, whether or not patented by Seller ("Work Product"). Buyer hereby irrevocably assigns all rights in any Work Product to Seller. Seller grants Buyer a non-exclusive, non-transferable (except to a successor-in interest to the ownership of the Equipment), paid-up license to use the Work Product solely in connection with Buyer's use, operation, repair and maintenance of the Equipment at the Jobsite defined in this Agreement. Buyer may not disclose, share, transfer, or sell any such Work Product to third parties without Seller's prior written consent and such consent may be arbitrarily withheld. Buyer agrees not to resell, transfer or give any of the biologically colonized media or bacteria from the system to any party other than Seller or any of Seller's affiliates without the prior written consent of Seller for a period of fifteen (15) years from the effective date of this Agreement. Buyer shall not cultivate bacteria or use biomass carriers retrieved from the ANITA Mox system for any research or non-research purposes without prior written consent of the Seller. Any new developments, discoveries or inventions resulting from the operation of the ANITA Mox system in which the ANITA Mox process is a component or is in any way incorporated in whole or in part shall be owned solely by the Seller.
- 5. Changes. Seller shall not implement any changes in the scope of work described in Seller's Documentation unless Buyer and Seller agree in writing to the details of the change and any resulting price, schedule or other contractual modifications. This includes any changes necessitated by a change in applicable law occurring after the effective date of any contract including these terms.
- 6. Warranty. Subject to the following sentence, Seller warrants to Buyer that the Equipment shall materially conform to the description in Seller's Documentation and shall be free from defects in material and workmanship. The foregoing warranty shall not apply to any Equipment that is specified or otherwise demanded by Buyer and is not manufactured or selected by Seller, as to which (i) Seller hereby assigns to Buyer, to the extent assignable, any warranties made to Seller and (ii) Seller shall have no other liability to Buyer under warranty, tort or any other legal theory. If Buyer gives Seller prompt written notice of breach of this warranty within 18 months from delivery or 1 year from beneficial use, whichever occurs first (the "Warranty Period"), Seller shall, at its sole option and as Buyer's sole remedy, repair or replace the subject parts or refund the purchase price therefore. If Seller determines that any claimed breach is not, in fact, covered by this warranty, Buyer shall pay Seller its then customary charges for any repair or replacement made by Seller. Seller's warranty is conditioned on Buyer's (a) operating and maintaining the Equipment in accordance with Seller's instructions, (b) not making any unauthorized repairs or alterations, and (c) not being in default of any payment obligation to Seller. Seller's warranty does not cover damage caused by chemical action or abrasive material, misuse or improper installation (unless installed by Seller). THE WARRANTIES SET FORTH IN THIS SECTION ARE SELLER'S SOLE AND EXCLUSIVE WARRANTIES AND ARE SUBJECT TO SECTION 10 BELOW. SELLER MAKES NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR PURPOSE.
- 7. <u>Indemnity.</u> Seller shall indemnify, defend and hold Buyer harmless from any claim, cause of action or liability incurred by Buyer as a result of third party claims for personal injury, death or damage to tangible property, to the extent caused by Seller's negligence. Seller shall have the sole authority to direct the defense of and settle any indemnified claim. Seller's indemnification is conditioned on Buyer (a) promptly, within the Warranty Period, notifying Seller of any claim, and (b) providing reasonable cooperation in the defense of any claim.
- 8. <u>Force Majeure.</u> Neither Seller nor Buyer shall have any liability for any breach (except for breach of payment obligations) caused by extreme weather or other act of God, strike or other labor shortage or disturbance, fire, accident, war or civil disturbance, delay of carriers, failure of normal sources of supply, act of government or any other cause beyond such party's reasonable control.
- 9. <u>Cancellation.</u> If Buyer cancels or suspends its order for any reason other than Seller's breach, Buyer shall promptly pay Seller for work performed prior to cancellation or suspension and any other direct costs incurred by Seller as a result of such cancellation or suspension.
- 10. <u>LIMITATION OF LIABILITY.</u> NOTWITHSTANDING ANYTHING ELSE TO THE CONTRARY, SELLER SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE OR OTHER INDIRECT DAMAGES, AND SELLER'S TOTAL LIABILITY ARISING AT ANY TIME FROM THE SALE OR USE OF THE EQUIPMENT SHALL NOT EXCEED THE PURCHASE PRICE PAID FOR THE EQUIPMENT. THESE LIMITATIONS APPLY WHETHER THE LIABILITY IS BASED ON CONTRACT, TORT, STRICT LIABILITY OR ANY OTHER THEORY.

Miscellaneous. If these terms are issued in connection with a government contract, they shall be deemed to include those federal acquisition regulations that are required by law to be included. These terms, together with any quotation, purchase order or acknowledgement issued or signed by the Seller, comprise the complete and exclusive statement of the agreement between the parties (the "Agreement") and supersede any terms contained in Buyer's documents, unless separately signed by Seller. No part of the Agreement may be changed or cancelled except by a written document signed by Seller and Buyer. No course of dealing or performance, usage of trade or failure to enforce any term shall be used to modify the Agreement. If any of these terms is unenforceable, such term shall be limited only to the extent necessary to make it enforceable, and all other terms shall remain in full force and effect. Buyer may not assign or permit any other transfer of the Agreement without Seller's prior written consent. The Agreement shall be governed by the laws of the State of North Carolina without regard to its conflict of laws provisions.

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Rick Kelly

Created: 6/29/2011 Saved: 4/29/2015

Target SRT: 12.00 days SRT: **** days

Temperature: 14.0°C

Flowsheet

Configuration information for all Variable volume bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Inf EQ Tank	2.4000	2.292E+4	14.000	Un-aerated

Operating data Average (flow/time weighted as required)

Element name	Average DO Setpoint [mg/L]
Inf EQ Tank	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Inf EQ Tank	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.5000	4774.3058	14.000	Un-aerated
Aer 1	1.5000	1.432E+4	14.000	4868

Aer 2	1.2500	1.194E+4	14.000	4057
Swing 2a	0.7500	7161.4587	14.000	Un-aerated
Aer 3	0.5000	4774.3058	14.000	1623
Anox 1a	0.3750	3580.7294	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.3750	3580.7294	14.000	Un-aerated
Swing 1	0.5000	4774.3058	14.000	1082
Swing 2b	0.7500	7161.4587	14.000	Un-aerated

Operating data Average (flow/time weighted as required)

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1	2.5
Aer 2	2.0
Swing 2a	0
Aer 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0
Anox 1b	0
Swing 1	2.0
Swing 2b	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	15.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0

5 1 2 200 (1	
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mglSS/L	0
Hydroxy-dicalcium-phosphate mglSS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0

Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mglSS/L	0
Dissolved oxygen mg/L	0
Flow	0.055

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	12.4611703212226	0.100114816828393
Total COD mgCOD/L	416.48	1096.91
Total Kjeldahl Nitrogen mgN/L	54.01	196.49
Total P mgP/L	8.12	477.82
Nitrate N mgN/L	0	36.84
рН	7.95	6.75
Alkalinity mmol/L	6.08	13.34
ISS Influent mgISS/L	11.43	67.65
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0.10

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.0014
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	4.312E-4
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9976
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.5976

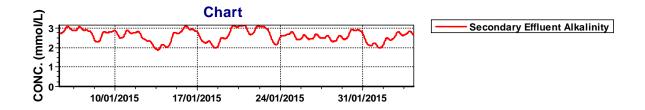
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.0870
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.8845
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5000
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0102
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0319
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9400
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.1277
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	0.0636
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	3.510E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	0.0245
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.640E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	0.0514
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	2.950E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	9.450E-6
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	7.780E-6
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	7.780E-6
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

Configuration information for all Splitter units

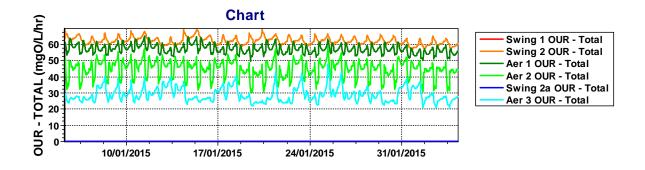
Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.180762328827811
Acetate Splitter	Flow paced	0.53 %

Splitter21	Flowrate [Side]	0
A20 IMLR	Flowrate [Side]	0

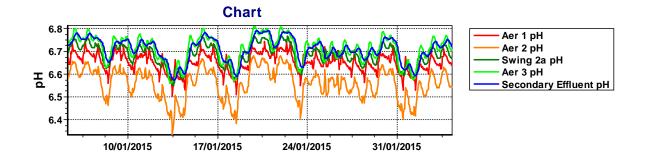

Configuration information for all Stream (SV) Influent units

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0

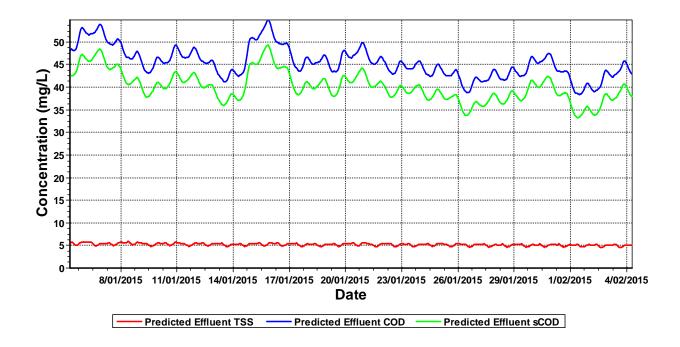
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mglSS/L	0
Dissolved oxygen mg/L	0
Flow	1


BioWin Album

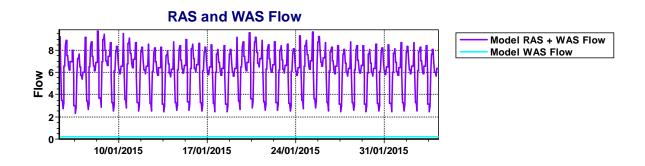
Album page - SS AOB-NOB

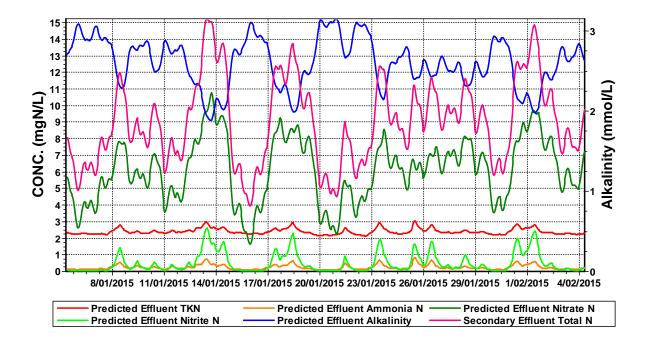


Album page - SS AOB-NOB

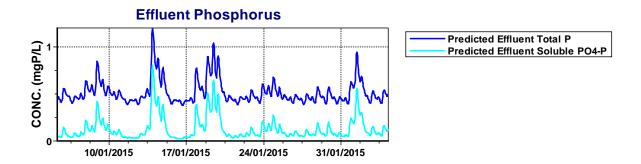

Album page - OURs

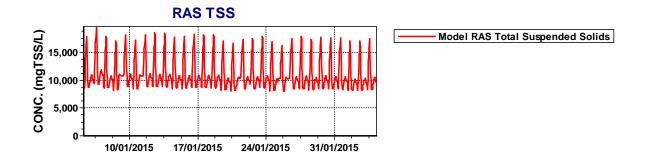
Album page - OURs

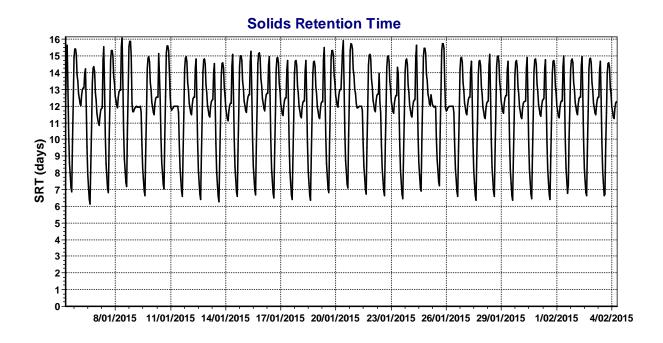

Album page - TSS, COD, BOD

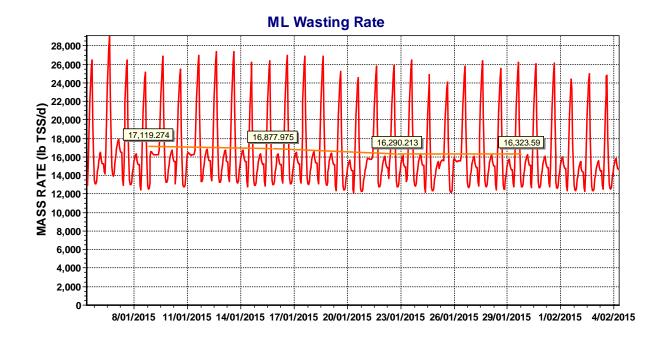

Album page - Mixed Liquor, RAS Flow

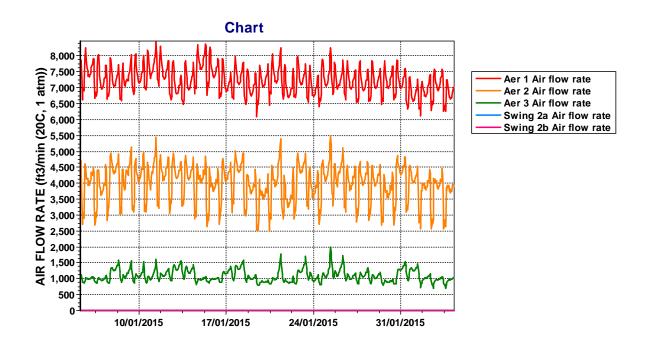
MLSS and MLVSS 3,500 Aer 3 Total suspended solids Aer 3 Volatile suspended solids 1,500 1,000

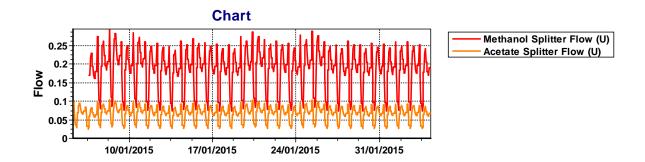

Album page - Mixed Liquor, RAS Flow

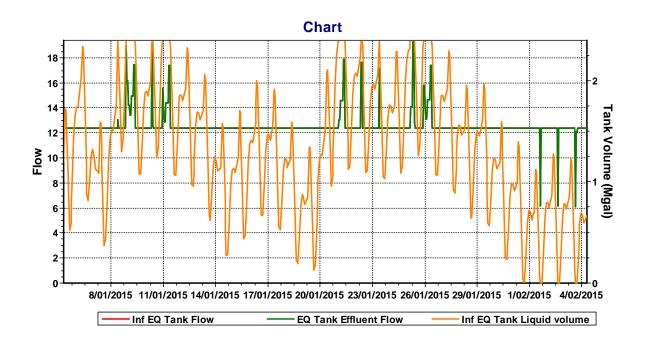

Album page - Nitrogen Sp., Alkalinity


Album page - TP, RAS TSS


Album page - TP, RAS TSS


Album page - SRT


Album page - WAS Mass


Album page - Air Flow Rate

Album page - Methanol/Acetate Flow

Album page - Inf EQ Tank

Meridian Alternative's Analysis version 1

Expansion using selectable 5 stage modified Bardenpho/A2O process

Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

<u>To achieve target effluent concentrations, for Bardenpho process:</u> Set BDF IMLR at 200% influent, Set A2O IMLR at 0%

Set Swing 1 Aerated, Swing 2a and 2b unaerated.

SRT = 12 days

Acetate flow pace at 0.8% of PE flow rate, 0.1lb acetate COD per gallon used.

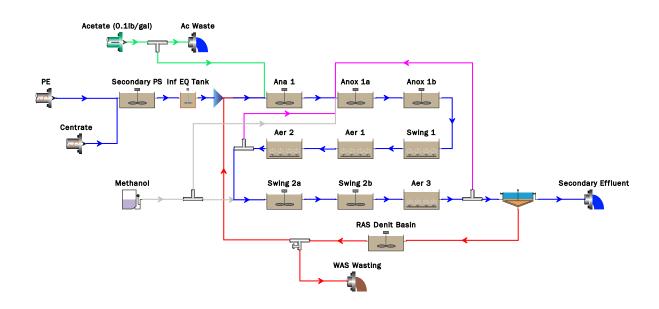
Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. All methanol to swing 2a

Modification for Influent Equalization
For this model, Use Bardenpho process setup as described above (will modify volumes and chemical flow setpoints based on results. Set influent equalization tank volume to volume of existing ABs (2.4 Mgal). Operate influent EQ basin as starting 50% full with constant outflow equal to monthly average flow (12.3 MGD for winter conditions).

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Rick Kelly

Created: 6/29/2011 Saved: 4/30/2015

Target SRT: 12.00 days SRT: **** days

Temperature: 14.0°C

Flowsheet

Configuration information for all Variable volume bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Inf EQ Tank	2.4000	2.292E+4	14.000	Un-aerated

Operating data Average (flow/time weighted as required)

Element name	Average DO Setpoint [mg/L]
Inf EQ Tank	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Inf EQ Tank	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.5000	4774.3058	14.000	Un-aerated
Aer 1	1.0000	9548.6117	14.000	3245

Aer 2	1.0000	9548.6117	14.000	3245
Swing 2a	0.6000	5729.1670	14.000	Un-aerated
Aer 3	0.5000	4774.3058	14.000	1623
Anox 1a	0.3500	3342.0141	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.3500	3342.0141	14.000	Un-aerated
Swing 1	0.5000	4774.3058	14.000	1082
Swing 2b	0.5000	4774.3058	14.000	Un-aerated

Operating data Average (flow/time weighted as required)

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1	2.5
Aer 2	2.0
Swing 2a	0
Aer 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0
Anox 1b	0
Swing 1	2.0
Swing 2b	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	15.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0

5 L t 2000 //	•
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mglSS/L	0
Hydroxy-apatite mg/SS/L	0
Magnesium mg/L	0

Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	0.055

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	12.4611703212226	0.100114816828393
Total COD mgCOD/L	416.48	1096.91
Total Kjeldahl Nitrogen mgN/L	54.01	140.16
Total P mgP/L	8.12	52.98
Nitrate N mgN/L	0	0
рН	7.95	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.43	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.0014
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	4.312E-4
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9976
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.5976

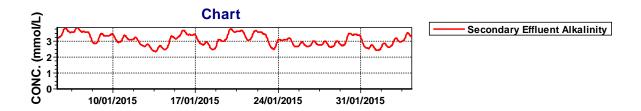
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.0870
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.7000
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5000
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0102
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0319
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.6000
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.1280
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	0.0636
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	3.510E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	0.0245
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.640E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	0.0514
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	2.950E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	9.450E-6
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	7.780E-6
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	7.780E-6
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

Configuration information for all Splitter units

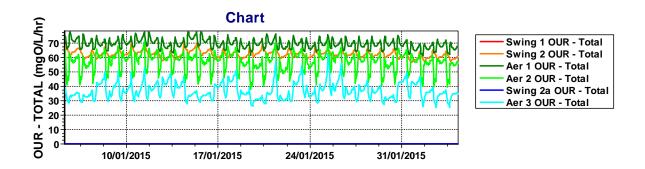
Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.147478886797187
Acetate Splitter	Flow paced	0.30 %

Splitter21	Flowrate [Side]	0
A20 IMLR	Flowrate [Side]	0

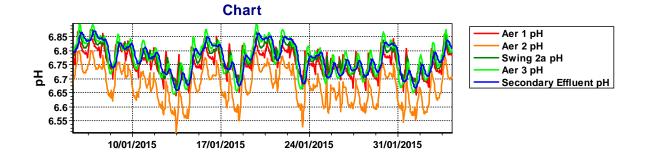

Configuration information for all Stream (SV) Influent units

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0

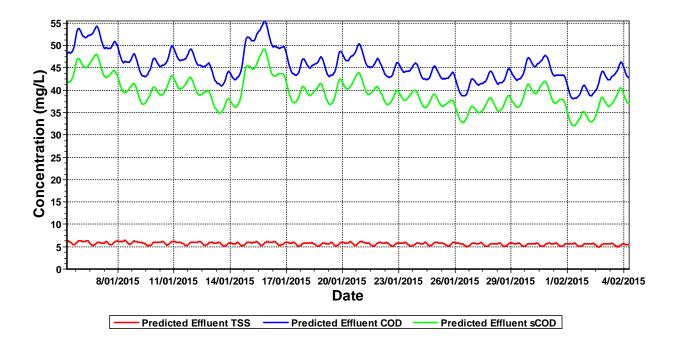
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

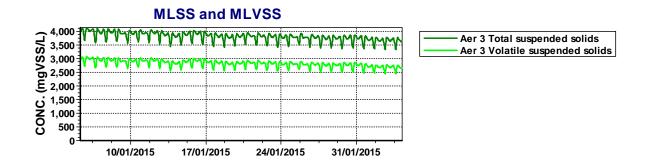

BioWin Album

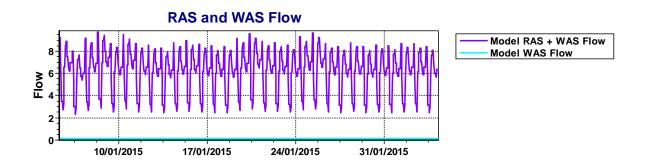
Album page - SS AOB-NOB

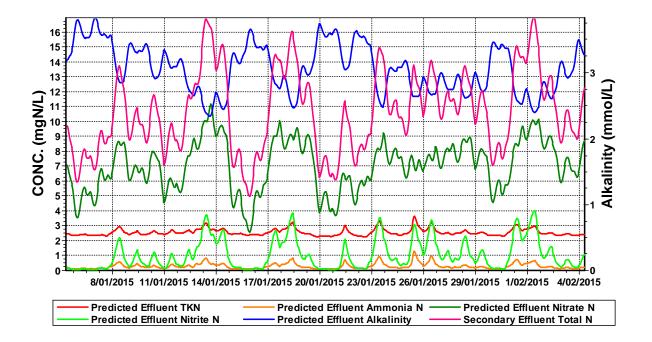


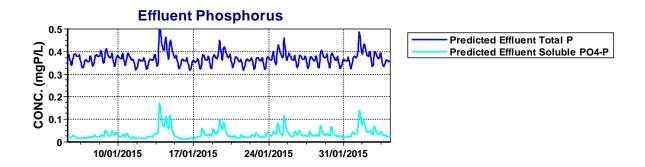
Album page - SS AOB-NOB

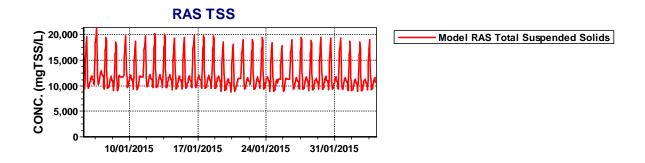

Album page - OURs

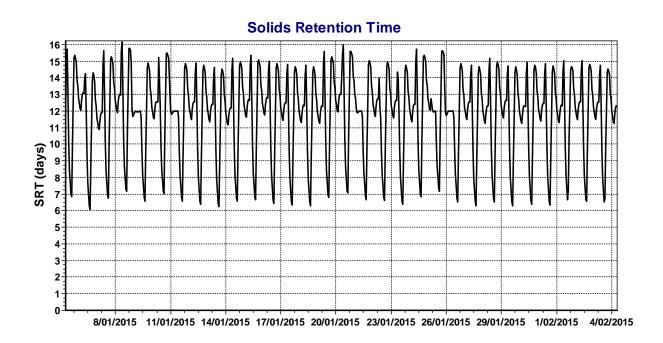

Album page - OURs


Album page - TSS, COD, BOD

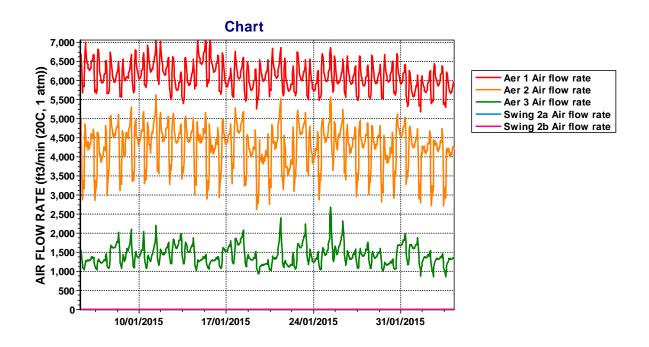

Album page - Mixed Liquor, RAS Flow

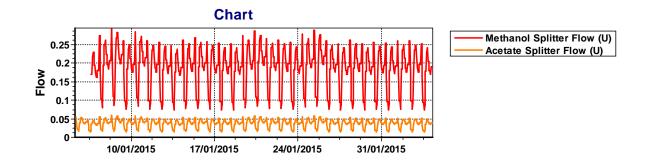

Album page - Mixed Liquor, RAS Flow

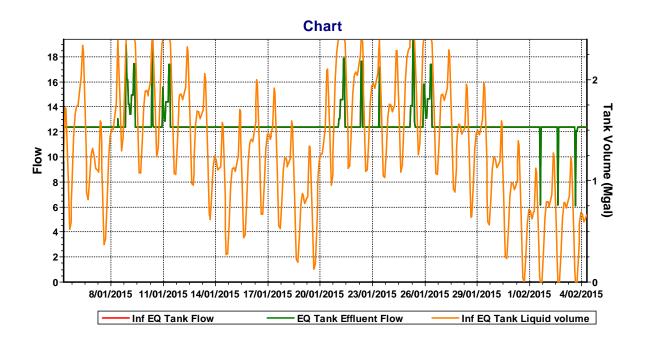

Album page - Nitrogen Sp., Alkalinity


Album page - TP, RAS TSS


Album page - TP, RAS TSS


Album page - SRT


Album page - WAS Mass


Album page - Air Flow Rate

Album page - Methanol/Acetate Flow

Album page - Inf EQ Tank

Global Parameters

Meridian Alternative's Analysis version 1

Expansion using selectable 5 stage modified Bardenpho/A2O process

Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

 $\frac{\text{To achieve target effluent concentrations, for Bardenpho process:}}{\text{Set BDF IMLR at 200\% influent, Set A2O IMLR at 0\%}}$

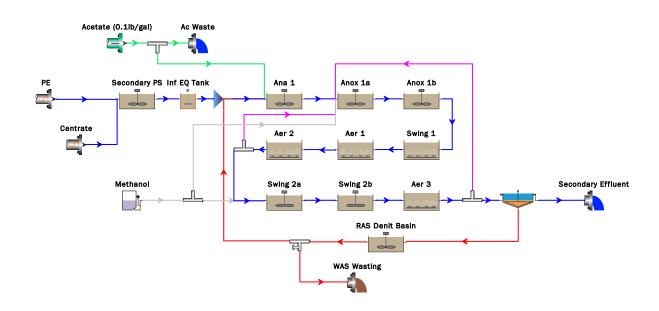
Set Swing 1 Aerated, Swing 2a and 2b unaerated. SRT = 12 days Acetate flow pace at 0.8% of PE flow rate, 0.1lb acetate COD per gallon used. Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. All methanol to swing 2a

Modification for Influent Equalization
For this model, Use Bardenpho process setup as described above (will modify volumes and chemical flow setpoints based on results. Set influent equalization tank volume to volume of existing ABs (2.4 Mgal). Operate influent EQ basin as starting 50% full with constant outflow equal to monthly average flow (12.3 MGD for winter conditions).

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Rick Kelly

Created: 6/29/2011 Saved: 4/29/2015

Target SRT: 11.00 days SRT: **** days

Temperature: 14.0°C

Flowsheet

Configuration information for all Variable volume bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Inf EQ Tank	2.4000	2.292E+4	14.000	Un-aerated

Operating data Average (flow/time weighted as required)

Element name	Average DO Setpoint [mg/L]
Inf EQ Tank	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Inf EQ Tank	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.5000	4774.3058	14.000	Un-aerated
Aer 1	1.5000	1.432E+4	14.000	4868

Aer 2	1.7500	1.671E+4	14.000	5680
Swing 2a	0.7500	7161.4587	14.000	Un-aerated
Aer 3	0.5000	4774.3058	14.000	1623
Anox 1a	0.3750	3580.7294	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.3750	3580.7294	14.000	Un-aerated
Swing 1	0.5000	4774.3058	14.000	1082
Swing 2b	0.7500	7161.4587	14.000	Un-aerated

Operating data Average (flow/time weighted as required)

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1	2.5
Aer 2	2.0
Swing 2a	0
Aer 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0
Anox 1b	0
Swing 1	2.0
Swing 2b	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	15.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0

Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mglSS/L	0
Hydroxy-dicalcium-phosphate mglSS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0

Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	0.055

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	12.4611703212226	0.100114816828393
Total COD mgCOD/L	416.48	1801.80
Total Kjeldahl Nitrogen mgN/L	54.01	934.39
Total P mgP/L	8.12	529.81
Nitrate N mgN/L	0	0
рН	7.95	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.43	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039

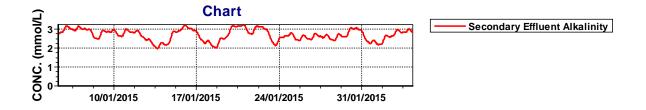
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0642
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

Configuration information for all Splitter units

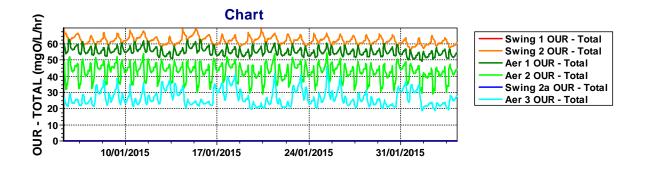
Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.212440569459111
Acetate Splitter	Flow paced	0.49 %

Splitter21	Flowrate [Side]	0
A20 IMLR	Flowrate [Side]	0

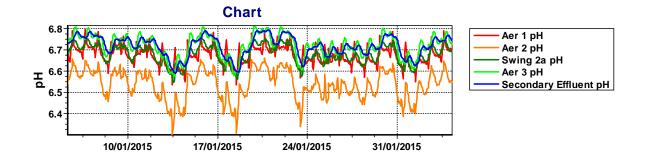

Configuration information for all Stream (SV) Influent units

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0

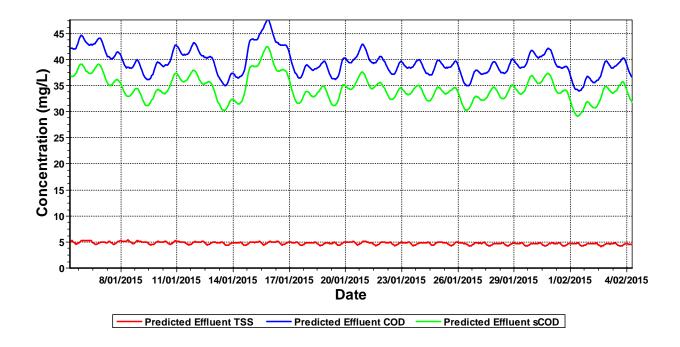
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mglSS/L	0
Dissolved oxygen mg/L	0
Flow	1

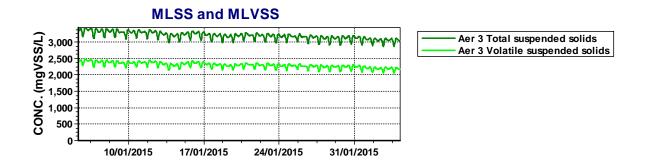

BioWin Album

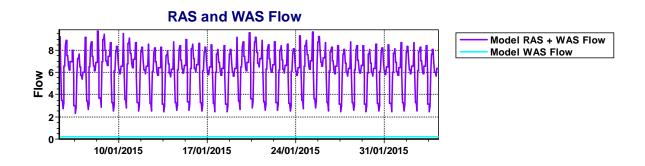
Album page - SS AOB-NOB

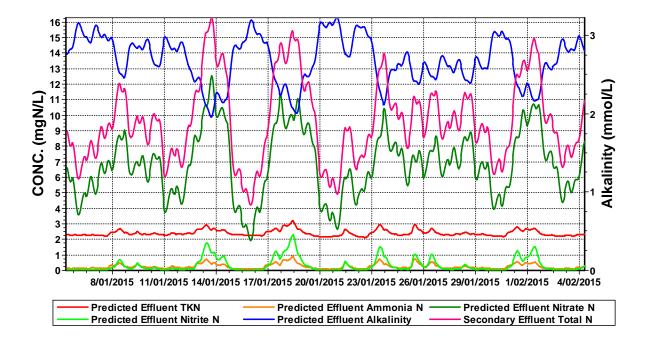


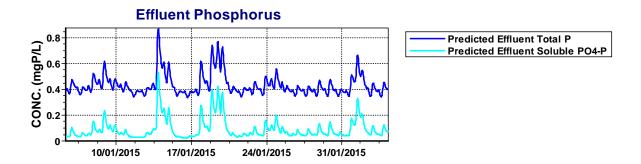
Album page - SS AOB-NOB

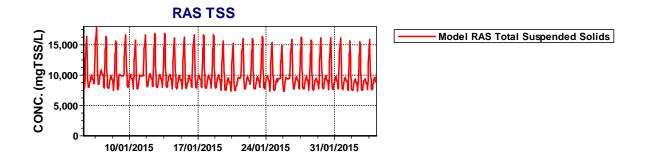

Album page - OURs

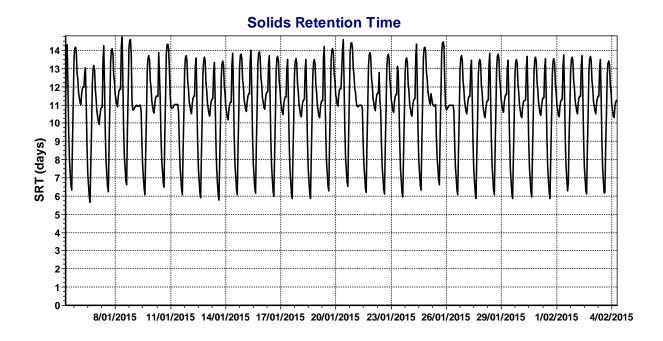

Album page - OURs

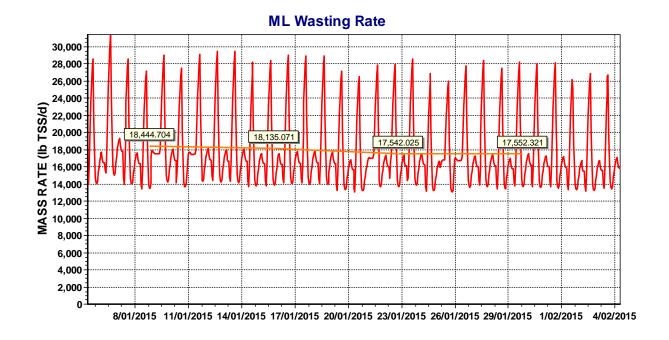

Album page - TSS, COD, BOD

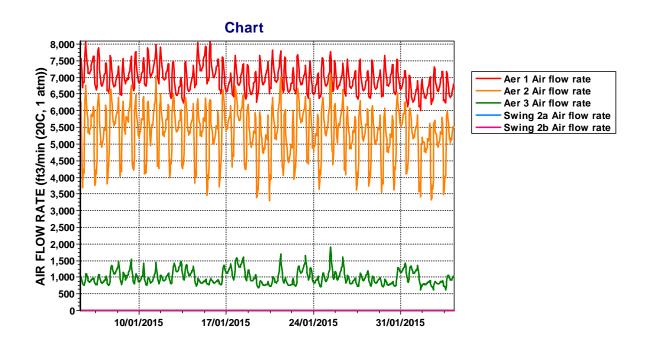

Album page - Mixed Liquor, RAS Flow

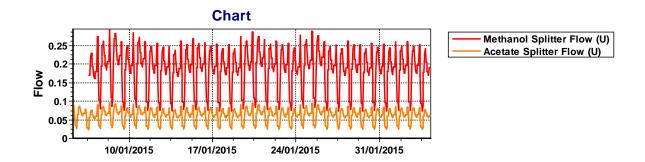

Album page - Mixed Liquor, RAS Flow

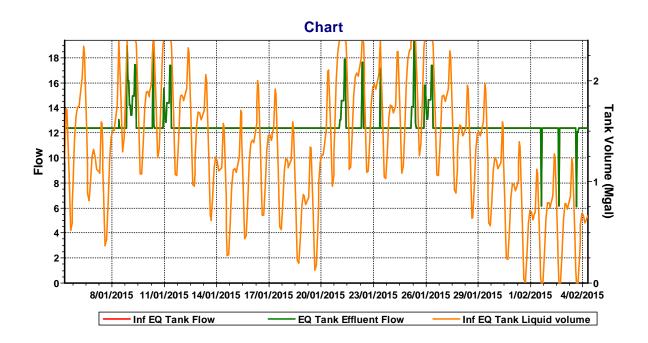

Album page - Nitrogen Sp., Alkalinity


Album page - TP, RAS TSS


Album page - TP, RAS TSS


Album page - SRT


Album page - WAS Mass


Album page - Air Flow Rate

Album page - Methanol/Acetate Flow

Album page - Inf EQ Tank

Meridian Alternative's Analysis version 1

Expansion using selectable 5 stage modified Bardenpho/A2O process

Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

<u>To achieve target effluent concentrations, for Bardenpho process:</u> Set BDF IMLR at 200% influent, Set A2O IMLR at 0%

Set Swing 1 Aerated, Swing 2a and 2b unaerated.

SRT = 12 days

Acetate flow pace at 0.8% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. All methanol to swing 2a

Modification for Influent Equalization

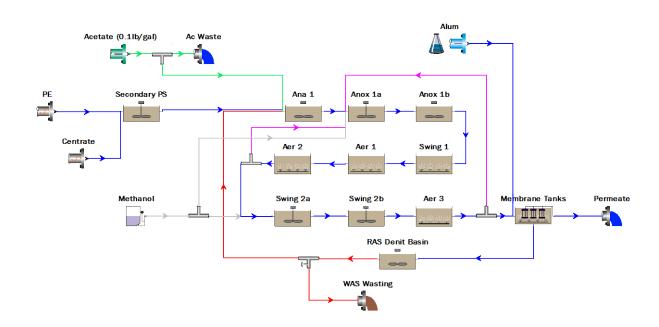
For this model, Use Bardenpho process setup as described above (will modify volumes and chemical flow setpoints based on results. Set influent equalization tank volume to volume of existing ABs (2.4 Mgal). Operate influent EQ basin as starting 50% full with constant outflow equal to monthly average flow (12.3 MGD for winter conditions).

BioWin user and configuration data

Winter max month conditions

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Patricia Tam

Created: 6/29/2011 Saved: 7/8/2015

Target SRT: 12.00 days SRT: **** days

Temperature: 14.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.2500	2387.1529	14.000	Un-aerated
Aer 1	0.7500	7161.4587	14.000	2596
Aer 2	1.0000	9548.6117	14.000	3462
Swing 2a	0.3750	3580.7294	14.000	Un-aerated
Aer 3	0.2500	2387.1529	14.000	811
Anox 1a	0.1875	1790.3647	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.1875	1790.3647	14.000	Un-aerated
Swing 1	0.2500	2387.1529	14.000	974
Swing 2b	0.3750	3580.7294	14.000	Un-aerated

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1	2.5
Aer 2	2.0
Swing 2a	0
Aer 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0

Anox 1b	0
Swing 1	2.0
Swing 2b	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1	2.5656	0.0432	0.8200	0.4413	16.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	16.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	18.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Element name	Alpha (surf) OR Alpha F (diff) [-]	Beta [-]	Surface pressure [kPa]	Fractional effective saturation depth (Fed) [-]
Aer 1	0.4000	0.9500	101.3250	0.3250
Aer 2	0.4000	0.9500	101.3250	0.3250
Aer 3	0.4000	0.9500	101.3250	0.3250
Swing 1	0.4000	0.9500	101.3250	0.3250

Element name	Supply gas CO2 content [vol. %]	Supply gas O2 [vol. %]	Off-gas CO2 [vol. %]	Off-gas 02 [vol. %]	Off-gas H2 [vol. %]	Off-gas NH3 [vol. %]	Off-gas CH4 [vol. %]	Surface turbulence factor [-]
Aer 1	0.0350	20.9500	2.0000	18.8000	0	0	0	2.0000
Aer 2	0.0350	20.9500	2.0000	18.8000	0	0	0	2.0000
Aer 3	0.0350	20.9500	2.0000	18.8000	0	0	0	2.0000
Swing 1	0.0350	20.9500	2.0000	18.8000	0	0	0	2.0000

Configuration information for all Membrane bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers	# of cassettes	Displaced volume / cassette [ft3/casse tte]	Membrane area / cassette [ft2/casse tte]	Total displaced volume [Mil. Gal]	Membrane surface area [ft2]
Membrane Tanks	0.2848	4050.236 6	9.400	1129	60.00	55.640	16576.00	0.02	994560.0 0

Element name	Average DO Setpoint [mg/L]
Membrane Tanks	6.0

Element name	Split method	Average Split specification
Membrane Tanks	Flow paced	400.00 %

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Membrane Tanks	0.0500	0.3800	1.0500	0.5382	15.0000

Element name	Alpha (surf) OR Alpha F (diff) [-]	Beta [-]	Surface pressure [kPa]	Fractional effective saturation depth (Fed) [-]
Membrane Tanks	0.7000	0.9500	101.3250	0.3000

Element name	Supply gas CO2 content [vol. %]	Supply gas O2 [vol. %]	Off-gas CO2 [vol. %]	Off-gas 02 [vol. %]	Off-gas H2 [vol. %]	Off-gas NH3 [vol. %]	Off-gas CH4 [vol. %]	Surface turbulence factor [-]
Membrane Tanks	0.0350	20.9500	1.2000	19.9000	0	0	0	2.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0

Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0

ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

Configuration information for all Effluent units

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	12.461167588271	0.100114816828393
Total COD mgCOD/L	416.48	1801.80
Total Kjeldahl Nitrogen mgN/L	54.01	934.39

Total P mgP/L	8.12	529.81
Nitrate N mgN/L	0	0
рН	7.95	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.43	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0642
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5

FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Metal addition units

Element name	Alum
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0

Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	56890.00
Other Cations (strong bases) meq/L	5.00
Other Anions (strong acids) meq/L	6344.83
Total CO2 mmol/L	7.00
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	9.49989063277656E-5

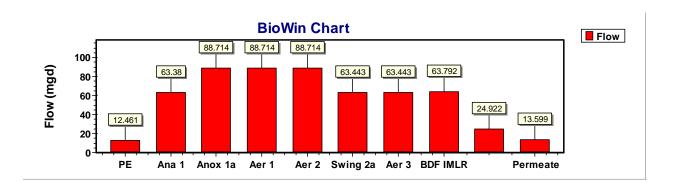
Configuration information for all Sludge units

Configuration information for all Splitter units

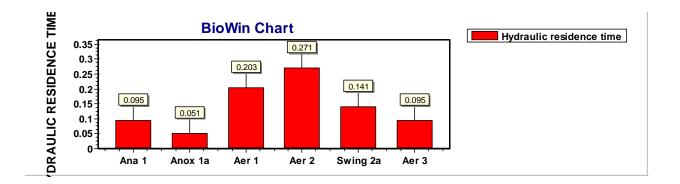
Operating data Average (flow/time weighted as required)

Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.262689202292217
Acetate Splitter	Flow paced	1.20 %
Splitter21	Fraction	0.00
A20 IMLR	Flow paced	0.00 %

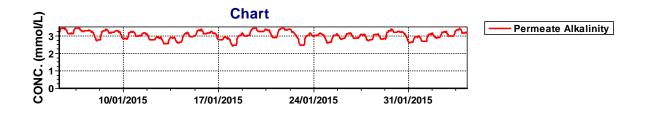
Configuration information for all Stream (SV) Influent units

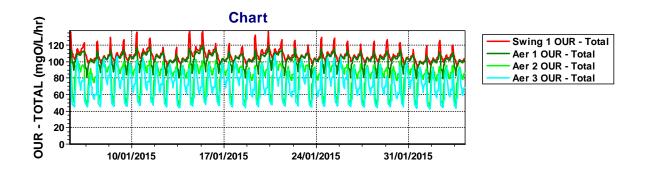

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0

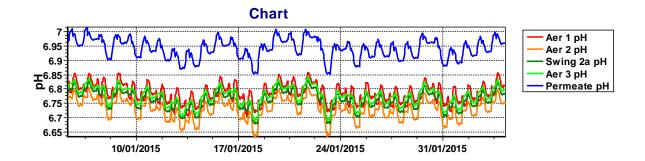
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0


Hydroxy-dicalcium-phosphate mglSS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mglSS/L	0
Dissolved oxygen mg/L	0
Flow	1

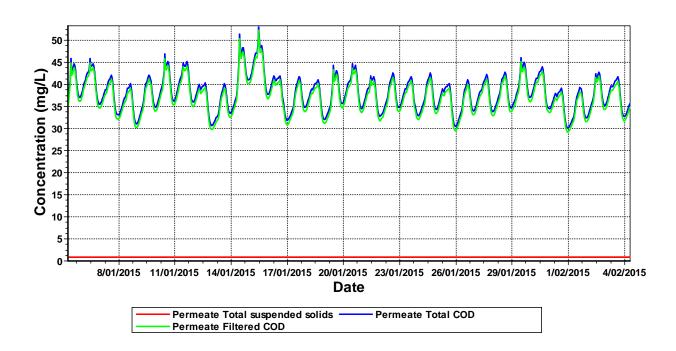
BioWin Album

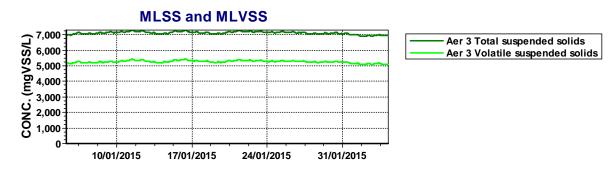

Album page - SS Flow and HRT

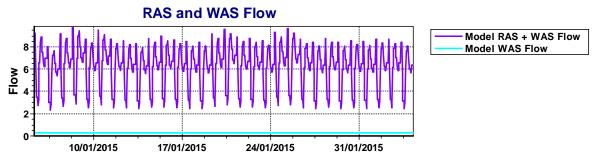

Album page - SS Flow and HRT



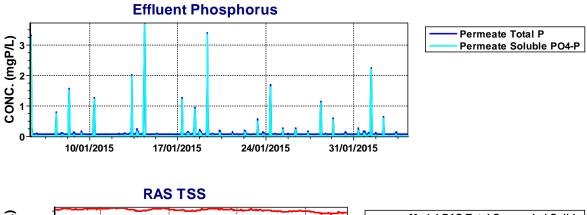
Album page - Permeate Alkalinity

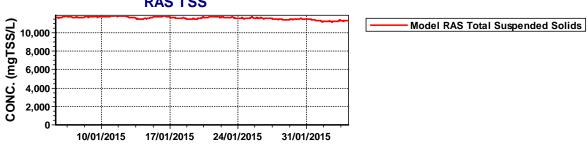



Album page - OURs

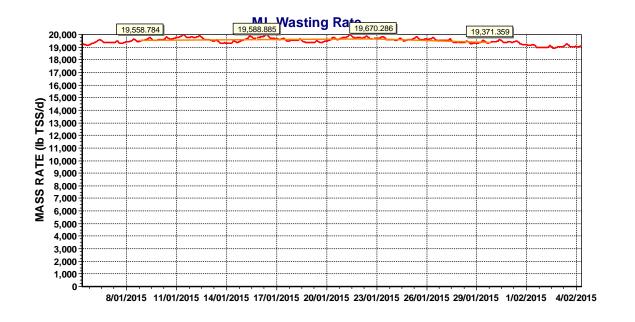



Album page - TSS, COD, BOD

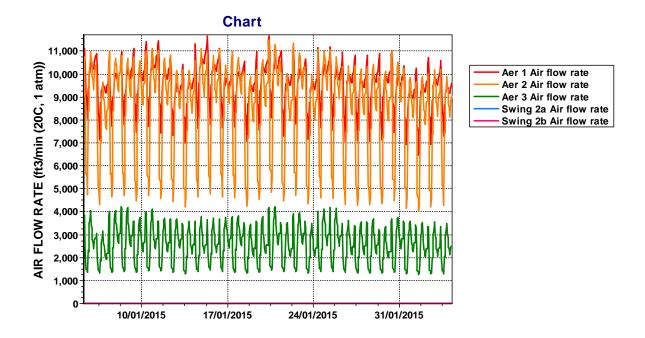




Album page - Nitrogen Sp., Alkalinity



Album page - TP, RAS TSS



Album page - WAS Mass

Album page - Air Flow Rate

Album page - Page 16

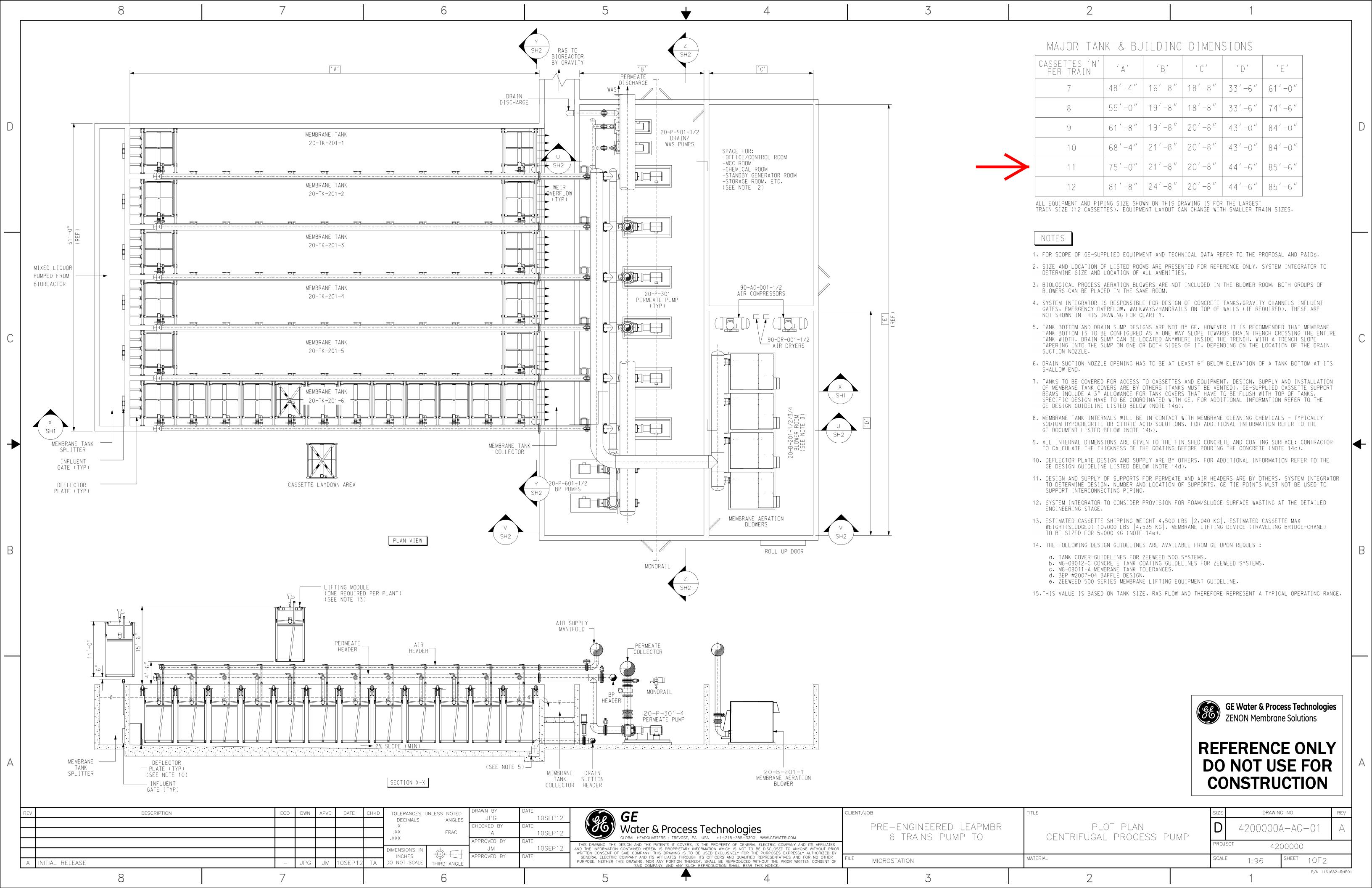
Elements	Air flow rate [ft3/min (20C, 1 atm)]	Flow [mgd]
Acetate Splitter (U)		0.15
Aer 1	9607.89	88.71
Aer 2	9009.94	88.71
Aer 3	2491.39	63.44
Swing 2a	0	63.44
Swing 2b	0	63.44

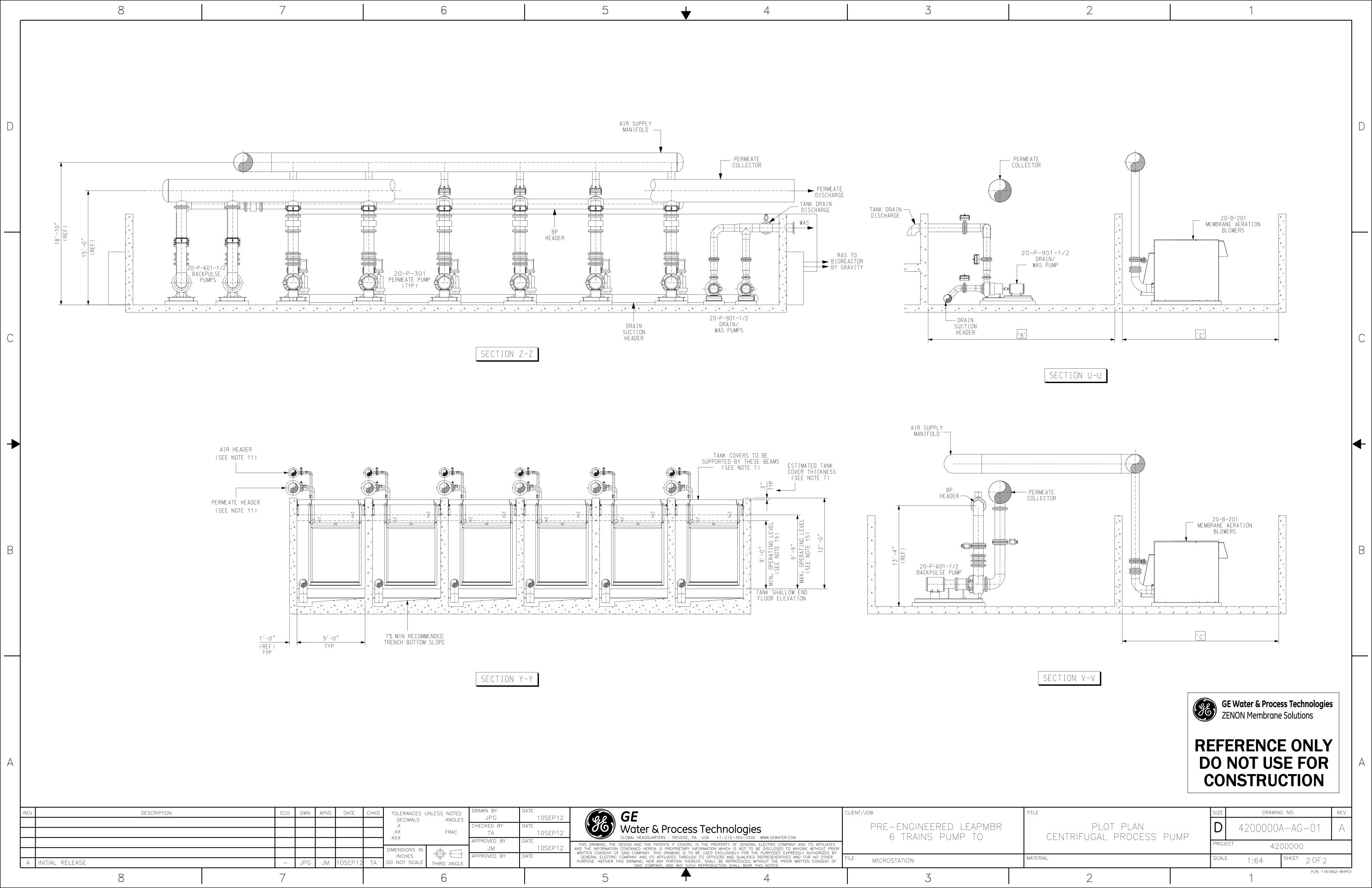
Album page - Page 17

WAS Wasting			
Parameters	Conc. (mg/L)	Mass rate (lb/d)	Notes
Volatile suspended solids	6399.26	14028.77	
Total suspended solids	8712.23	19099.36	
Particulate COD	9312.46	20415.21	
Filtered COD	34.37	75.35	
Total COD	9346.83	20490.56	
Soluble PO4-P	0.05	0.11	
Total P	574.66	1259.81	
Filtered TKN	1.89	4.15	
Particulate TKN	633.32	1388.40	
Total Kjeldahl Nitrogen	635.22	1392.55	
Filtered Carbonaceous BOD	0.68	1.48	
Total Carbonaceous BOD	3775.29	8276.37	
Nitrite + Nitrate	1.65	3.61	
Total N	636.86	1396.16	
Total inorganic N	1.87	4.09	
Alkalinity	-999.00	-993.39	mmol/L and kmol/d
рН	6.97		
Volatile fatty acids	0.02	0.05	
ISS precipitate	134.16	294.11	
ISS cellular	1561.37	3422.91	
ISS Total	2312.96	5070.59	
Ammonia N	0.22	0.49	
Nitrate N	1.60	3.51	
рН	6.97		
Ionized ammonium	0.02	mmol/L	
Unionized ammonia	0.00	mmol/L	
Nitrous acid	0.00	mmol/L	

Nitrite	0.00	mmol/L
Total dissolved CO2	0.81	mmol/L
Bicarbonate	3.22	mmol/L
Carbonate	0.00	mmol/L
Unionized ortho-P	0.00	mmol/L
H2P04-	0.00	mmol/L
HPO4	0.00	mmol/L
PO4	0.00	mmol/L
Metal phosphate (solid)	0.94	mmol/L
Metal hydroxide (solid)	0	mmol/L
Metal ion	0.00	mmol/L
MeH2P04++	0.00	mmol/L
MeHPO4+	0.00	mmol/L
Acetic acid	0.00	mmol/L
Acetate	0.00	mmol/L
Propionic acid	0.00	mmol/L
Propionate	0.00	mmol/L
Ionic strength	0.02	
Monovalent act. coeff.	0.87	
Divalent act. coeff.	0.57	
Trivalent act. coeff.	0.29	
Flow	0.26	mgd

Meridian Alternative's Analysis version 1


Expansion using selectable 5 stage modified Bardenpho/A2O process


Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

To achieve target effluent concentrations, for Bardenpho process:
Set BDF IMLR at 200% influent, Set A2O IMLR at 0%
Set Swing 1 Aerated, Swing 2a and 2b unaerated.
SRT = 12 days
All methanol to swing 2a

To achieve target effluent concentrations, for A2O process:
Set BDF IMLR at 0% influent, Set A2O IMLR at 400%
Set Swing 1 unaerated, Swing 2a and 2b aerated.
SRT = 12 days
All methanol to Anoxic 1a

For the MBR alternative, the Bardenpho process is used. Membrane tank sizing based on GE proposal dated 4/17/15 Alum addition rate was adjusted to reduce effluent PO4-P to 0.7 mg/L or lower. For the purpsoe of calculating O&M ocsts, however, the alum demand to reduce P from 0.5 to 0.07 mg/L was calculated separately for chemical precipitation. Acetate flow pace of 1.2% of PE flow rate, 0.1 lb acetate COD per galloon used. Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. All methanol to swing 2a.

Budget Proposal for

City of Meridian MBR

ZeeWeed* Membrane Filtration System

Submitted to:

Brown and Caldwell

701 Pike Street, #1200 Seattle, WA, 98101

Attention: Patricia Tam

April 17th, 2015

Proposal Number: 163962 - Rev 01

ZENON Environmental Corporation d/b/a GE Water & Process Technologies

Chris Allen P.E, Regional Sales Manager Tel: (208) 319-3512 Email: chris.allen@ge.com

Local Representation By:

APSCO, LLC.

Joe Kernkamp Tel: (425) 822-3335

Email: jkernkamp@apsco-llc.com

GE Water & Process Technologies

GE Water & Process Technologies Confidential and Proprietary Information

GE Water and Process Technologies ("Seller") submits the information contained in this document for evaluation by Brown and Caldwell ("Buyer") only. Buyer agrees not to reveal its contents except to those in Buyer's organization necessary for evaluation. Copies of this document may not be made without the prior written consent of Seller's Management. If the preceding is not acceptable to Buyer, this document shall be returned to Seller.

This proposal is for budgetary purposes only and does not constitute an offer of sale.

*The following are trademarks of General Electric Company and may be registered in one or more countries:

ABMet, Absolute.Z, Absolute.Za, AccuSensor, AccuTrak, AccuTrak PLUS, ActNow, Acufeed, Apogee, AmmCycle, APPLICATIONS ATLAS, AquaFloc, AquaMax, Aquamite, Aquaplex, Aquatrex, Argo Analyzer, AutoSDI, Betz, BetzDearborn, BEV Rite, BioHealth, BioMate, BioPlus, BIOSCAN, Bio-Trol, Butaclean, Certified Plus, CheckPoint, ChemSensor, ChemSure, CHEX, CleanBlade, CLOROMAT, CoalPlus, COMP-METER, COMP-RATE, Continuum, CorrPro, CorrShield, CorTrol, Custom Clean, Custom Flo, Cyto3, DataGuard, DataPlus, DataPro, DELTAFLOW, De:Odor, DEOX, DeposiTrol, Desal, Dianodic, Durasan, DuraSlick, Durasolv, Duratherm, DusTreat, E-Cell, E-Cellerator, ELECTROMAT, Embreak, EndCor, EXACT, FACT-FINDER, Ferrameen, Ferroquest, FloGard, Flotrex, Flotronics, FoamTrol, FoodPro, FRONTIER, FS CLEAN FLOW, FuelSolv, Full-Fit, G.T.M., GenGard, GEWaterSource, Glegg, Heat-Rate Pro, High Flow Z, HPC, HPD Process, Hydrecycle, HyperSperse, Hypure, Hytrex, iDeal, InfoCalc, InfoScan, InfoTrac, InnovOx, InSight, IONICS, IONICS EDR 2020, iService, JelCleer, KlarAid, Kleen, Leak Trac, Leakwise, LEAPprimary, Learning Source, LOGIX, LoSALT, M-PAK, MACarrier, Mace, Max-Amine, MegaFlo, Membrex, Memtrex, MerCURxE, MetClear, MiniWizard, MK-3, MOBILEFLOW, MobileRO, Modular Pro, ModuleTrac, MonitAll, Monitor, Monitor Plus, Monsal, MULTIFLOW, Muni.Z, Novus, OptiGuard, OptiSperse, OptiTherm, Osmo Osmo PRO, Osmo Titan, Osmonics, Pacesetter, PaceSetter, Petroflo, Petromeen, pHlimPLUS, PICOPORE, PlantGuard, PolyFloc, POWERTREAT, Predator, PRO E-Cell, Pro Elite, ProCare, Procera, ProChem, Proof Not Promises, ProPAK, ProShield, ProSweet, Purtrex, Quality System Optimization, QuickShip, QSO, RCC, Rec-Oil, Recurrent, RediFeed, Renewell, RE:Sep, ROE, ROSave.Z. SalesEdge, ScaleTrol, SeaPAK, SeaPRO, SeaSMART, Seasoft, SeaTECH, Selex, Sensicore, Sentinel, Sepa, SIDTECH, SIEVERS, SmartScan, SoliSep, SolSet, Solus, Spec-Aid, Spectrus, SPLASH, Steamate, SteriSafe, StormFX, Styrex, SUCROSOFT, SUCROTEST, Super Westchar, SuperStar, TFM, Therminator, Thermoflo, TLC, Tonkaflo, Trend, TrueSense, TurboFlo, Turboline, Ultrafilic, Vape-Sorber, VeriFeed, VersaFlo, Versamate, V-Star, WasteWizard, WATER FOR THE WORLD, Water-Energy Nexus Game, WaterGenie, WaterNODE, WaterNOW, WaterPOINT, WellPro.Z, XPleat, YieldUp, Z-BOX, Z-MOD, Z-PAK, Z-POD, ZCore, ZeeWeed, ZENON, and Z.Plex.

GE Water & Process Technologies

Table of Contents

1	Basis of Design	4
1.1	Influent Flow Data	
1.2	Influent Quality	4
1.3	Effluent Quality ^{Note 4}	5
1.4	Influent Variability	6
2	System Design and Scope	
2.1	Ultrafiltration System Design	
2.2	Scope of Supply by GE	
3	Buyer Scope of Supply	
4	Commercial	
4.1	Pricing Table	13
4.2	Annual Power & Chemical Consumption Estimates for Membrane	
	System	13
4.3	Equipment Shipment and Delivery	14
4.4	Terms and Conditions of Sale	14

Basis of Design

The proposed ZeeWeed Membrane Filtration System for the City of Meridian MBR is offered based on the design parameters summarized in the following sections.

1.1 Influent Flow Data

The influent design flows are summarized in the table below.

	Summer	Winter
Average Day Flow (MGD)	12.9	11.3
Maximum Month Flow (MGD)	14.2	12.3
Maximum Day Flow (MGD)	17.2	14.7
Peak Hour Flow (gpm)	19,445	13,889
Maximum Flow with one train offline (MGD for less than one month)	14.2	12.3
Maximum Flow with one train in a maintenance clean (MGD for less than 2 hrs)	17.2	14.7
Maximum Flow with one less cassette on a single train (MGD for less than 2 hrs)	28.0 ²	20.0

Note 1: Any flow conditions that exceed the above-noted flow limits must be equalized prior to treatment in the ZeeWeed Membrane Filtration System

Note 2: At average day flow (ADF) temperature (21 C)

- Average Day Flow (ADF) The average flow rate occurring over a 24-hour period based on annual flow rate data.
- Maximum Month Flow (MMF) The average flow rate occurring over a 24-hour period during the 30-day period with the highest flow based on annual flow rate data.
- Maximum Day Flow (MDF) The maximum flow rate averaged over a 24-hour period occurring within annual flow rate data.
- Peak Hour Flow (PHF) The maximum flow rate sustained over a 1-hour period based on annual flow rate data.

1.2 Influent Quality

It has been assumed that the biological system design will be scoped by others. It is anticipated that the mixed liquor entering the membrane tank will meet the requirements as indicated in the table below.

	Design Value	Unit
Average Temperature – Summer	21	°C
Average Temperature - Winter	16	°C
Minimum Weekly Temperature – Summer	18	°C
Minimum Weekly Temperature – Winter	14	°C
Minimum Daily Temperature – Summer	16	°C

Water & Process Technologies

Minimum Daily Temperature - Winter	12	°C
Incoming MLSS concentration from bioreactor	≤ 8000	mg/L
Soluble cBOD ₅ concentration in mixed liquor entering membrane tanks (mg/L)	≤ 20	mg/L
NH ₃ -N concentration in mixed liquor entering membrane tanks (mg/L)	≤1	mg/L
Colloidal TOC (cTOC) concentration in mixed liquor entering membrane tanks (mg/L) ²	≤ 10	mg/L
Soluble alkalinity of mixed liquor entering membrane tanks (mg/L as CaCO ₃)	n/a ⁷	mg/L
Time to filter (TTF) of mixed liquor in membrane tanks ³	≤ 200	seconds
Material greater than 2-mm in size in mixed liquor in membrane tanks (mg/L) ⁴	≤1	-
Fats, Oil & Grease (FOG) (mg/L)	Refer to Note 6	

- 1. Membrane tank MLSS concentration of 12,000 mg/L is permissible during MDF and PHF events only. Membrane tank MLSS concentration to be 8,000 to 10,000 mg/L during all other flow conditions.
- 2. Colloidal TOC (cTOC) is the difference between the TOC measured in the filtrate passing through a 1.5 μ m filter paper and the TOC measured in the ZeeWeed membrane permeate.
- 3. Per Seller's standard Time to Filter (TTF) procedure (available upon request).
- 4. Per Seller's standard Sieve Test procedure (available upon request).
- 5. Chemicals that are not compatible with the ZeeWeed PVDF membrane are not permitted in the membrane tank.
- 6. FOG concentration shall not exceed 150 mg/L of emulsified FOG in the feed with no free oil and less than 10 mg/L of mineral or non-biodegradable oil.
- 7. GE is assuming that sufficient influent alkalinity is available to ensure proper performance of the biological system. If influent alkalinity level is not sufficient, chemical addition by Buyer will be required.

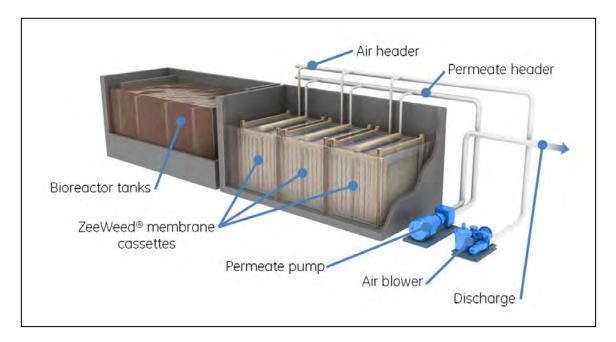
1.3 Effluent QualityNote 4

The following performance parameters are expected upon equipment startup and once the biological system has stabilized based on the data listed in sections [1.1 and [1.2.]].

	Winter	Summer	Units
BOD	<20	<20	mg/L
TSS	<20	<20	mg/L
TN ¹	<8	<8	mg/L
NH ₃ -N	<0.307	<0.405	mg/L
TP ²	<0.07	<0.07	mg/L
Turbidity	< 1	< 1	NTU

- Note 1: TN less than 10mg/L corresponds to minimum design temperatures of 10°C and <1.5 mg/L recalcitrant dissolved organic nitrogen in the influent
- Note 2: With coagulant addition
- Note 3: After disinfection.
- Note 4: From customer.

1.4 Influent Variability


Flows or loads in excess of the design criteria defined above must be equalized prior to the MBR system. In the event that the influent exceeds the specifications used in engineering this proposal, or the source of influent changes, the ability of the treatment system to produce the designed treated water quality and/or quantity may be impaired. Buyer may continue to operate the system, but assumes the risk of damage to the system and/or additional costs due to increased membrane cleanings, potential for biological upset and/or increased consumable usage.

2 System Design and Scope

The ZeeWeed Membrane Bioreactor (MBR) process consists of a suspended growth biological reactor integrated with a membrane filtration system, using the ZeeWeed hollow fiber ultrafiltration membrane. The membrane filtration system essentially replaces the solids separation function of secondary clarifiers and sand filters used in a conventional activated sludge process.

ZeeWeed ultrafiltration membranes are immersed, in direct contact with mixed liquor. Through the use of a permeate pump, a vacuum is applied to a header connected to the membranes. The vacuum draws the treated water through the hollow fiber membranes. Permeate is then directed to downstream disinfection or discharge facilities. Air, in the form of large bubbles, is introduced below the bottom of the membrane modules, producing turbulence that scours the outer surface of the hollow fibers to keep them clean.

The proposed MBR design includes LEAPmbr, GE's latest technology advancement for wastewater treatment, which offers the lowest cost of ownership in the industry. LEAPmbr incorporates several innovations, including the latest ZeeWeed 500 module with increased membrane surface area, increased productivity through proven MBR design flux improvements, an optimized membrane tank design, along with a more efficient membrane aeration system (known as LEAPmbr Aeration Technology) that simplifies the aeration system and reduces aeration requirements. These innovations combine to offer:

- 15% productivity improvement
- 20% footprint reduction
- 50% reduction in membrane aeration equipment
- 30% energy savings

GE

Water & Process Technologies

The LEAPmbr advancement highlights some of the most important benefits of ZeeWeed MBR systems – simplicity, reliability, and lowest life-cycle cost.

Simplicity

Over the years, GE has continually improved the design of ZeeWeedMBR systems, making them the simplest MBR systems in the industry to operate and maintain. The system is fully automated, with operators having the ability to review operation, adjust set points, or schedule operating tasks through the easy-to-understand HMI graphical display.

Membrane cleaning procedures are automated and do not require any manual handling or removal of the membranes from the tanks.

The LEAPmbr system uses no moving parts within the membrane aeration system. A single air pipe and a single permeate pipe (per membrane train) provide the connection between the immersed membranes and the ancillary pumps and blowers that comprise the rest of the ZeeWeed system.

Reliability

GE's reinforced ZeeWeed hollow fiber membrane incorporates a patented internal support to which the membrane is bonded, creating the most robust membrane in the industry. In addition, GE's automated manufacturing processes ensure a consistent membrane product meeting the highest standards of workmanship and quality. This exceptionally strong and reliable membrane forms the backbone of ZeeWeed MBR systems, which consistently meet and exceed the toughest regulatory standards around the world.

GE is the world leader in MBR technology, with the majority of the industry's largest and longest-operating MBR plants. GE now has over two decades of experience with the well-proven ZeeWeed membrane. The earliest MBR plants using the ZeeWeed-500D membrane, GE's current standard for MBR applications, have now been in operation for almost 10 years. GE's long-term and wide-ranging MBR experience ensure that plant operators can count on many years of successful ZeeWeed MBR plant operation.

Lowest Lifecycle Cost

LEAPmbr Aeration Technology is a significant innovation for ZeeWeed MBR technology that offers a 30% reduction in air flow versus GE's previous air cycling technology. When combined with LEAPmbr's other features, membrane aeration energy savings are almost 50% compared with the previous generation of ZeeWeed MBR. In addition to the substantial energy savings, LEAPmbr requires fewer membrane modules and cassettes, smaller membrane tanks, fewer valves and pipes, and lower connected horsepower. In many cases, using LEAPmbr technology, a ZeeWeed MBR system has an equivalent lifecycle cost to conventional treatment options.

2.1 Ultrafiltration System Design

Number of Membrane Trains	6
Number of Cassettes Per Train	10
Number of Cassette Spaces Per Train	11
Number of Full (48 module) Cassettes per Train	8
Number of Partial (32 module) Cassettes per Train	2
Total Number of Installed Cassettes	60
Total Number of Installed Modules	2688
Spare Space	15.2%
Membrane Tank Dimensions (L x W x H)	9 x 75 x 12 ft

Note 1: Tank dimensions and volumes are preliminary only and may change slightly once final detail design

Note 2: The ultrafiltration system is designed for installation within concrete tanks supplied by Buyer

2.2 Scope of Supply by GE

Below is a general overview of equipment to be provided by GE.

Quantity	Description	
	Membranes and Associated Equipment	
60	ZeeWeed® 500D LEAP™ membrane cassettes	
2,688	ZeeWeed® 500 370ft² modules.	
Lot	Membrane tank cassette mounting assemblies for 6 trains	
Lot	Permeate and air header pipes (within membrane tank limits only, excluding common collector and distribution pipes) for 6 trains	
Lot	Permeate and Air Isolation Valves	
6	Membrane tank level transmitters	
12	Membrane tank level switches	
Membran	e Air Scour Blower	
7	Membrane air scour blowers supplied loose, complete with required isolation valves, pressure gauges and flow switches (6 Duty + 1 Standby)	
Permeate	System	
6	Permeate Pumps	
6	Permeate flowmeters	
6	Vacuum ejectors and associated air release valves	
6	Trans-membrane pressure transmitters	
6	Turbidimeters	
Backpulse	Backpulse System	
2	Backpulse pumps supplied loose, complete with required isolation valves, flow meter. (Duty + Standby)	

Water & Process Technologies

1	Backpulse/CIP Tank
Drain Pun	np System
2	Drain Pumps (Duty + Standby) with associated valves and instrumentation
Membran	e Cleaning Systems
2	Sodium hypochlorite chemical feed pumps (Duty + Standby)
Lot	Required valves and instrumentation (feed/suction isolation valves, pressure indicators, etc.) for hypochlorite system.
2	Citric acid chemical feed pumps (Duty + Standby)
Lot.	Required valves and instrumentation (feed/suction isolation valves, pressure indicators, etc.) for citric acid system
Electrical	and Control Equipment
1	Master PLC control panel with touch screen HMI
6	Train I/O panels
Miscellane	eous
1+1	Air compressors and refrigerated air dryers for ejectors and pneumatic valve operation with duplex control panel.
General	
Incl.	Equipment general arrangement and layout drawings
Incl.	GE Standard Engineering Design (Equipment Tagging, Control Documents, Setpoints, Alarms, etc.).
Incl.	Operating & Maintenance manuals
Incl.	Field service and start-up assistance – 65 person-days of support over 4 total site visits from GE Water field-service personnel for installation assistance, commissioning, plant start-up and operator training.
Incl.	Membrane warranty – 5 year prorated
Incl.	Equipment mechanical warranty – 1 year or 18 months from shipment of equipment
Incl.	InSight Remote Monitoring & Diagnostics – Trend Service and 24/7 Emergency Telephone Technical Support Service – 1 year

Notes:

- Additional man-hours will be billed separately from the proposed system capital cost at a rate of \$1,300 per day plus living and traveling expenses. Detailed GE Water service rates are available upon request.
- 2 All GE supplied equipment is designed for installation in an unclassified area.
- A further customized package of post-commissioning Field Service support can be provided upon request. The package may include additional years of GE's Insight Remote Monitoring & Diagnostics or 24/7 services or site visits by GE Field Service personnel,
- To receive complete 24/7 Emergency Telephone Technical Support Service and to allow for InSight Monitor/Trend Service, a suitable, secure remote internet connection, by Buyer, is required.

3 Buyer Scope of Supply

_	
The fo	ollowing items are for supply by Buyer and will include but are not limited to:
	Overall plant design responsibility
	Review and approval of design parameters related to the membrane separation system
	Review and approval of GE supplied equipment drawings and specifications
	Detail drawings of all termination points where GE equipment or materials tie into equipment or materials supplied by Buyer
	Design, supply and installation of lifting devices including overhead traveling beam crane and monorail beam able to lift 5 ton for membrane removal, lifting davit crane and guide rails for submersible mixers and pumps, hoists, etc.
	Civil works, provision of main plant tank structures, buildings, equipment foundation pads etc. including but not limited to:
	 Common channels, Housekeeping pads, Equipment access platforms, walkways, stairs etc.
	 Equalization tank – as required
	 Bioreactor tank – complete with pre-anoxic, aerobic and post-anoxic zones
	 Membrane tanks c/w tank coating to be suitable for appropriate chemical contact covers, grating, and their support over membrane tanks. Note: cassette beams provided by GE are designed to provide structural support for tank grating/covers.
	Treated water storage tank, as required
	HVAC equipment design, specifications and installation (where applicable)
	UPS, power conditioner, emergency power supply and specification (where applicable)
	2 mm Pretreatment fine screen
	Biological process equipment – including process blowers, diffusers and mixers
	RAS pumps and associated instrumentaion and valving
	Acoustical enclosures for membrane and process blowers
	VFDs and MCC for all GE supplied equipment
	Plant SCADA system
	Process and utilities piping, pipe supports, hangers, valves, etc. including but not limited to:
	 Piping, pipe supports and valves between GE-supplied equipment and other plant process equipment

• Piping between any loose-supplied GE equipment

GE

Water & Process Technologies

- Process tank aeration system air piping, equalization tank system piping, etc.
- Interconnecting pipe between GE-supplied skids and tanks (as applicable)
- Electrical wiring, conduit and other appurtenances required to provide power connections as required from the electrical power source to the GE control panel and from the control panel to any electrical equipment, pump motors and instruments external to the GE-supplied enclosure
- Supply and installation of suitable, secure remote internet connection for 24/7
 Emergency Telephone Technical Support Service and InSight Remote Monitoring &
 Diagnostics Service
- Design, supply and installation of equipment anchor bolts, brackets, and fasteners for GE supplied equipment. Seismic structural analysis and anchor bolt sizing.
- Receiving (confirmation versus Packing List), unloading and safe storage of GE supplied equipment at site until ready for installation
- Installation on site of all GE supplied skids and loose-shipped equipment
- ☐ Alignment of rotating equipment
- Raw materials, chemicals, and utilities during equipment start-up and operation
- Disposal of initial start-up wastewater and associated chemicals
- □ Supply of seed sludge for process start-up purposes
- Laboratory services, operating and maintenance personnel during equipment checkout, start-up and operation
- Touch up primer and finish paint surfaces on equipment as required at the completion of the project
- Weather protection as required for all GE supplied equipment. Skids and electrical panels are designed for indoor operation and will need shelter from the elements.

4 Commercial

4.1 Pricing Table

Pricing for the proposed equipment and services, as outlined in Section 2.2, is summarized in the table below. All pricing is based on the operating conditions and influent analysis detailed in Section [1. The pricing herein is for budgetary purposes only and does not constitute an offer of sale. No sales, consumer use or other similar taxes or duties are included in the pricing below.

Price: All Equipment & Service	
ZeeWeed Membrane Filtration System, as per Section 2.2.	\$ 6,200,000 USD

4.2 Annual Power & Chemical Consumption Estimates for Membrane System

The data presented below is for information purposes only and is based on the design information provided by the Buyer and presuming that the equipment is operated according to the design basis and in accordance with Seller's Operations and Maintenance manuals.

Annual power consumption estimate 1

Equipment	kWh/year
Permeate Pumps	214,700
Membrane Blowers ²	762,600
Air Compressors	23,700
Total	1,001,000 kWh/year

Note1: Annual Power consumption estimate is calculated with ADF conditions. A 50% split between summer and winter ADF conditions has been used.

Note2: Assumes membrane relaxation for sludge prevention method

Annual chemical consumption estimate

Chemical	USgal/year
Sodium Hypochlorite (10.3% w/w, SG: 1.168)	10,630
Citric Acid (50.0% w/w, SG: 1.24)	8,310

Note: Cleaning chemical consumption estimates based on the following frequencies and concentrations summarized in the table below. Frequencies are assumed, actual frequency of maintenance and recovery cleans may change with final design, or may change once system is in operation.

Basis of chemical consumption estimate

Chemical		Maintenance Clean	Recovery Clean
Sodium Hypochlorite solution	Frequency	2 times per week	2 times per year
(10.3% w/w, SG: 1.168)	Concentration	200 mg/L	1,000 mg/L
Citric Acid Solution (50.0%	Frequency	weekly	2 times per year
w/w, SG: 1.24)	Concentration	2,000 mg/L	2,000 mg/L

Water & Process Technologies

4.3 Equipment Shipment and Delivery

Equipment Shipment is estimated at 26 to 35 weeks after order acceptance. The Buyer and Seller will arrange a kick off meeting after contract acceptance to develop a firm shipment schedule.

Typical Drawing Submission and Equipment Shipment Schedule

	8-12 weeks	2-3 weeks	16-20 weeks	2 weeks
Acceptance of PO				
Submission of Drawings				
Drawings Approval				
Equipment Manufacturing				
Equipment Shipment				
Plant Operations Manuals				

The delivery schedule is presented based on current workload backlogs and production capacity. This estimated delivery schedule assumes no more than 2 weeks for Buyer review of submittal drawings. Any delays in Buyer approvals or requested changes may result in additional charges and/or a delay to the schedule.

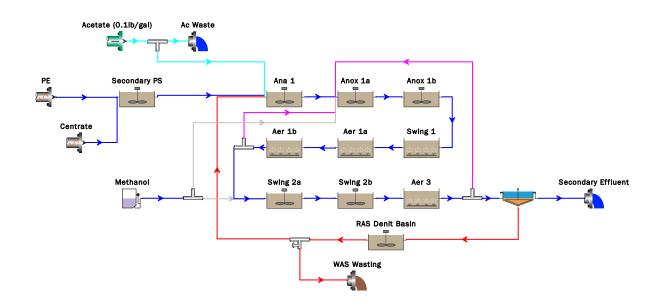
4.4 Terms and Conditions of Sale

This proposal has been prepared and is submitted based on Seller's Standard Terms and Conditions of Sale.

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Rick Kelly

Created: 6/29/2011 Saved: 4/30/2015

Target SRT: 12.00 days SRT: **** days

Temperature: 14.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.4000	3819.4447	14.000	Un-aerated
Aer 1a	1.4000	1.337E+4	14.000	4544
Aer 1b	1.5000	1.432E+4	14.000	4868
Swing 2a	0.6000	5729.1670	14.000	Un-aerated
Aer 3	0.5000	4774.3058	14.000	1623
Anox 1a	0.3000	2864.5835	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.3000	2864.5835	14.000	Un-aerated
Swing 1	0.4000	3819.4447	14.000	865
Swing 2b	0.6000	5729.1670	14.000	Un-aerated

Element name	Average DO Setpoint [mg/L]
Licinchi name	Average Do Setpoint [mg/L]
Ana 1	0
7.1.0 =	
Aer 1a	2.5
Aer 1b	2.0
Swing 2a	0
Aer 3	2.0
Aci 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0
Anox 1b	0
Swing 1	2.0
OMILIE T	2.0

Swing 2b	0	

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 1b	2.5656	0.0432	0.8200	0.4413	15.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0

Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
· · · · - · ·	0
Propionic acctorans mgCOD/L	
Propionic acetogens mgCOD/L Methonogens, gostoclastic mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0

ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mglSS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	12.461167588271	0.100114816828393
Total COD mgCOD/L	416.48	1801.80
Total Kjeldahl Nitrogen mgN/L	54.01	794.23
Total P mgP/L	8.12	105.96
Nitrate N mgN/L	0	0
рH	7.95	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.43	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

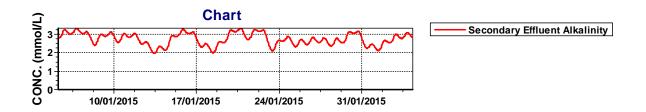
Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0110
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

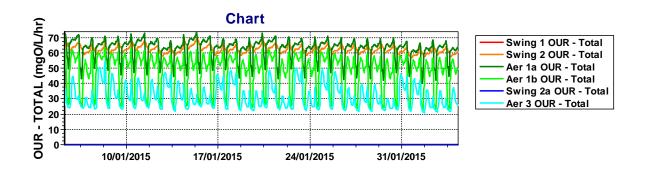
Configuration information for all Splitter units

Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.167116174366931
Acetate Splitter	Flow paced	0.30 %
Splitter21	Fraction	0.00
A20 IMLR	Flowrate [Side]	0

Configuration information for all Stream (SV) Influent units

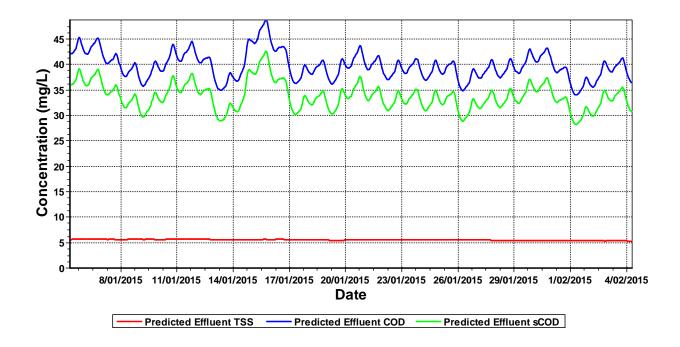

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0

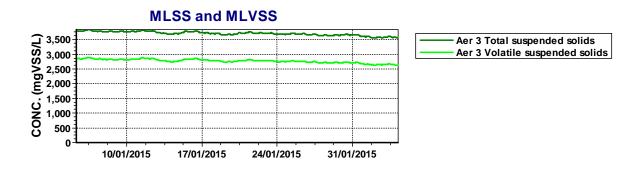
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0

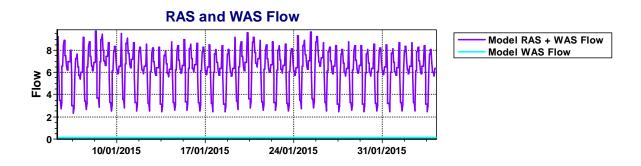

User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

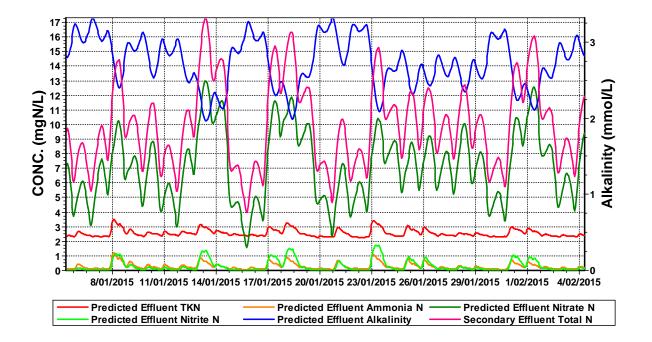
BioWin Album

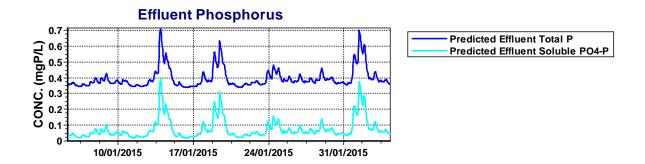
Album page - SS AOB-NOB

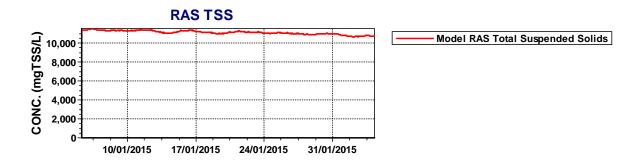

Album page - OURs


Album page - OURs

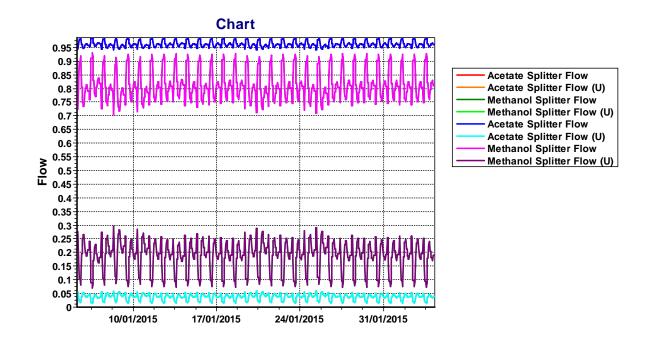

Album page - TSS, COD, BOD

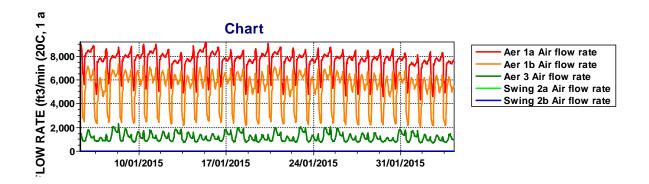

Album page - Mixed Liquor, RAS Flow


Album page - Mixed Liquor, RAS Flow


Album page - Nitrogen Sp., Alkalinity


Album page - TP, RAS TSS


Album page - TP, RAS TSS


Album page - WAS Mass

Album page - Acetate and Methanol Flow

Album page - Air Flow Rates

Meridian Alternative's Analysis version 1

Expansion using selectable 5 stage modified Bardenpho/A2O process

Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

To achieve target effluent concentrations, for Bardenpho process:

Overall process volume = 7.25 MG

Set BDF IMLR at 200% influent, Set A2O IMLR at 0%

Set Swing 1 Aerated, Swing 2a and 2b unaerated.

SRT = 12 days

Acetate flow pace at 0.8% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. All methanol to swing 2a

To achieve target effluent concentrations, for A2O process:

Overall process volume = 7.25 MG

Set BDF IMLR at 0% influent, Set A2O IMLR at 400% Set Swing 1 unaerated, Swing 2a and 2b aerated. SRT = 12 days

Acetate flow pace at 0.6% of PE flow rate, 0.1lb acetate COD per gallon used. Methanol flow pace at 1.5% of PE flow rate, 1% methanol solution. all methanol to Anoxic 1a

To achieve target effluent concentrations, for 5SB process with Ostara Centrate treatment:

tank volume for overall process volume of 6.0 MG

Reduce Nitrogen in Centrate by 15%, Reduce phosphorus in Centrate by 80% Set BDF IMLR at 200% influent, Set A2O IMLR at 0%

Set Swing 1 aerated, Swing 2a and 2b unaerated.

SRT = 12 days

Acetate flow pace at 0.25% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. all methanol to Swing 2a

Summary of process results:

SRT = 12 days

Steady State Acetate use: 3,690 lb/d Steady State Methanol use: 615 gpd

SS Air Demands: 16,725 scfm

SS WAS: 16,020 lb/d

All SS parameters meet follwoing criteria: MLSS<4,000; SP/TP<0.1/0.5; TN/NH3/NOX<15.5, 0.3, 8

Diurnal effluent quality is as follows:

Monthly Averages (all in mg/L)

Eff TN Eff NH3 Eff NOx Eff TP Eff PO4 **MLSS** 10.00143 0.281039 7.44645 0.07465 0.396125 3703.05

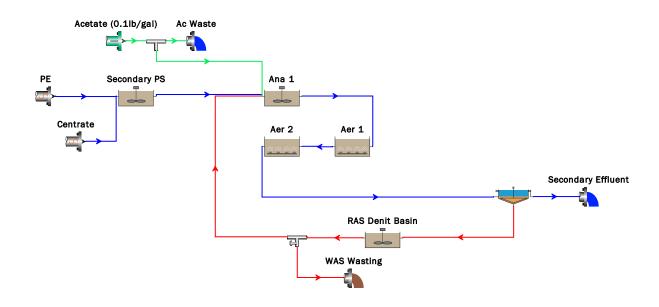
Daily Maximums (all in mg/L)

Eff TN Eff PO4 Eff NH3 MLSS Eff NOx Eff TP 15.23801 0.736096 12.37693 0.250259 0.573554 3811.626

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Rick Kelly

Created: 6/29/2011 Saved: 6/30/2015

Target SRT: 3.00 days SRT: **** days

Temperature: 14.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.5000	4774.3058	14.000	Un-aerated
Aer 1	0.8500	8116.3199	14.000	2759
Aer 2	2.0000	1.910E+4	14.000	6491
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated

Operating data Average (flow/time weighted as required)

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1	2.5
Aer 2	2.0
Secondary PS	0
RAS Denit Basin	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	15.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000

RAS Denit Basin	2.5656	0.0432	0.8200	0 4413	10.0000
TO DOING BUSIN	2.0000	0.0432	0.0200	0.7713	10.0000

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Operating data Average (flow/time weighted as required)

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction				
Clarifier	Uses global setting	Yes	99.90	0.07				

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	12.461167588271	0.100114816828393
Total COD mgCOD/L	416.48	1801.80
Total Kjeldahl Nitrogen mgN/L	54.01	934.39
Total P mgP/L	8.12	529.81
Nitrate N mgN/L	0	0
рН	7.95	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.43	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0642
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5

FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

Configuration information for all Splitter units

Operating data Average (flow/time weighted as required)

Element name	Split method	Average Split specification
RAS / WAS	Flowrate [Side]	0.37443085010023
Acetate Splitter	Flow paced	1.00 %

Configuration information for all Stream (SV) Influent units

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0

Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0

Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

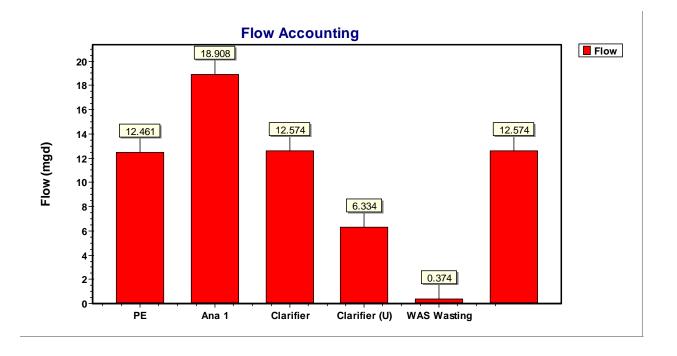
BioWin Album

Album page - Table

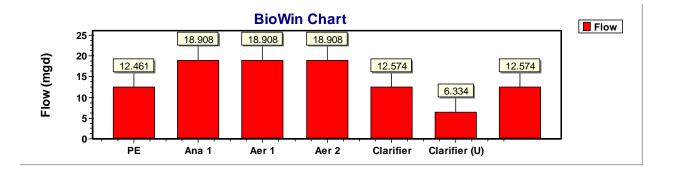
_																										
EI	T	T	FI	Di	T	V	Fi	Α	Ni	Ni	T	S	V	Fi	Α	Α	Ε	М	М	М	Ni	0	Р	Pr	Т	M
е	ot	ot	0	S	ot	ol	lt	m	tri	tr	ot	ol	ol	Х	m	n	n	et	et	et	tri	rd	ol	0	ot	et
m	al	al	W	S	al	at	er	m	te	at	al	u	at	е	m	а	d	h	h	h	te	in	у	pi	al	h
е	С	Kj	[ol	S	il	е	0	Ν	е	Р	bl	il	d	0	er	0	а	а	yl	0	ar	p	0	S	а
nt	0	el	m	V	u	е	d	ni	[Ν	[е	е	st	ni	0	g	n	n	ot	xi	у	h	ni	ol	n
S	D	d	g	е	S	S	С	а	m	[m	Р	fa	or	а	bi	е	0	0	ro	di	h	0	С	id	ol
	[а	d]	d	p	u	ar	Ν	g	m	g	0	tt	е	0	С	n	g	g	p	zi	et	S	а	S	[
	m	hl		0	е	S	b	[Ν	g	Р	4-	У	d	xi	а	0	е	е	h	n	er	p	С	m	m
	g	Ni		ху	n	р	0	m	/	Ν	/	Р	а	p	di	m	u	n	n	S	g	ot	h	et	а	g
	/	tr		g	d	е	n	g	L]	/	L]	[ci	ol	zi	m	S	S	S	[bi	ro	at	0	s	С
	L]	0		е	е	n	а	Ν		L]		m	d	у	n	0	pr	-	-	m	0	p	е	g	s	0
		g		n	d	d	С	/				g	S	Р	g	ni	0	а	h	g	m	hi	а	е	[]	D

P	4	e n [m g N / L]	1	[m g / L]	s ol id s [m g T S S / L]	e d s ol id s [m g V S S / L]	e o u s B O D [m g / L]	L]	0	0	8.	P / L]	[m g / L]	[m g P / L]	bi o m a s s (A O B) [m g C O D / L]	a o xi di z er s (A A O) [m g C O D / L]	d u ct s [m g C O D / L]	c et o cl a st ic [m g C O D / L]	y dr o g e n ot ro p hi c [m g C O D / L]	C O D / L]	a s s (N O B) [m g C O D / L]	c or g a ni s m s (O H O) [m g C O D / L]	c c u m ul at in g or g a ni s m s (P A O) [m g C O D / L]	n s [m g C O D / L]	b]	/ L]
E	1 6. 4 8	4. 0 1	2. 4 6		0 2. 1 2	0. 6 5	3 4. 0 5	3. 7 5			1 2	6	1. 0 3		0	0		0	0 4	0	0	0 4	0 4	0		
S e c o n d ar y P S	4 4 9. 8 0	6 3. 6 9	1 2. 8 2	0	1 1 2. 4 1	9 7. 1 4	1 4 6. 9 4	5 2. 9 6	0	0	1 4. 1 0	1 1. 2 6	2 2. 1 2	0	0. 0 4	0. 0 4	0. 0 0	0. 0 4	0. 0 4	0. 0 4	0. 0 4	0. 0 5	0. 0 4	0. 0 4	3 7. 8 1	0
A n a 1	2 8 5 7. 1 8	2 1 9. 9	1 8. 9 1	0	2 1 9 1. 0	1 7 7 6. 4 5	8 1. 9 0	5 1. 0 4	0	0. 0 0	1 3 3. 1 4	3 5. 5 1	9 8. 4 3	3 1. 6 6	3. 1 8	0. 4 2	2 3 1. 7 6	0. 2 0	0. 1 0	0. 4 0	0. 6 8	1 5 1 1. 4 3	4 5 8. 5 4	0. 2 2	9 1 4 2. 3 7	0
A er 1	2 7 5 6. 8 6	2 1 9. 3 1	1 8. 9 1	2. 5 0	2 2 4 8. 9	1 8 0 8. 8	5. 4 9	4 5. 3 6	0. 2 2	0. 0 2	1 3 2. 8 5	2 7. 1 8	2. 6 3	3 2. 6 6	3. 2 4	0. 4 2	2 3 5. 3 0	0. 2 0	0. 0 9	0. 4 0	0. 6 8	1 5 8 4. 0 9	4 7 0. 0 9	0. 2 1	1 5 9 5 3. 4 5	0
Α	2	2	1	2.	2	1	1.	4	0.	0.	1	0.	0.	3	3.	0.	2	0.	0.	0.	0.	1	4	0.	3	0

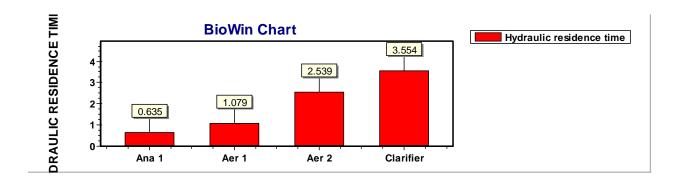
```
er
                                                                                                           8
                                                                                                                    8
              8.
                                     2.
                                                                 3.
                                                                                                      6
2
     6
         7.
              9
                  0
                       0
                            8
                                3
                                     2
                                          4
                                              0
                                                   2.
                                                        8
                                                            3
                                                                 8
                                                                     7
                                                                          1
                                                                               3.
                                                                                   8
                                                                                             0
                                                                                                 9
                                                                                                      1
                                                                                                           8.
                                                                                                               0
                                                                                                                    5
         8
                       6.
                            4.
                                     9
                                                   1
                                                                 2
                                                                               7
                                                                                                      3.
                                                                                                           9
                                                                                                                    0
     3.
              1
     3
         5
                       7
                            1
                                                   3
                                                                               7
                                                                                                      6
                                                                                                                    0.
     4
                       0
                            1
                                                                                                      2
                                                                                                                    6
                                                                                                                    3
                       3.
                            2.
                                         0.
                                              0.
                                                                 0.
                                                                     0.
                                                                                            0.
                                                                                                      2.
S
     3
         4
              1
                  1.
                                 1.
                                     4
                                                   0.
                                                        0.
                                                            0.
                                                                          0.
                                                                               0.
                                                                                   0.
                                                                                        0.
                                                                                                 0.
                                                                                                           0.
                                                                                                               0.
                                                                                                                        0
е
     2.
         4.
              2.
                  8
                       6
                            6
                                 1
                                     1.
                                         9
                                              1
                                                   4
                                                        2
                                                            0
                                                                 0
                                                                     0
                                                                          0
                                                                               3
                                                                                   0
                                                                                        0
                                                                                             0
                                                                                                 0
                                                                                                      4
                                                                                                           7
                                                                                                               0
              5
                                                            2
     3
                                     7
                                          5
                                                   6
                                                        2
                                                                 5
                                                                                             0
                                                                                                      9
                                                                                                           6
         1
                  0
                       1
                            9
                                 3
                                              1
                                                                     1
                                                                          0
                                                                               9
                                                                                   0
                                                                                        0
                                                                                                 0
                                                                                                               0
С
              7
         5
                                     4
0
n
d
ar
Ef
fl
u
е
nt
CI
              1
                       3.
                            2.
                                 1.
                                     4
                                         0.
                                              0.
                                                   0.
                                                        0.
                                                            0.
                                                                 0.
                                                                     0.
                                                                          0.
                                                                               0.
                                                                                   0.
                                                                                        0.
                                                                                             0.
                                                                                                 0.
                                                                                                      2.
                                                                                                           0.
                                                                                                                    1
ar
     2.
         4.
              2.
                  8
                       6
                            6
                                 1
                                     1.
                                         9
                                              1
                                                   4
                                                        2
                                                            0
                                                                 0
                                                                     0
                                                                          0
                                                                               3
                                                                                    0
                                                                                        0
                                                                                             0
                                                                                                 0
                                                                                                      4
                                                                                                           7
                                                                                                               0
                                                                                                                    1
              5
                                     7
                                                            2
                                                                                             0
                                                                                                                    2
ifi
     3
         1
                  0
                       1
                            9
                                 3
                                          5
                                              1
                                                   6
                                                        2
                                                                 5
                                                                     1
                                                                          0
                                                                               9
                                                                                   0
                                                                                        0
                                                                                                 0
                                                                                                           6
              7
                                                                                                                    9
     6
         5
                                     4
                                                                                                                    7.
                                                                                                                    2
                                                                                                                    5
CI
    7
         5
              6.
                  0.
                       6
                            5
                                0.
                                     4
                                          0.
                                              0.
                                                   3
                                                        1.
                                                            0.
                                                                     1
                                                                          1.
                                                                               7
                                                                                   0.
                                                                                        0.
                                                                                             1.
                                                                                                 2.
                                                                                                      4
                                                                                                           1
                                                                                                               0.
                                                                                                                        0
                                                                 1
              3
                       8
                                     3.
                                              0
                                                        8
                                                                 0
                                                                     0.
                                                                          2
                                                                               3
                                                                                        2
                                                                                             1
                                                                                                      7
                                                                                                           4
ar
    8
         6
                  0
                            3
                                3
                                          0
                                                   9
                                                            3
                                                                                                 0
ifi
                       5
                            0
                                     5
                                          0
                                              0
                                                   2.
                                                        5
                                                            0
                                                                 0.
                                                                     0
                                                                          3
                                                                               0.
                                                                                        2
                                                                                             8
                                                                                                      9
                                                                                                           5
     6
         1.
                  0
                                                                                                 6
                       8.
                            7.
                                     0
                                                   8
                                                                 7
                                                                                                      3.
er
     5.
         1
                                                                     3
                                                                               8
                                                                                                           7.
                       7
                            5
                                                   8
                                                                 5
                                                                               3
                                                                                                           7
(U
    9
         8
                                                                                                      4
     2
                       3
                            2
                                                                                                      7
                                                                                                           0
)
     7
                       6
                            5
                                                                               7
                                                                                                 2.
R
         5
              5.
                  0
                                 0.
                                     4
                                          0.
                                              0.
                                                   3
                                                        2.
                                                            0.
                                                                 1
                                                                                    0.
                                                                                        0.
                                                                                             1.
                                                                                                      4
                                                                                                           1
                                                                                                               0.
                                                                                                                        0
     8
                       8
                            3
                                2
                                     3.
                                              0
                                                   9
                                                        9
                                                            2
                                                                 0
                                                                          2
                                                                                   5
                                                                                        2
                                                                                                      7
                                                                                                           4
Α
         6
              9
                                          0
                                                                     0.
                                                                               3
                                                                                             1
                                                                                                 0
                                                                                                               6
                                                   2.
S
    6
         1.
              6
                       5
                            0
                                     7
                                          0
                                              0
                                                        2
                                                            0
                                                                 0.
                                                                     0
                                                                          3
                                                                               2.
                                                                                        2
                                                                                             8
                                                                                                 6
                                                                                                      8
                                                                                                           5
     0.
         0
                       0.
                            3.
                                                   6
                                                                 6
                                                                     2
                                                                               2
                                                                                                      6.
                                                                                                           6.
W
    3
                       0
                                                                               0
         5
                            1
                                                   4
                                                                 6
                                                                                                      3
                                                                                                           7
                       4
                                                                                                      7
                                                                                                           8
                            2
Α
     1
S
R
     7
         5
              0.
                            5
                                     4
                                         0.
                                              0.
                                                                                        0.
                                                                                                 2.
                                                                                                      4
                  0
                       6
                                0.
                                                   3
                                                        2.
                                                            0.
                                                                 1
                                                                     1
                                                                          1.
                                                                               7
                                                                                   0.
                                                                                             1.
                                                                                                           1
                                                                                                               0.
                                                                                                                        0
     8
         6
              3
                       8
                            3
                                2
                                     3.
                                          0
                                              0
                                                   9
                                                        9
                                                            2
                                                                 0
                                                                     0.
                                                                          2
                                                                               3
                                                                                   5
                                                                                        2
                                                                                             1
                                                                                                 0
                                                                                                      7
                                                                                                           4
                                                                                                               6
Α
S
     6
         1.
                       5
                            0
                                     7
                                          0
                                              0
                                                   2.
                                                        2
                                                            0
                                                                 0.
                                                                     0
                                                                          3
                                                                               2.
                                                                                             8
                                                                                                 6
                                                                                                      8
                                                                                                           5
     0.
         0
                       0.
                            3.
                                                   6
                                                                 6
                                                                      2
                                                                               2
                                                                                                      6.
                                                                                                           6.
W
    3
         5
                       0
                            1
                                                   4
                                                                 6
                                                                               0
                                                                                                      3
                                                                                                           7
                                                                                                           8
Α
S
(U
)
```

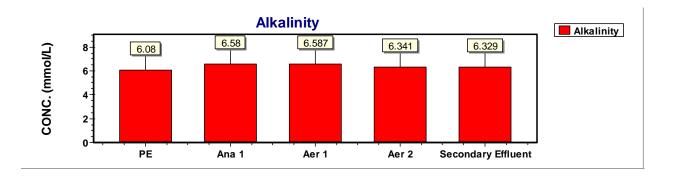

Album page - Output Table 1

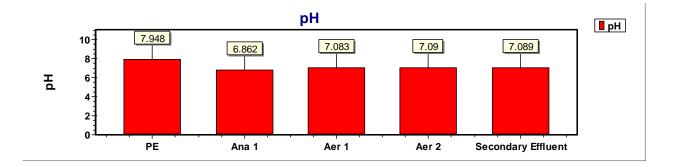
A n	S e c o n d ar y P S	P E	EI e m e nt s
1 8.	1 2. 8 2	1 2. 4 6	FI o w [m g d]
0. 5	0. 0 4	0	Li q ui d v ol u m e [M ii. G al
1 4.	1 4. 0 0	1 4. 0 0	T e m p er at ur e [d e g, C]
6. 8	7. 9 5	7. 9 5	P H []
2	1 1 2. 4 1	1 0 2. 1 2	T ot al s u s p e n d e d s ol id s [m g T S S / L]
1 7	9 7. 1 4	9 0. 6 5	V ol at il e s u s p e n d e d s ol id s [m g V S S / L]
2	4 4 9. 8 0	4 1 6. 4 8	T ot all C O D [m g / L]
1 6	2 3 6. 3 1	2 1 7. 2 4	Fi It er e d C O D [m g / L]
9 8.	2 2. 1 2	2 1. 0 3	V ol at il e fa tt y a ci d s [m g / L]
1	2 5 3. 8 5	2 3 7. 1 7	Tot al Carbonaceous BOD[mg/L]
7. 0	1 2 1. 8 0	1 0 6. 4 1	R e a di ly bi o. C O D (c o m pl e x) [m g C O D / L]
6. 9	6 3. 2 0	6 1. 4 8	SI o wl y bi o. C O D (c ol lo id .) [m g C O D / L]
2	2 0 1. 8 5	1 9 4. 6 9	SI o wl y bi o. C O D (p ar t.) [m g C O D / L]
2 8.		2 8. 3 2	S ol . in er t C O D [m g C O D / L]
2	6 3. 6 9	5 4. 0 1	Tot al Kjel da hI Ni trogen [mgN/L]
5 1.	5 2. 9 6	4 3. 7 5	A m m o ni a N [m g N / L]
0	0	0	Ni tri te N [m g N / L]
0. 0	0	0	Ni tr at e N [m g N / L]
5 1.	5 2. 9 6	4 3. 7 5	Tot all in or ganic N[mgN/L]
2	6 3. 6 9	5 4. 0 1	ot al N [m g N / L]
1	1 4. 1 0	8. 1 2	T ot al P [m g P / L]
3 5.	1 1. 2 6	5. 6 0	S ol u bl e P O 4-P [m g P / L]
0	0		Ai r fl o w ra te [f t3 / m in (2 0 C, 1 at m)]
4 5	0. 0 4	0. 0 4	Polyphosphateaccumulatingorganisms(PAO)[mgCOD/L]
3. 1	0. 0 4	0. 0 4	A m m o ni a o xi di zi n g bi o m a s s (A O B) [m g C O D / L]
0. 6	0. 0 4	0. 0 4	Ni tri te o xi di zi n g bi o m a s s (N O B) [m g C O D / L]
1 5	0. 0 5	0. 0 4	Ord in ary het er ot rophic organisms (OHO)[mgCOD/L]
0	0	0	M et h a n ol [m g C O D / L]

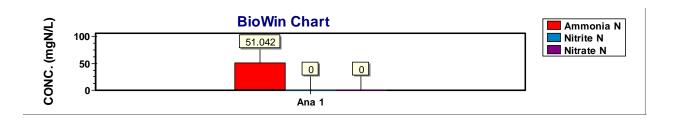

R A S / W	R A S D e ni t B a si n	S e c o n d ar y Ef fl u e nt	CI ar ifi er (U)	CI ar ifi er	A er 2	A er 1	a 1
5. 9 6	6. 3 3	1 2. 5 7	6. 3 3	1 2. 5 7	1 8. 9 1	1 8. 9 1	9
0	0. 0 7	0	2. 8 0	2. 8 0	2. 0 0	0. 8 5	0
1 4. 0 0	1 4. 0 0	1 4. 0 0	1 4. 0 0	1 4. 0 0	1 4. 0 0	1 4. 0 0	0
7. 1 1	7. 1 1	7. 0 9	7. 0 9	7. 0 9	7. 0 9	7. 0 8	6
6 8 5 0. 0	6 8 5 0. 0 4	3. 6 1	6 8 5 8. 7 3	3. 6 1	2 3 0 6. 7	2 2 4 8. 9	9 1. 0
5 3 0 3. 1	5 3 0 3. 1 2	2. 6 9	5 3 0 7. 5 2	2. 6 9	1 7 8 4. 1	1 8 0 8. 8 3	7 6. 4 5
7 8 6 0. 3	7 8 6 0. 3 1	3 2. 3 6	7 8 6 5. 9 2	3 2. 3 6	2 6 6 3. 3	2 7 5 6. 8 6	5 7. 1 8
3 3. 6 7	3 3. 6 7	2 8. 4 5	3 3. 2 8	2 8. 4 5	3 0. 0 5	3 7. 9 1	1. 2 5
0. 2 0	0. 2 0	0. 0 2	0. 3 0	0. 0 2	0. 0 3	2. 6 3	4 3
3 7 9 3. 0	3 7 9 3. 0 4	3. 0 2	3 7 9 7. 1 6	3. 0 2	1 2 7 8. 8	1 3 0. 7 6	9 4. 1 0
0. 0 8	0. 0 8	1. 5 6	0. 1 8	1. 5 6	1. 8 4	4. 4 0	7
0. 0 0	0. 0 0	0. 0 2	0. 0 0	0. 0 2	0. 0 2	0. 6 5	5
3 1 0. 0	3 1 0. 0 2	0. 0 7	3 0 9. 7 7	0. 0 7	1 0 5. 4 1	2 0 5. 7 5	9. 5 7
2 7. 8 6	2 7. 8 6	2 6. 7 2	2 7. 9 2	2 6. 7 2	2 8. 0 4	2 8. 5 5	5 3
5 6 1. 0	5 6 1. 0 5	4 4. 1 5	5 6 1. 1 8	4 4. 1 5	2 1 7. 8 5	2 1 9. 3 1	9. 9 4
4 3. 7 9	4 3. 7 9	4 1. 7 4	4 3. 5 0	4 1. 7 4	4 2. 2 9	4 5. 3 6	0 4
0. 0 0	0. 0 0	0. 9 5	0. 0 0	0. 9 5	0. 9 4	0. 2 2	
0. 0 0	0. 0 0	0. 1 1	0. 0 0	0. 1 1	0. 1 0	0. 0 2	0
4 3. 7 9	4 3. 7 9	4 2. 7 9	4 3. 5 0	4 2. 7 9	4 3. 3 3	4 5. 6 0	0 4
5 6 1. 0	5 6 1. 0 5	4 5. 2 1	5 6 1. 1 9	4 5. 2 1	2 1 8. 8 9	2 1 9. 5 5	9. 9 4
3 9 2. 6	3 9 2. 6 4	0. 4 6	3 9 2. 8 8	0. 4 6	1 3 2. 1 3	1 3 2. 8 5	3. 1 4
2. 9 2	2. 9 2	0. 2 2	1. 8 5	0. 2 2	0. 2 8	2 7. 1 8	5 1
	0	-			4 1 5 8. 0 8	4 9 5 7. 2 7	
1 4 5 6. 7	1 4 5 6. 7 8	0. 7 6	1 4 5 7. 7	0. 7 6	4 8 8. 9 4	4 7 0. 0 9	8. 5 4
1 0. 0 2	1 0. 0 2	0. 0 1	1 0. 0 3	0. 0 1	3. 3 7	3. 2 4	8
2. 0 6	2. 0 6	0. 0 0	2. 0 6	0. 0 0	0. 6 9	0. 6 8	8
4 7 8 6. 3	4 7 8 6. 3 7	2. 4 9	4 7 9 3. 4 7	2. 4 9	1 6 1 3. 6	1 5 8 4. 0 9	1 1. 4 3
0	0	0	0	0	0	0	

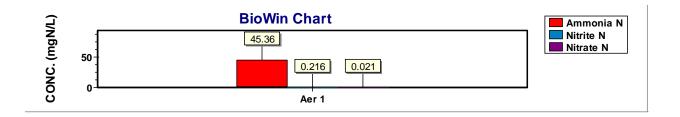
A S					4	2	1			4			2		5					5	4		8			7	
R A S / W A S (U)	0. 3 7	0	1 4. 0 0	7. 1 1	6 8 5 0. 0 4	5 3 0 3. 1 2	7 8 6 0. 3 1	3 3. 6 7	0. 2 0	3 7 9 3. 0 4	0. 0 8	0. 0 0	3 1 0. 0 2	2 7. 8 6	5 6 1. 0 5	4 3. 7 9	0. 0 0	0. 0 0	4 3. 7 9	5 6 1. 0 5	3 9 2. 6 4	2. 9 2	 1 4 5 6. 7 8	1 0. 0 2	2. 0 6	4 7 8 6. 3 7	0
W A S W a st in g	0. 3 7	0	1 4. 0 0	7. 1 1	6 8 5 0. 0 4	5 3 0 3. 1 2	7 8 6 0. 3 1	3 3. 6 7	0. 2 0	3 7 9 3. 0 4	0. 0 8	0. 0 0	3 1 0. 0 2	2 7. 8 6	5 6 1. 0 5	4 3. 7 9	0. 0 0	0. 0 0	4 3. 7 9	5 6 1. 0 5	3 9 2. 6 4	2. 9 2	 1 4 5 6. 7 8	1 0. 0 2	2. 0 6	4 7 8 6. 3 7	0

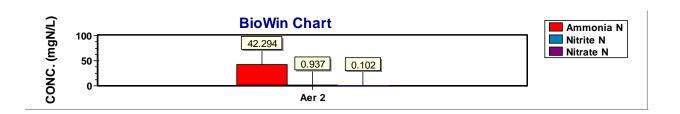

Album page - SS Flow Accounting

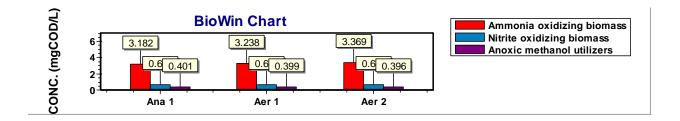

Album page - SS Flow and HRT

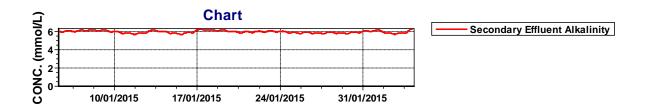

Album page - SS Flow and HRT


Album page - SS pH-Alkalinity

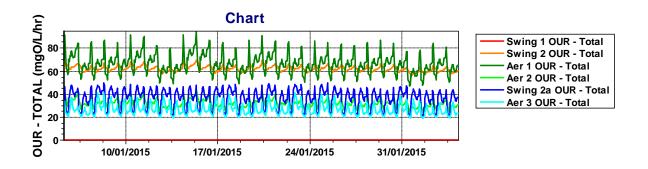

Album page - SS pH-Alkalinity


Album page - SS NH3-NO2-NO3

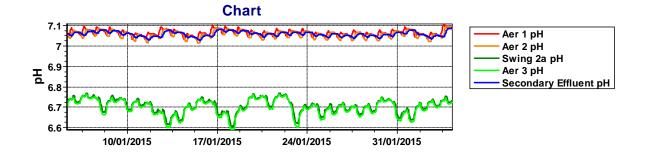

Album page - SS NH3-NO2-NO3


Album page - SS NH3-NO2-NO3

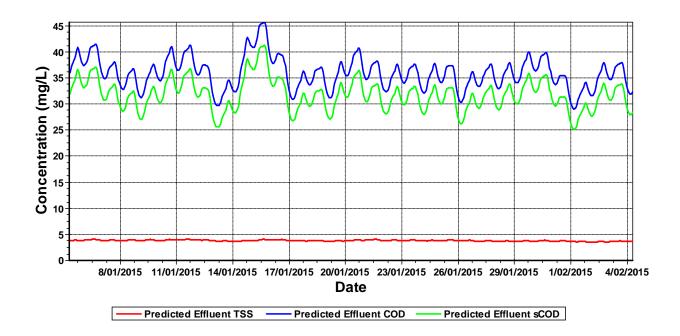
Album page - SS AOB-NOB



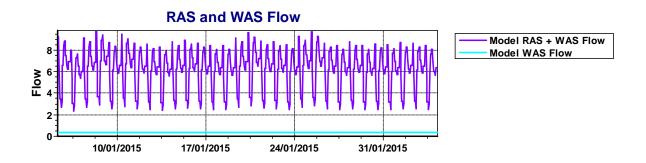
Album page - SS AOB-NOB

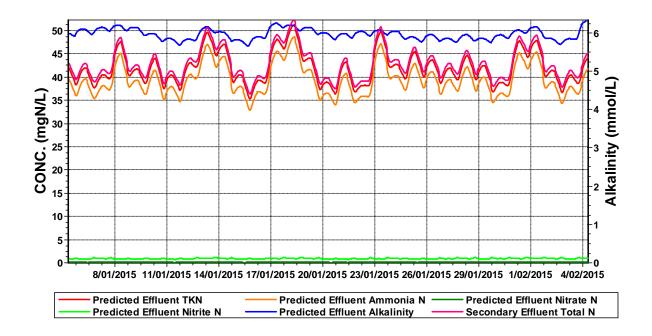


Album page - SS AOB-NOB

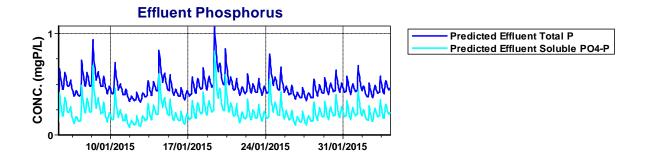

Album page - OURs

Album page - OURs

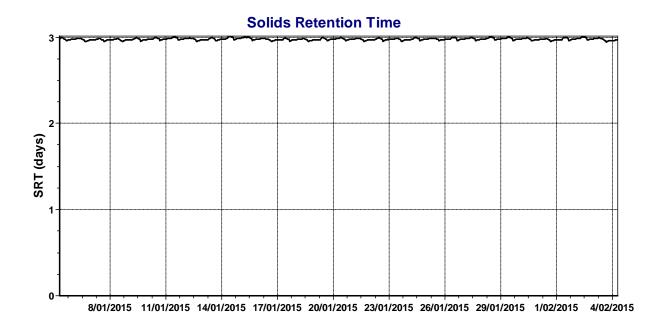

Album page - TSS, COD, BOD

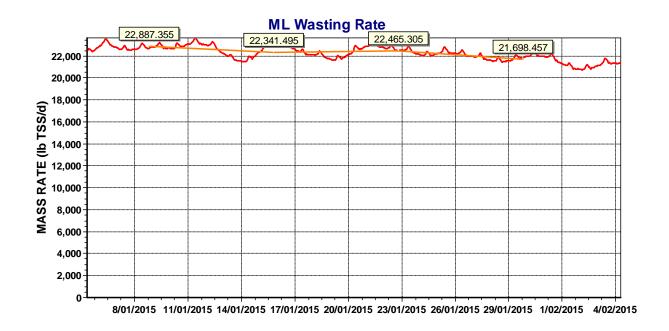

Album page - Mixed Liquor, RAS Flow

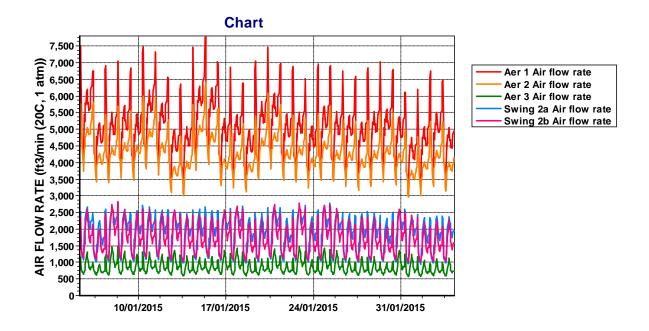
MLSS and MLVSS Aer 3 Total suspended solids Aer 3 Volatile suspended solids Aer 3 Volatile suspended solids 1,500 1,000 500 10/01/2015 17/01/2015 24/01/2015 31/01/2015


Album page - Mixed Liquor, RAS Flow

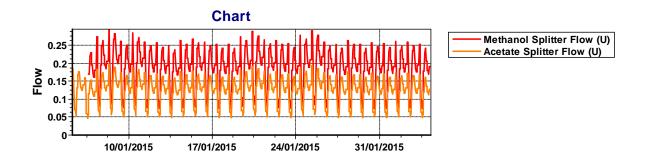
Album page - Nitrogen Sp., Alkalinity


Album page - TP, RAS TSS


Album page - TP, RAS TSS


Album page - SRT

Album page - WAS Mass


Album page - Air Flow Rate

Album page - Page 16

Elements	Air flow rate [ft3/min (20C, 1 atm)]	Flow [mgd]
Acetate Splitter (U)	****	0.12
Aer 1	4957.27	18.91
Aer 2	4158.08	18.91

Album page - Page 16

Global Parameters

Common

Name	Default	Value	
Hydrolysis rate [1/d]	2.1000	2.1000	1.0290
Hydrolysis half sat. [-]	0.0600	0.0600	1.0000
Anoxic hydrolysis factor [-]	0.2800	0.2800	1.0000
Anaerobic hydrolysis factor (AS) [-]	0.0400	0.0400	1.0000
Anaerobic hydrolysis factor (AD) [-]	0.5000	0.5000	1.0000
Adsorption rate of colloids [L/(mgCOD d)]	0.1500	0.1500	1.0290
Ammonification rate [L/(mgN d)]	0.0400	0.0400	1.0290

Assimilative nitrate/nitrite reduction rate [1/d]	0.5000	0.5000	1.0000
Endogenous products decay rate [1/d]	0	0	1.0000

AOB

Name	Default	Value	
Max. spec. growth rate [1/d]	0.9000	0.9000	1.0720
Substrate (NH4) half sat. [mgN/L]	0.7000	0.7000	1.0000
Byproduct NH4 logistic slope [-]	50.0000	50.0000	1.0000
Byproduct NH4 inflection point [mgN/L]	1.4000	1.4000	1.0000
AOB denite DO half sat. [mg/L]	0.1000	0.1000	1.0000
AOB denite HNO2 half sat. [mgN/L]	5.000E-6	5.000E-6	1.0000
Aerobic decay rate [1/d]	0.1700	0.1700	1.0290
Anoxic/anaerobic decay rate [1/d]	0.0800	0.0800	1.0290
KiHNO2 [mmol/L]	0.0050	0.0050	1.0000

NOB

Default	Value	
0.7000	0.7000	1.0600
0.1000	0.1000	1.0000
0.1700	0.1700	1.0290
0.0800	0.0800	1.0290
0.0750	0.0750	1.0000
	0.7000 0.1000 0.1700 0.0800	0.7000 0.7000 0.1000 0.1000 0.1700 0.1700 0.0800 0.0800

AAO

Name	Default	Value	
Max. spec. growth rate [1/d]	0.2000	0.2000	1.1000
Substrate (NH4) half sat. [mgN/L]	2.0000	2.0000	1.0000
Substrate (NO2) half sat. [mgN/L]	1.0000	1.0000	1.0000
Aerobic decay rate [1/d]	0.0190	0.0190	1.0290
Anoxic/anaerobic decay rate [1/d]	0.0095	0.0095	1.0290
Ki Nitrite [mgN/L]	1000.0000	1000.0000	1.0000
Nitrite sensitivity constant [L / (d mgN)]	0.0160	0.0160	1.0000

ОНО

Name	Default	Value	
Max. spec. growth rate [1/d]	3.2000	3.2000	1.0290
Substrate half sat. [mgCOD/L]	5.0000	5.0000	1.0000
Anoxic growth factor [-]	0.5000	0.5000	1.0000
Denite N2 producers (N03 or N02) [-]	0.5000	0.5000	1.0000
Aerobic decay rate [1/d]	0.6200	0.6200	1.0290
Anoxic decay rate [1/d]	0.2330	0.2330	1.0290
Anaerobic decay rate [1/d]	0.1310	0.1310	1.0290
Fermentation rate [1/d]	1.6000	1.6000	1.0290
Fermentation half sat. [mgCOD/L]	5.0000	5.0000	1.0000
Fermentation growth factor (AS) [-]	0.2500	0.2500	1.0000
Free nitrous acid inhibition [mmol/L]	1.000E-7	1.000E-7	1.0000

Methylotrophs

Name	Default	Value	
Max. spec. growth rate [1/d]	1.3000	1.3000	1.0720
Methanol half sat. [mgCOD/L]	0.5000	0.5000	1.0000
Denite N2 producers (NO3 or NO2) [-]	0.5000	0.5000	1.0000
Aerobic decay rate [1/d]	0.0400	0.0400	1.0290
Anoxic/anaerobic decay rate [1/d]	0.0300	0.0300	1.0290
Free nitrous acid inhibition [mmol/L]	1.000E-7	1.000E-7	1.0000

PAO

Name	Default	Value	
Max. spec. growth rate [1/d]	0.9500	0.9500	1.0000
Max. spec. growth rate, P-limited [1/d]	0.4200	0.4200	1.0000
Substrate half sat. [mgCOD(PHB)/mgCOD(Zbp)]	0.1000	0.1000	1.0000
Substrate half sat., P-limited [mgCOD(PHB)/mgCOD(Zbp)]	0.0500	0.0500	1.0000
Magnesium half sat. [mgMg/L]	0.1000	0.1000	1.0000
Cation half sat. [mmol/L]	0.1000	0.1000	1.0000
Calcium half sat. [mgCa/L]	0.1000	0.1000	1.0000
Aerobic/anoxic decay rate [1/d]	0.1000	0.1000	1.0000
Aerobic/anoxic maintenance rate [1/d]	0	0	1.0000
Anaerobic decay rate [1/d]	0.0400	0.0400	1.0000
Anaerobic maintenance rate [1/d] Sequestration rate [1/d]	4.5000	4.5000	1.0000
Anoxic growth factor [-]	0.3300	0.3300	1.0000
Alloxic glowth factor [-]	0.3300	0.3300	1.0000

Acetogens

Name	Default	Value	
Max. spec. growth rate [1/d]	0.2500	0.2500	1.0290
Substrate half sat. [mgCOD/L]	10.0000	10.0000	1.0000
Acetate inhibition [mgCOD/L]	10000.0000	10000.0000	1.0000
Anaerobic decay rate [1/d]	0.0500	0.0500	1.0290
Aerobic/anoxic decay rate [1/d]	0.5200	0.5200	1.0290

Methanogens

Name	Default	Value	
Acetoclastic max. spec. growth rate [1/d]	0.3000	0.3000	1.0290
H2-utilizing max. spec. growth rate [1/d]	1.4000	1.4000	1.0290
Acetoclastic substrate half sat. [mgCOD/L]	100.0000	100.0000	1.0000
Acetoclastic methanol half sat. [mgCOD/L]	0.5000	0.5000	1.0000
H2-utilizing CO2 half sat. [mmol/L]	0.1000	0.1000	1.0000
H2-utilizing substrate half sat. [mgCOD/L]	0.1000	0.1000	1.0000
H2-utilizing methanol half sat. [mgCOD/L]	0.5000	0.5000	1.0000
Acetoclastic propionic inhibition [mgCOD/L]	10000.0000	10000.0000	1.0000
Acetoclastic anaerobic decay rate [1/d]	0.1300	0.1300	1.0290
Acetoclastic aerobic/anoxic decay rate [1/d]	0.6000	0.6000	1.0290
H2-utilizing anaerobic decay rate [1/d]	0.1300	0.1300	1.0290
H2-utilizing aerobic/anoxic decay rate [1/d]	2.8000	2.8000	1.0290

рΗ

Name	Default	Value
OHO low pH limit [-]	4.0000	4.0000

OHO high pH limit [-]	10.0000	10.0000
Methylotrophs low pH limit [-]	4.0000	4.0000
Methylotrophs high pH limit [-]	10.0000	10.0000
Autotrophs low pH limit [-]	5.5000	5.5000
Autotrophs high pH limit [-]	9.5000	9.5000
PAO low pH limit [-]	4.0000	4.0000
PAO high pH limit [-]	10.0000	10.0000
OHO low pH limit (anaerobic) [-]	5.5000	5.5000
OHO high pH limit (anaerobic) [-]	8.5000	8.5000
Propionic acetogens low pH limit [-]	4.0000	4.0000
Propionic acetogens high pH limit [-]	10.0000	10.0000
Acetoclastic methanogens low pH limit [-]	5.0000	5.0000
Acetoclastic methanogens high pH limit [-]	9.0000	9.0000
H2-utilizing methanogens low pH limit [-]	5.0000	5.0000
H2-utilizing methanogens high pH limit [-]	9.0000	9.0000

Switches

Name	Default	Value
Aerobic/anoxic DO half sat. [mgO2/L]	0.0500	0.0500
Anoxic/anaerobic NOx half sat. [mgN/L]	0.1500	0.1500
AOB DO half sat. [mgO2/L]	0.2500	0.2500
NOB DO half sat. [mg02/L]	0.5000	0.5000
AAO DO half sat. [mgO2/L]	0.0100	0.0100
Anoxic NO3(->NO2) half sat. [mgN/L]	0.1000	0.1000
Anoxic NO3(->N2) half sat. [mgN/L]	0.0500	0.0500
Anoxic NO2(->N2) half sat. (mgN/L)	0.0100	0.0100
NH3 nutrient half sat. [mgN/L]	0.0050	0.0050
PolyP half sat. [mgP/mgCOD]	0.0100	0.0100

VFA sequestration half sat. [mgCOD/L]	5.0000	5.0000
P uptake half sat. [mgP/L]	0.1500	0.1500
P nutrient half sat. [mgP/L]	0.0010	0.0010
Autotroph CO2 half sat. [mmol/L]	0.1000	0.1000
H2 low/high half sat. [mgCOD/L]	1.0000	1.0000
Propionic acetogens H2 inhibition [mgCOD/L]	5.0000	5.0000
Synthesis anion/cation half sat. [meq/L]	0.0100	0.0100

Common

Name	Default	Value
Biomass volatile fraction (VSS/TSS)	0.9200	0.9200
Endogenous residue volatile fraction (VSS/TSS)	0.9200	0.9200
N in endogenous residue [mgN/mgCOD]	0.0700	0.0700
P in endogenous residue [mgP/mgCOD]	0.0220	0.0220
Endogenous residue COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Particulate substrate COD:VSS ratio [mgCOD/mgVSS]	1.6000	2.2000
Particulate inert COD:VSS ratio [mgCOD/mgVSS]	1.6000	2.2000

AOB

Name	Default	Value
Yield [mgCOD/mgN]	0.1500	0.1500
AOB denite NO2 fraction as TEA [-]	0.5000	0.5000
Byproduct NH4 fraction to N20 [-]	0.0025	0.0025
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220

Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

NOB

Name	Default	Value
Yield [mgCOD/mgN]	0.0900	0.0900
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

AAO

Name	Default	Value
- N. 1.1.7 - 200 (AB	0.1110	0.1110
Yield [mgCOD/mgN]	0.1140	0.1140
Nitrate production [mgN/mgBiomassCOD]	2.2800	2.2800
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

ОНО

Name	Default	Value

Yield (aerobic) [-]	0.6660	0.6660
Yield (fermentation, low H2) [-]	0.1000	0.1000
Yield (fermentation, high H2) [-]	0.1000	0.1000
H2 yield (fermentation low H2) [-]	0.3500	0.3500
H2 yield (fermentation high H2) [-]	0	0
Propionate yield (fermentation, low H2) [-]	0	0
Propionate yield (fermentation, high H2) [-]	0.7000	0.7000
CO2 yield (fermentation, low H2) [-]	0.7000	0.7000
CO2 yield (fermentation, high H2) [-]	0	0
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Endogenous fraction - aerobic [-]	0.0800	0.0800
Endogenous fraction - anoxic [-]	0.1030	0.1030
Endogenous fraction - anaerobic [-]	0.1840	0.1840
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Yield (anoxic) [-]	0.5400	0.5400
Yield propionic (aerobic) [-]	0.6400	0.6400
Yield propionic (anoxic) [-]	0.4600	0.4600
Yield acetic (aerobic) [-]	0.6000	0.6000
Yield acetic (anoxic) [-]	0.4300	0.4300
Yield methanol (aerobic) [-]	0.5000	0.5000
Adsorp. max. [-]	1.0000	1.0000
Max fraction to N2O at high FNA over nitrate [-]	0.0500	0.0500
Max fraction to N2O at high FNA over nitrite [-]	0.1000	0.1000

Methylotrophs

Name	Default	Value
Yield (anoxic) [-]	0.4000	0.4000

N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Max fraction to N2O at high FNA over nitrate [-]	0.1000	0.1000
Max fraction to N2O at high FNA over nitrite [-]	0.1500	0.1500

PAO

	D ();	
Name	Default	Value
Yield (aerobic) [-]	0.6390	0.6390
Yield (anoxic) [-]	0.5200	0.5200
Aerobic P/PHA uptake [mgP/mgCOD]	0.9300	0.9300
Anoxic P/PHA uptake [mgP/mgCOD]	0.3500	0.3500
Yield of PHA on sequestration [-]	0.8890	0.8890
N in biomass [mgN/mgCOD]	0.0700	0.0700
N in sol. inert [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous part. [-]	0.2500	0.2500
Inert fraction of endogenous sol. [-]	0.2000	0.2000
P/Ac release ratio [mgP/mgCOD]	0.5100	0.5100
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Yield of low PP [-]	0.9400	0.9400

Acetogens

Name	Default	Value

Yield [-]	0.1000	0.1000
H2 yield [-]	0.4000	0.4000
CO2 yield [-]	1.0000	1.0000
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

Methanogens

Name	Default	Value
Acetoclastic yield [-]	0.1000	0.1000
Methanol acetoclastic yield [-]	0.1000	0.1000
H2-utilizing yield [-]	0.1000	0.1000
Methanol H2-utilizing yield [-]	0.1000	0.1000
N in acetoclastic biomass [mgN/mgCOD]	0.0700	0.0700
N in H2-utilizing biomass [mgN/mgCOD]	0.0700	0.0700
P in acetoclastic biomass [mgP/mgCOD]	0.0220	0.0220
P in H2-utilizing biomass [mgP/mgCOD]	0.0220	0.0220
Acetoclastic fraction to endog. residue [-]	0.0800	0.0800
H2-utilizing fraction to endog. residue [-]	0.0800	0.0800
Acetoclastic COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
H2-utilizing COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

General

Name	Default	Value

Molecular weight of other anions [mg/mmol]	35.5000	35.5000
Molecular weight of other cations [mg/mmol]	39.1000	39.1000
Mg to P mole ratio in polyphosphate [mmolMg/mmolP]	0.3000	0.3000
Cation to P mole ratio in polyphosphate [meq/mmolP]	0.1500	0.3000
Ca to P mole ratio in polyphosphate [mmolCa/mmolP]	0.0500	0.0500
Cation to P mole ratio in organic phosphate [meq/mmolP]	0.0100	0.0100
Bubble rise velocity (anaerobic digester) [cm/s]	23.9000	23.9000
Bubble Sauter mean diameter (anaerobic digester) [cm]	0.3500	0.3500
Anaerobic digester gas hold-up factor []	1.0000	1.0000
Tank head loss per metre of length (from flow) [m/m]	0.0025	0.0025

Mass transfer

Name	Default	Value	
KI for H2 [m/d]	17.0000	17.0000	1.0240
KI for CO2 [m/d]	10.0000	10.0000	1.0240
KI for NH3 [m/d]	1.0000	1.0000	1.0240
KI for CH4 [m/d]	8.0000	8.0000	1.0240
KI for N2 [m/d]	15.0000	15.0000	1.0240
KI for N20 [m/d]	8.0000	8.0000	1.0240
KI for O2 [m/d]	13.0000	13.0000	1.0240

Henry's law constants

Name	Default	Value	
CO2 [M/atm]	3.4000E-2	3.4000E-2	2400.0000
02 [M/atm]	1.3000E-3	1.3000E-3	1500.0000

N2 [M/atm]	6.5000E-4	6.5000E-4	1300.0000
N20 [M/atm]	2.5000E-2	2.5000E-2	2600.0000
NH3 [M/atm]	5.8000E+1	5.8000E+1	4100.0000
CH4 [M/atm]	1.4000E-3	1.4000E-3	1600.0000
H2 [M/atm]	7.8000E-4	7.8000E-4	500.0000

Physico-chemical rates

Name	Default	Value	
Struvite precipitation rate [1/d]	3.000E+10	3.000E+10	1.0240
Struvite redissolution rate [1/d]	3.000E+11	3.000E+11	1.0240
Struvite half sat. [mgTSS/L]	1.0000	1.0000	1.0000
HDP precipitation rate [L/(molP d)]	1.000E+8	1.000E+8	1.0000
HDP redissolution rate [L/(mol P d)]	1.000E+8	1.000E+8	1.0000
HAP precipitation rate [molHDP/(L d)]	5.000E-4	5.000E-4	1.0000

Physico-chemical constants

Name	Default	Value
Struvite solubility constant [mol/L]	6.918E-14	6.918E-14
HDP solubility product [mol/L]	2.750E-22	2.750E-22
HDP half sat. [mgTSS/L]	1.0000	1.0000
Equilibrium soluble PO4 with Al dosing at pH 7 [mgP/L]	0.0100	0.0100
Al to P ratio [molAl/molP]	0.8000	0.8000
Al(OH)3 solubility product [mol/L]	1.259E+9	1.259E+9
AIHPO4+ dissociation constant [mol/L]	7.943E-13	7.943E-13
Equilibrium soluble PO4 with Fe dosing at pH 7 [mgP/L]	0.0100	0.0100

Fe to P ratio [molFe/molP]	1.6000	1.6000
Fe(OH)3 solubility product [mol/L]	0.0500	0.0500
FeH2P04++ dissociation constant [mol/L]	5.012E-22	5.012E-22

Aeration

Name	Default	Value
Alpha (surf) OR Alpha F (diff) [-]	0.5000	0.5000
Beta [-]	0.9500	0.9500
Surface pressure [kPa]	101.3250	101.3250
Fractional effective saturation depth (Fed) [-]	0.3250	0.3250
Supply gas CO2 content [vol. %]	0.0350	0.0350
Supply gas O2 [vol. %]	20.9500	20.9500
Off-gas CO2 [vol. %]	2.0000	2.0000
Off-gas 02 [vol. %]	18.8000	18.8000
Off-gas H2 [vol. %]	0	0
Off-gas NH3 [vol. %]	0	0
Off-gas CH4 [vol. %]	0	0
Surface turbulence factor [-]	2.0000	2.0000
Set point controller gain []	1.0000	1.0000

Modified Vesilind

Name	Default	Value
Maximum Vesilind settling velocity (Vo) [ft/min]	0.387	0.387
Vesilind hindered zone settling parameter (K) $[L/g]$	0.370	0.370
Clarification switching function [mg/L]	100.000	100.000

Specified TSS conc.for height calc. [mg/L]	2500.000	2500.000
Maximum compactability constant [mg/L]	15000.000	15000.000

Double exponential

Name	Default	Value
Maximum Vesilind settling velocity (Vo) [ft/min]	0.934	0.934
Maximum (practical) settling velocity (Vo') [ft/min]	0.615	0.615
Hindered zone settling parameter (Kh) [L/g]	0.400	0.400
Flocculent zone settling parameter (Kf) [L/g]	2.500	2.500
Maximum non-settleable TSS [mg/L]	20.0000	20.0000
Non-settleable fraction [-]	0.0010	0.0010
Specified TSS conc. for height calc. [mg/L]	2500.0000	2500.0000

Emission factors

Name	Default	Value
Carbon dioxide equivalence of nitrous oxide	296.0000	296.0000
Carbon dioxide equivalence of methane	23.0000	23.0000

Biofilm general

Name	Default	Value	
Attachment rate [g / (m2 d)]	80.0000	80.0000	1.0000
Attachment TSS half sat. [mg/L]	100.0000	100.0000	1.0000

Detachment rate [g/(m3 d)]	8.000E+4	8.000E+4	1.0000
Solids movement factor []	10.0000	10.0000	1.0000
Diffusion neta []	0.8000	0.8000	1.0000
Thin film limit [mm]	0.5000	0.5000	1.0000
Thick film limit [mm]	3.0000	3.0000	1.0000
Assumed Film thickness for tank volume correction (temp independent) [mm]	0.7500	0.7500	1.0000
Film surface area to media area ratio - Max.[]	1.0000	1.0000	1.0000
Minimum biofilm conc. for streamer formation [gTSS/m2]	4.0000	4.0000	1.0000

Maximum biofilm concentrations [mg/L]

Name	Default	Value	
Ordinary heterotrophic organisms (OHO)	5.000E+4	5.000E+4	1.0000
Methylotrophs	5.000E+4	5.000E+4	1.0000
Ammonia oxidizing biomass (AOB)	1.000E+5	1.000E+5	1.0000
Nitrite oxidizing biomass (NOB)	1.000E+5	1.000E+5	1.0000
Anaerobic ammonia oxidizers (AAO)	5.000E+4	5.000E+4	1.0000
Polyphosphate accumulating organisms (PAO)	5.000E+4	5.000E+4	1.0000
Propionic acetogens	5.000E+4	5.000E+4	1.0000
Methanogens - acetoclastic	5.000E+4	5.000E+4	1.0000
Methanogens - hydrogenotrophic	5.000E+4	5.000E+4	1.0000
Endogenous products	3.000E+4	3.000E+4	1.0000
Slowly bio. COD (part.)	5000.0000	5000.0000	1.0000
Slowly bio. COD (colloid.)	4000.0000	4000.0000	1.0000
Part. inert. COD	5000.0000	5000.0000	1.0000
Part. bio. org. N	0	0	1.0000
Part. bio. org. P	0	0	1.0000
Part. inert N	0	0	1.0000
Part. inert P	0	0	1.0000

Stored PHA	5000.0000	5000.0000	1.0000
Releasable stored polyP	1.150E+6	1.150E+6	1.0000
Fixed stored polyP	1.150E+6	1.150E+6	1.0000
Readily bio. COD (complex)	0	0	1.0000
Acetate	0	0	1.0000
Propionate	0	0	1.0000
Methanol	0	0	1.0000
Dissolved H2	0	0	1.0000
Dissolved methane	0	0	1.0000
Ammonia N	0	0	1.0000
Sol. bio. org. N	0	0	1.0000
Nitrous Oxide N	0	0	1.0000
Nitrite N	0	0	1.0000
Nitrate N	0	0	1.0000
Dissolved nitrogen gas	0	0	1.0000
PO4-P (Sol. & Me Complexed)	1.000E+10	1.000E+10	1.0000
Sol. inert COD	0	0	1.0000
Sol. inert TKN	0	0	1.0000
ISS Influent	1.300E+6	1.300E+6	1.0000
Struvite	8.500E+5	8.500E+5	1.0000
Hydroxy-dicalcium-phosphate	1.150E+6	1.150E+6	1.0000
Hydroxy-apatite	1.600E+6	1.600E+6	1.0000
Magnesium	0	0	1.0000
Calcium	0	0	1.0000
Metal	1.000E+10	1.000E+10	1.0000
Other Cations (strong bases)	0	0	1.0000
Other Anions (strong acids)	0	0	1.0000
Total CO2	0	0	1.0000
User defined 1	0	0	1.0000
User defined 2	0	0	1.0000
User defined 3	5.000E+4	5.000E+4	1.0000

User defined 4	5.000E+4	5.000E+4	1.0000
Dissolved oxygen	0	0	1.0000

Effective diffusivities [m2/s]

Name	Default	Value	
Ordinary heterotrophic organisms (OHO)	5.000E-14	5.000E-14	1.0290
Methylotrophs	5.000E-14	5.000E-14	1.0290
Ammonia oxidizing biomass (AOB)	5.000E-14	5.000E-14	1.0290
Nitrite oxidizing biomass (NOB)	5.000E-14	5.000E-14	1.0290
Anaerobic ammonia oxidizers (AAO)	5.000E-14	5.000E-14	1.0290
Polyphosphate accumulating organisms (PAO)	5.000E-14	5.000E-14	1.0290
Propionic acetogens	5.000E-14	5.000E-14	1.0290
Methanogens - acetoclastic	5.000E-14	5.000E-14	1.0290
Methanogens - hydrogenotrophic	5.000E-14	5.000E-14	1.0290
Endogenous products	5.000E-14	5.000E-14	1.0290
Slowly bio. COD (part.)	5.000E-14	5.000E-14	1.0290
Slowly bio. COD (colloid.)	5.000E-12	5.000E-12	1.0290
Part. inert. COD	5.000E-14	5.000E-14	1.0290
Part. bio. org. N	5.000E-14	5.000E-14	1.0290
Part. bio. org. P	5.000E-14	5.000E-14	1.0290
Part. inert N	5.000E-14	5.000E-14	1.0290
Part. inert P	5.000E-14	5.000E-14	1.0290
Stored PHA	5.000E-14	5.000E-14	1.0290
Releasable stored polyP	5.000E-14	5.000E-14	1.0290
Fixed stored polyP	5.000E-14	5.000E-14	1.0290
Readily bio. COD (complex)	6.900E-10	6.900E-10	1.0290
Acetate	1.240E-9	1.240E-9	1.0290
Propionate	8.300E-10	8.300E-10	1.0290

Methanol	1.600E-9	1.600E-9	1.0290
Dissolved H2	5.850E-9	5.850E-9	1.0290
Dissolved methane	1.963E-9	1.963E-9	1.0290
Ammonia N	2.000E-9	2.000E-9	1.0290
Sol. bio. org. N	1.370E-9	1.370E-9	1.0290
Nitrous Oxide N	1.607E-9	1.607E-9	1.0290
Nitrite N	2.980E-9	2.980E-9	1.0290
Nitrate N	2.980E-9	2.980E-9	1.0290
Dissolved nitrogen gas	1.900E-9	1.900E-9	1.0290
PO4-P (Sol. & Me Complexed)	2.000E-9	2.000E-9	1.0290
Sol. inert COD	6.900E-10	6.900E-10	1.0290
Sol. inert TKN	6.850E-10	6.850E-10	1.0290
ISS Influent	5.000E-14	5.000E-14	1.0290
Struvite	5.000E-14	5.000E-14	1.0290
Hydroxy-dicalcium-phosphate	5.000E-14	5.000E-14	1.0290
Hydroxy-apatite	5.000E-14	5.000E-14	1.0290
Magnesium	7.200E-10	7.200E-10	1.0290
Calcium	7.200E-10	7.200E-10	1.0290
Metal	4.800E-10	4.800E-10	1.0290
Other Cations (strong bases)	1.440E-9	1.440E-9	1.0290
Other Anions (strong acids)	1.440E-9	1.440E-9	1.0290
Total CO2	1.960E-9	1.960E-9	1.0290
User defined 1	6.900E-10	6.900E-10	1.0290
User defined 2	6.900E-10	6.900E-10	1.0290
User defined 3	5.000E-14	5.000E-14	1.0290
User defined 4	5.000E-14	5.000E-14	1.0290
Dissolved oxygen	2.500E-9	2.500E-9	1.0290

EPS Strength coefficients []

Name	Default	Value	
Ordinary heterotrophic organisms (OHO)	1.0000	1.0000	1.0000
Methylotrophs	1.0000	1.0000	1.0000
Ammonia oxidizing biomass (AOB)	5.0000	1.0000	1.0000
Nitrite oxidizing biomass (NOB)	25.0000	1.0000	1.0000
Anaerobic ammonia oxidizers (AAO)	10.0000	1.0000	1.0000
Polyphosphate accumulating organisms (PAO)	1.0000	1.0000	1.0000
Propionic acetogens	1.0000	1.0000	1.0000
Methanogens - acetoclastic	1.0000	1.0000	1.0000
Methanogens - hydrogenotrophic	1.0000	1.0000	1.0000
Endogenous products	1.0000	1.0000	1.0000
Slowly bio. COD (part.)	1.0000	1.0000	1.0000
Slowly bio. COD (colloid.)	1.0000	1.0000	1.0000
Part. inert. COD	1.0000	1.0000	1.0000
Part. bio. org. N	1.0000	1.0000	1.0000
Part. bio. org. P	1.0000	1.0000	1.0000
Part. inert N	1.0000	1.0000	1.0000
Part. inert P	1.0000	1.0000	1.0000
Stored PHA	1.0000	1.0000	1.0000
Releasable stored polyP	1.0000	1.0000	1.0000
Fixed stored polyP	1.0000	1.0000	1.0000
Readily bio. COD (complex)	0	0	1.0000
Acetate	0	0	1.0000
Propionate	0	0	1.0000
Methanol	0	0	1.0000
Dissolved H2	0	0	1.0000
Dissolved methane	0	0	1.0000
Ammonia N	0	0	1.0000
Sol. bio. org. N	0	0	1.0000
Nitrous Oxide N	0	0	1.0000
Nitrite N	0	0	1.0000

Nitrate N	0	0	1.0000
Nitrate IV	U	U	1.0000
Dissolved nitrogen gas	0	0	1.0000
PO4-P (Sol. & Me Complexed)	1.0000	1.0000	1.0000
Sol. inert COD	0	0	1.0000
Sol. inert TKN	0	0	1.0000
ISS Influent	0.3300	0.3300	1.0000
Struvite	1.0000	1.0000	1.0000
Hydroxy-dicalcium-phosphate	1.0000	1.0000	1.0000
Hydroxy-apatite	1.0000	1.0000	1.0000
Magnesium	0	0	1.0000
Calcium	0	0	1.0000
Metal	1.0000	1.0000	1.0000
Other Cations (strong bases)	0	0	1.0000
Other Anions (strong acids)	0	0	1.0000
Total CO2	0	0	1.0000
User defined 1	0	0	1.0000
User defined 2	0	0	1.0000
User defined 3	1.0000	1.0000	1.0000
User defined 4	1.0000	1.0000	1.0000
Dissolved oxygen	0	0	1.0000

Meridian Alternative's Analysis version 1

Expansion using selectable 5 stage modified Bardenpho/A2O process

Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

$\frac{\text{To achieve target effluent concentrations, for Bardenpho process:}}{\text{Set BDF IMLR at 200\% influent, Set A2O IMLR at 0\%}}$

Set Swing 1 Aerated, Swing 2a and 2b unaerated.

SRT = 12 days

Acetate flow pace at 0.8% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. All methanol to swing 2a

$\frac{\text{To achieve target effluent concentrations, for A2O process:}}{\text{Set BDF IMLR at }0\% \text{ influent, Set A2O IMLR at }400\%$

Set Swing 1 unaerated, Swing 2a and 2b aerated.

SRT = 12 days

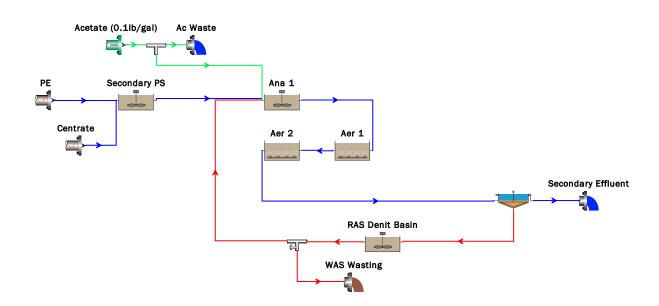
Acetate flow pace at 0.6% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 1.5% of PE flow rate, 1% methanol solution. all methanol to Anoxic 1a

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Rick Kelly

Created: 6/29/2011 Saved: 5/1/2015

Target SRT: 4.00 days SRT: **** days

Temperature: 14.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.5000	4774.3058	14.000	Un-aerated
Aer 1	1.2500	1.194E+4	14.000	4057
Aer 2	2.0000	1.910E+4	14.000	6491
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated

Operating data Average (flow/time weighted as required)

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1	2.5
Aer 2	2.0
Secondary PS	0
RAS Denit Basin	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	15.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000

RAS Denit Basin	2.5656	0.0432	0.8200	0 4413	10.0000
TO DOING BUSIN	2.0000	0.0432	0.0200	0.7713	10.0000

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Operating data Average (flow/time weighted as required)

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

Operating data Average (flow/time weighted as required)

Element name	PE	Centrate
Time	30.00	30.00
Flow	12.461167588271	0.100114816828393
Total COD mgCOD/L	416.48	1801.80
Total Kjeldahl Nitrogen mgN/L	54.01	934.39
Total P mgP/L	8.12	529.81
Nitrate N mgN/L	0	0
рН	7.95	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.43	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0642
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5

FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

Configuration information for all Splitter units

Operating data Average (flow/time weighted as required)

Element name	Split method	Average Split specification
RAS / WAS	Flowrate [Side]	0.313749616246609
Acetate Splitter	Flow paced	0.80 %

Configuration information for all Stream (SV) Influent units

Operating data Average (flow/time weighted as required)

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0

Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0

Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mglSS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mg/SS/L	0
Dissolved oxygen mg/L	0
Flow	1

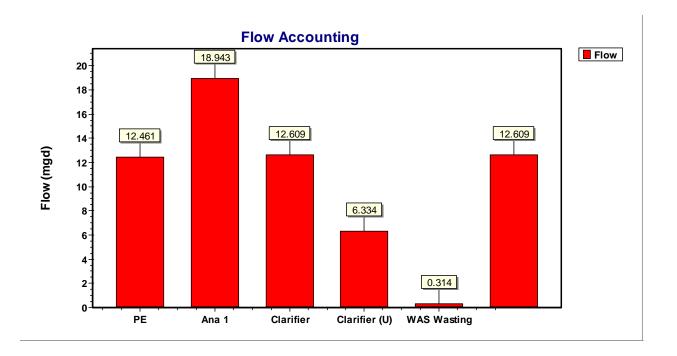
BioWin Album

Album page - Table

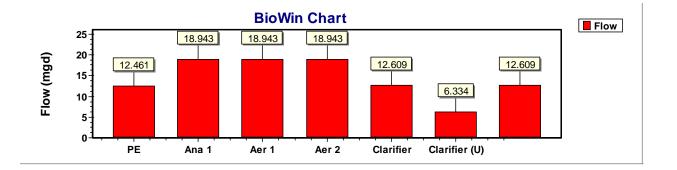
EI	T	Τ	FI	Di	T	V	Fi	Α	Ni	Ni	T	S	V	Fi	Α	Α	Ε	М	М	М	Ni	0	Р	Pr	T	M
е	ot	ot	0	S	ot	ol	lt	m	tri	tr	ot	ol	ol	Х	m	n	n	et	et	et	tri	rd	ol	0	ot	et
m	al	al	W	S	al	at	er	m	te	at	al	u	at	е	m	а	d	h	h	h	te	in	у	pi	al	h
е	С	Kj	[ol	S	il	е	0	Ν	е	Ρ	bl	il	d	0	er	0	а	а	yl	0	ar	p	0	S	а
nt	0	el	m	V	u	е	d	ni	[Ν	[е	е	st	ni	0	g	n	n	ot	χi	у	h	ni	ol	n
S	D	d	g	е	S	S	С	а	m	[m	Р	fa	or	а	bi	е	0	0	ro	di	h	0	С	id	ol
	[а	d]	d	p	u	ar	Ν	g	m	g	0	tt	е	0	С	n	g	g	p	zi	et	S	а	S	[
	m	hl		0	е	S	b	[Ν	g	Р	4-	у	d	χi	а	0	е	е	h	n	er	р	С	m	m
	g	Ni		ху	n	p	0	m	/	Ν	/	Р	а	p	di	m	u	n	n	S	g	ot	h	et	а	g
	/	tr		g	d	е	n	g	L]	/	L]	[ci	ol	zi	m	S	S	S	[bi	ro	at	0	S	С
	L]	0		е	е	n	а	Ν		L]		m	d	у	n	0	pr	-	-	m	0	р	е	g	S	0
		g		n	d	d	С	/				g	S	Р	g	ni	0	а	h	g	m	hi	а	е	[]	D

		e n [m g N / L]		[m g / L]	s ol id s [m g T S S / L]	e d s ol id s [m g V S S / L]	e o u s B O D [m g / L]	LJ				P / L]	[m g / L]	[m g P / L]	bi o m a s s (A O B) [m g C O D / L]	a o xi di z er s (A A O) [m g C O D / L]	d u ct s [m g C O D	c et o cl a st ic [m g C O D / L]	y dr o g e n ot ro p hi c [m g C O D / L]	C O D // L]	a s s s (N O B) [m g C O D / L]	c or g a ni s m s (O H O) [m g C O D / L]	c c u m ul at in g or g a ni s m s (P A O) [m g C O D / L]	n s [m g C O D / L]	b]	/ Lj
P E	4 1 6. 4 8	5 4. 0 1	1 2. 4 6	0	1 0 2. 1 2	9 0. 6 5	1 3 4. 0 5	4 3. 7 5	0	0	8. 1 2	5. 6 0	2 1. 0 3	0	0. 0 4	0. 0 4	0	0. 0 4	0. 0 4	0. 0 4	0. 0 4	0. 0 4	0. 0 4	0. 0 4		0
S e c o n d ar y P S	4 4 9. 8 0	6 3. 6 9	1 2. 8 2	0	1 1 2. 4 1	9 7. 1 4	1 4 6. 9 4	5 2. 9 6	0	0	1 4. 1 0	1 1. 2 6	2 2. 1 2	0	0. 0 4	0. 0 4	0. 0 0	0. 0 4	0. 0 4	0. 0 4	0. 0 4	0. 0 5	0. 0 4	0. 0 4	3 7. 8 1	0
A n a 1	2 9 8 0. 0	2 2 4. 5 6	1 8. 9 4	0	2 3 9 2. 4 5	1 8 9 5. 7	5 3. 2 7	4 2. 7 3	0. 0 0	0. 0 0	1 5 8. 3 3	4 1. 7 3	5 9. 0 5	3 7. 1 0	3 5. 9 7	0. 2 9	3 2 1. 1 3	0. 1 8	0. 0 7	0. 4 6	1. 9 1	1 4 8 3. 1 7	5 5 2. 3 9	0. 2 0	9 9 8 2. 9	0
A er 1	2 8 7 2. 7 0	2 1 6. 2 1	1 8. 9 4	2. 5 0	2 4 7 1. 8 9	1 9 0 9. 5	3. 0 2	2 9. 9 0	7. 4 6	3	1 5 7. 9 2	2 0. 3 7	0. 7 6	3 8. 5 6	3 6. 8 3	0. 2 8	2	0. 1 7	0. 0 6	0. 4 6	1. 9 4	1 5 4 6. 1	5 6 8. 9 2	0. 1 9	2 5 7 8 6. 1 6	0
Α	2	2	1	2.	2	1	1.	1	1	1.	1	0.	0.	3	3	0.	3	0.	0.	0.	1.	1	5	0.	4	0

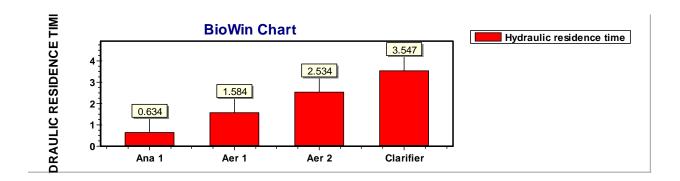
```
8.
                                          8.
                                                                 9.
                                                                                                           8
er
                                     6.
                                                                     8.
                                                                          2
                                                                               3
                                                                                                      5
                                                                                                                    1
2
    9
         3.
             9
                  0
                       0
                            8
                                4
                                     7
                                         5
                                              1
                                                   7.
                                                        9
                                                            1
                                                                 3
                                                                     0
                                                                          7
                                                                               4.
                                                                                   6
                                                                                        5
                                                                                             6
                                                                                                 9
                                                                                                      6
                                                                                                           3.
                                                                                                               8
                                                                                                                    8
    4.
         9
              4
                       9.
                            5.
                                     7
                                         3
                                                   2
                                                                 0
                                                                     4
                                                                               9
                                                                                                      1.
                                                                                                           7
                                                                                                                    8
    1
         5
                       4
                            7
                                                   5
                                                                               9
                                                                                                      2
                                                                                                                    3.
    7
                       0
                            0
                                                                                                      3
                                                                                                                    8
                                                                                                                    9
S
    3
                       3.
                            2.
                                                            0.
                                                                 0.
                                                                     0.
                                                                                            0.
                                                                                                      2.
         1
              1
                  1.
                                0.
                                     1
                                         1
                                              1.
                                                   0.
                                                        0.
                                                                          0.
                                                                               0.
                                                                                   0.
                                                                                        0.
                                                                                                 0.
                                                                                                           0.
                                                                                                               0.
                                                                                                                        0
е
    3.
         8.
             2.
                  7
                       8
                            8
                                9
                                     6.
                                         8.
                                              0
                                                   4
                                                        1
                                                            0
                                                                 0
                                                                     0
                                                                          0
                                                                               5
                                                                                   0
                                                                                        0
                                                                                             0
                                                                                                 0
                                                                                                      3
                                                                                                           8
                                                                                                               0
             6
                  2
                       3
                                     2
                                         4
                                              3
                                                   2
                                                                     6
                                                                                             0
                                                                                                      7
    3
         5
                            3
                                8
                                                        6
                                                            1
                                                                 6
                                                                          0
                                                                               3
                                                                                   0
                                                                                        0
                                                                                                 0
                                                                                                           9
                                                                                                                0
С
                                         0
    1
                                     1
0
         3
              1
n
d
ar
Ef
fl
u
е
nt
CI
         1
              1
                  1.
                       3.
                           2.
                                0.
                                     1
                                         1
                                              1.
                                                   0.
                                                       0.
                                                            0.
                                                                 0.
                                                                     0.
                                                                          0.
                                                                               0.
                                                                                   0.
                                                                                        0.
                                                                                             0.
                                                                                                 0.
                                                                                                                    1
                  7
                                                                                                      3
                                                                                                                    2
ar
    3.
         8.
             2.
                       8
                            8
                                9
                                     6.
                                         8.
                                              0
                                                   4
                                                        1
                                                            0
                                                                 0
                                                                     0
                                                                          0
                                                                               5
                                                                                    0
                                                                                        0
                                                                                             0
                                                                                                 0
                                                                                                           8
                                                                                                                0
                                     2
                                                                                             0
                                                                                                      7
                                                                                                                    3
ifi
    3
         5
             6
                  2
                       3
                            3
                                8
                                         4
                                              3
                                                   2
                                                        6
                                                            1
                                                                 6
                                                                     6
                                                                          0
                                                                               3
                                                                                   0
                                                                                        0
                                                                                                 0
                                                                                                           9
    1
         3
                                         0
                                                                                                                    1
                                                                                                                    6.
                                                                                                                    7
                                                                                                                    2
CI
         5
             6.
                  0.
                       7
                            5
                                1.
                                     1
                                         1
                                              0.
                                                   4
                                                       0.
                                                            0.
                                                                     1
                                                                          0.
                                                                                   0.
                                                                                        0.
                                                                                             1.
                                                                                                 5.
                                                                                                      4
                                                                                                           1
                                                                                                               0.
                                                                                                                        0
                                                                 1
                                                                               1
    2
         7
                       4
                                3
                                     7.
                                         0.
                                              0
                                                                 1
                                                                     1
                                                                                             3
                                                                                                      6
                                                                                                           7
ar
                  0
                            6
                                                   6
                                                       0
                                                            0
                                                                          8
                                                                               0
                                                                                        1
                                                                                                 9
ifi
                       7
                            1
                                         7
                                              1
                                                   8.
                                                        8
                                                            2
                                                                 7.
                                                                     3.
                                                                               0
                                                                                        3
                                                                                             7
                                                                                                      5
         1.
                  0
                                     6
                                                                          1
                                                                                                 3
                       9.
                           6.
                                                                 0
                                                                                                      4.
er
    6.
         3
                                     6
                                         4
                                                   8
                                                                     4
                                                                               5.
                                                                                                           0.
                       0
                                                   9
                                                                 5
                                                                     1
                                                                               5
                                                                                                           7
(U
    3
         9
                            9
                                                                                                      5
    3
                       3
                            1
                                                                               8
                                                                                                      0
                                                                                                           4
)
                       7
R
    8
         5
              6.
                  0
                            5
                                1.
                                     1
                                         6.
                                              0.
                                                   4
                                                        0.
                                                            0.
                                                                 1
                                                                     1
                                                                               1
                                                                                   0.
                                                                                        0.
                                                                                             1.
                                                                                                 5.
                                                                                                      4
                                                                                                           1
                                                                                                                0.
                                                                                                                        0
    2
             0
                            6
                                6
                                     7.
                                         8
                                              0
                                                        2
                                                            0
                                                                 1
                                                                                             3
                                                                                                      6
                                                                                                           7
Α
         7
                       4
                                                   6
                                                                     1
                                                                          8
                                                                               0
                                                                                    4
                                                                                        1
                                                                                                 9
                                                                                                               5
S
    4
         1.
             2
                       7
                            1
                                7
                                     9
                                         3
                                              0
                                                   8.
                                                        3
                                                            4
                                                                 6.
                                                                     3.
                                                                          1
                                                                               0
                                                                                        3
                                                                                             7
                                                                                                 2
                                                                                                      4
                                                                                                           3
    5.
         2
                       1.
                           0.
                                                   6
                                                                 9
                                                                     3
                                                                               7.
                                                                                                      9.
                                                                                                           9.
                       2
W
    2
                                                                     1
                                                                                                           4
         4
                            2
                                                   7
                                                                 1
                                                                               2
                                                                                                      6
                            9
                                                                               8
                                                                                                      3
                                                                                                           1
    3
Α
S
R
         5
                       7
                            5
                                                                                                 5.
                                                                                                      4
    8
             0.
                  0
                                1.
                                     1
                                         6.
                                              0.
                                                   4
                                                        0.
                                                            0.
                                                                 1
                                                                     1
                                                                          0.
                                                                               1
                                                                                   0.
                                                                                        0.
                                                                                             1.
                                                                                                           1
                                                                                                               0.
                                                                                                                        0
    2
         7
             3
                       4
                            6
                                6
                                     7.
                                         8
                                              0
                                                   6
                                                        2
                                                            0
                                                                 1
                                                                     1
                                                                          8
                                                                               0
                                                                                   4
                                                                                        1
                                                                                             3
                                                                                                 9
                                                                                                      6
                                                                                                           7
                                                                                                                5
Α
S
    4
         1.
                       7
                            1
                                     9
                                          3
                                              0
                                                   8.
                                                        3
                                                            4
                                                                 6.
                                                                     3.
                                                                          1
                                                                               0
                                                                                             7
                                                                                                 2
                                                                                                      4
                                                                                                           3
    5.
         2
                       1.
                           0.
                                                   6
                                                                 9
                                                                     3
                                                                               7.
                                                                                                      9.
                                                                                                           9.
W
    2
                       2
                            2
                                                   7
                                                                     1
                                                                               2
                                                                                                      6
                                                                                                           4
                                                                               8
                                                                                                           1
Α
S
(U
)
```

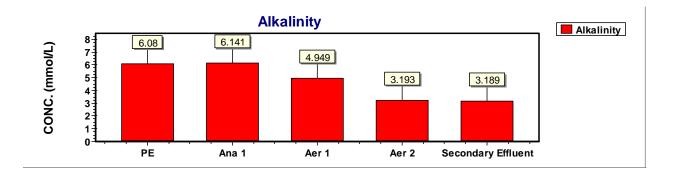

Album page - Output Table 1

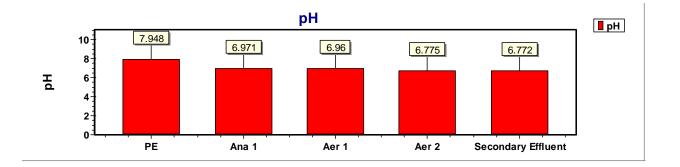
	•		
M et h a n ol [m g C O D / L]	0	0	0
Ord in ary heterotrophic organisms (OHO) [mgCOD/L]	0. 0 4	0. 0 5	1 4
Ni tri te o xi di zi n g bi o m a s s (N O B) [m g C O D / L]	0. 0 4	0. 0 4	1. 9
A m m o ni a o xi di zi n g bi o m a s s (A O B) [m g C O D / L]	0. 0 4	0. 0 4	3 5.
Polyphosphateaccumulatingorganisms(PAO)[mgCOD/L]	0. 0 4	0. 0 4	5 5
Ai r fl o w ra te [f t3 / m in (2 0 C, 1 at m)]		0	0
Soluble PO4-P[mgP/L]	5. 6 0	1 1. 2 6	4 1.
T ot al P [m g P / L]	8. 1 2	1 4. 1 0	1 5
T ot al N [m g N / L]	5 4. 0 1	6 3. 6 9	
Total in organic N [mgN / L]	4 3. 7 5	5 2. 9 6	
Ni tr at e N [m g N / L]	0	0	0. 0
Ni tri te N [m g N / L]	0	0	0. 0
A m m o ni a N [m g N / L]	4 3. 7 5	5 2. 9 6	4 2.
T ot al Kj el d a hl Ni tr o g e n [m g N / L]	5 4. 0 1	6 3. 6 9	
S ol . in er t C O D [m g C O D / L]	2 8. 3 2	2 9. 1 9	2 9.
SI o wl y bi o. C O D (p ar t.) [m g C O D / L]	1 9 4. 6 9	2 0 1. 8 5	2 4
SI o wl y bi o. C O D (c ol lo id .) [m g C O D / L]	6 1. 4 8	6 3. 2 0	6. 6
R e a di ly bi o. C O D (c o m pl e x) [m g C O D / L]	1 0 6. 4 1	1 2 1. 8 0	7. 6
Total Carbonaceous BOD[mg/L]	2 3 7. 1 7	2 5 3. 8 5	1 3
V ol at il e fa tt y a ci d s [m g / L]	2 1. 0 3	2 2. 1 2	5 9.
Fi It er e d C O D [m g / L]	2 1 7. 2 4	2 3 6. 3 1	1 2
T ot al C O D [m g / L]	4 1 6. 4 8	4 4 9. 8 0	2 9
V ol at il e s u s p e n d e d s ol id s [m g V S S / L]	9 0. 6 5	9 7. 1 4	1 8
T ot al s u s p e n d e d s ol id s [m g T S S / L]	1 0 2. 1 2	1 1 2. 4 1	2 3
P H []	7. 9 5	7. 9 5	6. 9
T e m p er at ur e [d e g. C]	1 4. 0 0	1 4. 0 0	1 4.
Li q ui d v ol u m e [M il. G al	0	0. 0 4	0. 5
FI o w [m g d]	1 2. 4 6	1 2. 8 2	1 8.
El e m e nt s	P E	S e c o n d ar y P S	A n

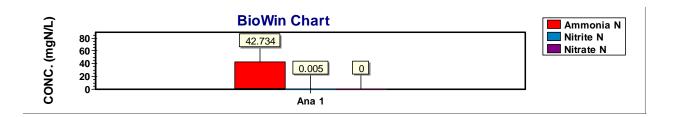

a 1	9	0	0	7	9 2. 4 5	9 5. 7 7	8 0. 0	5. 3 1	0 5	9 6. 3 7	8	0	2. 2 1	0	4. 5 6	7	0	0	7	4. 5 7	8. 3 3	7		2. 3 9	9	1	8 3. 1 7	
A er 1	1 8. 9 4	1. 2 5	1 4. 0 0	6. 9 6	2 4 7 1. 8	1 9 0 9. 5	2 8 7 2. 7	3 4. 6 2	0. 7 6	1 3 3 7. 2 8	3. 0 8	0. 4 0	1 5 8. 5 0	2 9. 1 4	2 1 6. 2 1	2 9. 9	7. 4 6	0. 3 4	3 7. 7 0	2 2 4. 0 1	1 5 7. 9 2	2 0. 3 7	6 9 7 4. 6	5 6 8. 9 2	3 6. 8 3	1. 9 4	1 5 4 6. 1	0
A er 2	1 8. 9 4	2. 0 0	1 4. 0 0	6. 7 7	2 5 0 9. 4 0	1 8 8 5. 7	2 7 9 4. 1 7	3 0. 4 8	0. 0 1	1 2 9 2. 9	1. 5 9	0. 0 1	8 1. 1 6	2 8. 8 0	2 0 3. 9 5	1 6. 7 7	1 8. 5 3	1. 0 1	3 6. 3 1	2 2 3. 4 9	1 5 7. 2 5	0. 1 9	5 8 6 0. 5 5	5 8 3. 7 4	3 8. 0 4	1. 9 9	1 5 6 1. 2 3	0
Cl ar ifi er	1 2. 6 1	2. 8 0	1 4. 0 0	6. 7 7	3. 8 3	2. 8 3	3 3. 3 1	2 9. 2 0	0. 0 1	2. 8 8	1. 3 7	0. 0 1	0. 0 6	2 7. 7 6	1 8. 5 3	1 6. 2 1	1 8. 4 0	1. 0 3	3 5. 6 4	3 7. 9 6	0. 4 2	0. 1 6		0. 8 9	0. 0 6	0. 0 0	2. 3 7	0
CI ar ifi er (U)	6. 3 3	2. 8 0	1 4. 0 0	6. 8 7	7 4 7 9. 0 3	5 6 1 6. 9	8 2 5 6. 3	3 1. 7 4	0. 0 2	3 8 4 1. 3 0	1. 8 9	0. 0 0	2 2 5. 1 4	2 9. 2 1	5 7 1. 3 9	1 7. 6 6	1 0. 7 4	0. 0 1	2 8. 4 1	5 8 2. 1 4	4 6 8. 8 9	0. 0 8	-	1 7 4 0. 7 4	1 1 3. 4 1	5. 9 3	4 6 5 4. 5 0	0
S e c o n d ar y Ef fl u e nt	1 2. 6 1	0	1 4. 0 0	6. 7 7	3. 8 3	2. 8 3	3 3. 3 1	2 9. 2 0	0. 0 1	2. 8 8	1. 3 7	0. 0 1	0. 0 6	2 7. 7 6	1 8. 5 3	1 6. 2 1	1 8. 4 0	1. 0 3	3 5. 6 4	3 7. 9 6	0. 4 2	0. 1 6	-	0. 8 9	0. 0 6	0. 0 0	2. 3 7	0
R A S D e ni t B a si n	6. 3 3	0. 0 7	1 4. 0 0	6. 9 6	7 4 7 1. 2 4	5 6 1 0. 2 9	8 2 4 5. 2 3	3 2. 6 8	0. 0 4	3 8 3 4. 3 3	2. 3 2	0. 0 0	2 1 9. 9 0	2 9. 3 5	5 7 1. 2 4	1 7. 9 9	6. 8 3	0. 0 0	2 4. 8 2	5 7 8. 0 8	4 6 8. 6 7	0. 2 3	0	1 7 3 9. 4 1	1 1 3. 3 1	5. 9 2	4 6 4 9. 6 3	0
R A S / W	6. 0 2	0	1 4. 0 0	6. 9 6	7 4 7 1. 2	5 6 1 0. 2	8 2 4 5. 2	3 2. 6 8	0. 0 4	3 8 3 4. 3	2. 3 2	0. 0 0	2 1 9. 9	2 9. 3 5	5 7 1. 2	1 7. 9 9	6. 8 3	0. 0 0	2 4. 8 2	5 7 8. 0	4 6 8. 6	0. 2 3	-	1 7 3 9. 4	1 1 3. 3	5. 9 2	4 6 4 9. 6	0

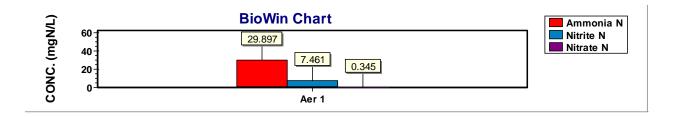
A S					4	9	3			3			0		4					8	7		1	1		3	
R A S / W A S (U)	0. 3 1	0	1 4. 0 0	6. 9 6	7 4 7 1. 2 4	5 6 1 0. 2 9	8 2 4 5. 2 3	3 2. 6 8	0. 0 4	3 8 3 4. 3 3	2. 3 2	0. 0 0	2 1 9. 9	2 9. 3 5	5 7 1. 2 4	1 7. 9 9	6. 8 3	0. 0 0	2 4. 8 2	5 7 8. 0 8	4 6 8. 6 7	0. 2 3	 1 7 3 9. 4 1	1 1 3. 3 1	5. 9 2	4 6 4 9. 6 3	0
W A S W a st in g	0. 3 1	0	1 4. 0 0	6. 9 6	7 4 7 1. 2 4	5 6 1 0. 2 9	8 2 4 5. 2 3	3 2. 6 8	0. 0 4	3 8 3 4. 3 3	2. 3 2	0. 0 0	2 1 9. 9	2 9. 3 5	5 7 1. 2 4	1 7. 9 9	6. 8 3	0. 0 0	2 4. 8 2	5 7 8. 0 8	4 6 8. 6 7	0. 2 3	 1 7 3 9. 4 1	1 1 3. 3 1	5. 9 2	4 6 4 9. 6 3	0

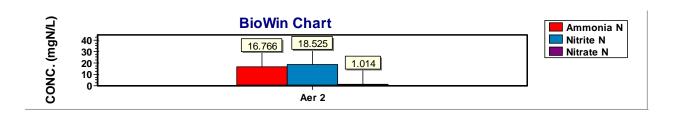

Album page - SS Flow Accounting

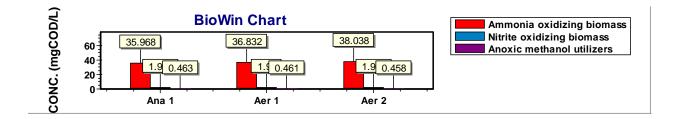

Album page - SS Flow and HRT

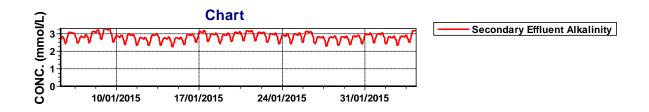

Album page - SS Flow and HRT


Album page - SS pH-Alkalinity

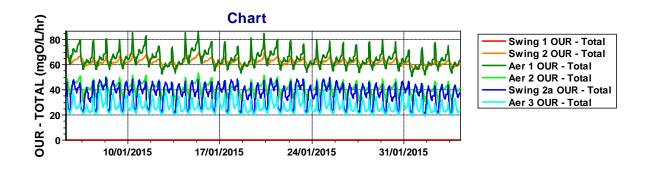

Album page - SS pH-Alkalinity


Album page - SS NH3-NO2-NO3

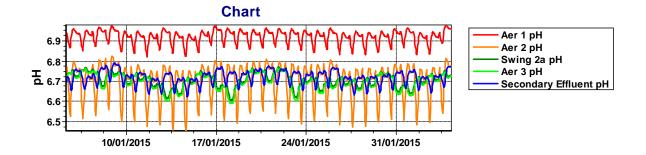

Album page - SS NH3-NO2-NO3


Album page - SS NH3-NO2-NO3

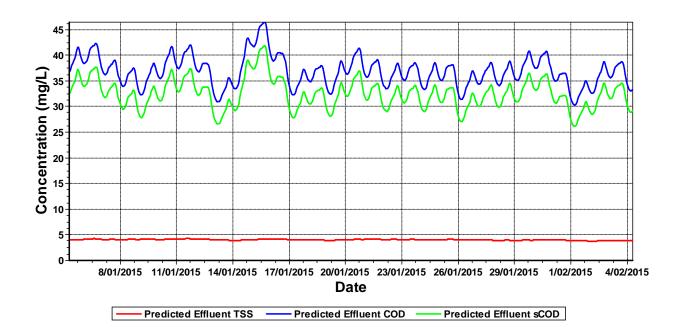
Album page - SS AOB-NOB



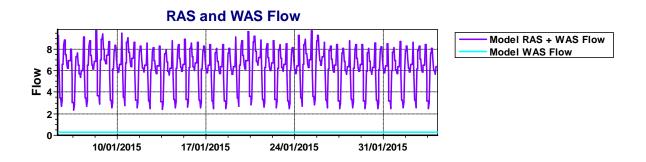
Album page - SS AOB-NOB

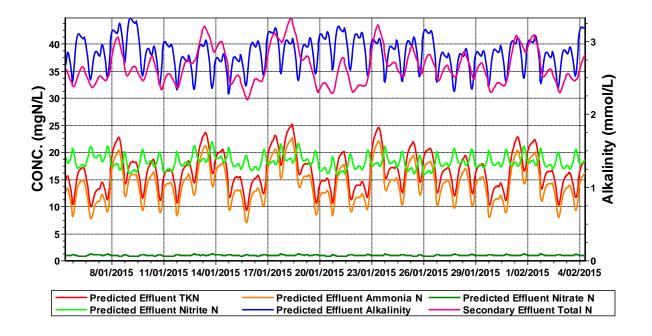


Album page - SS AOB-NOB

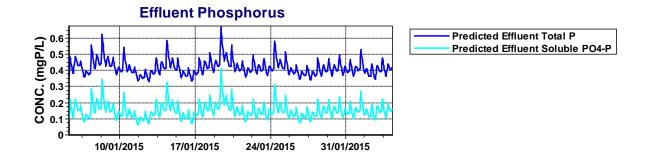

Album page - OURs

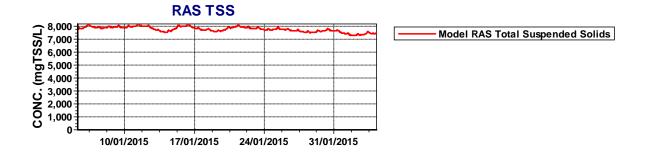
Album page - OURs

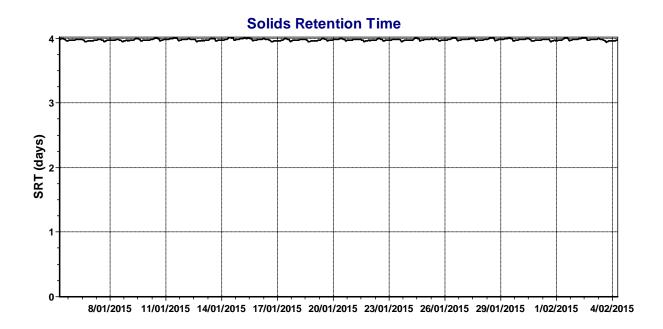

Album page - TSS, COD, BOD

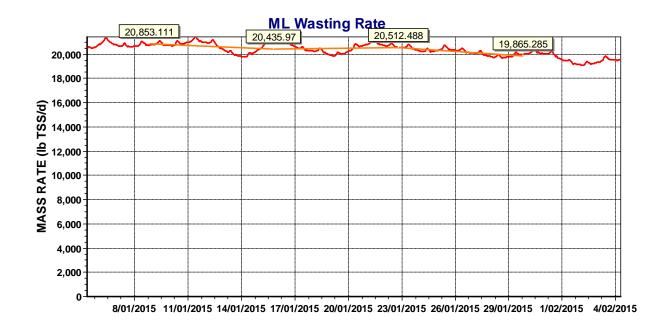

Album page - Mixed Liquor, RAS Flow

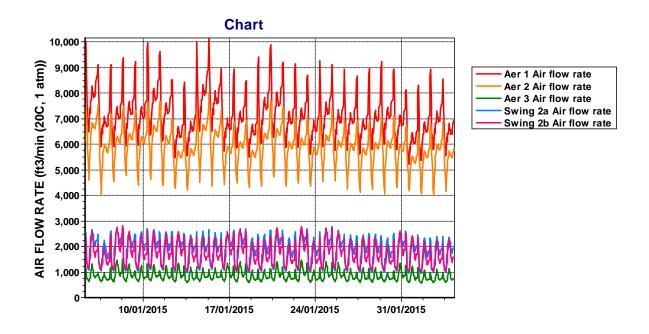
MLSS and MLVSS Aer 3 Total suspended solids Aer 3 Volatile suspended solids Aer 3 Volatile suspended solids 1,000 1,0


Album page - Mixed Liquor, RAS Flow

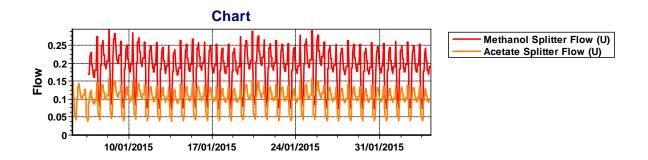

Album page - Nitrogen Sp., Alkalinity


Album page - TP, RAS TSS


Album page - TP, RAS TSS


Album page - SRT

Album page - WAS Mass


Album page - Air Flow Rate

Album page - Page 16

Elements	Air flow rate [ft3/min (20C, 1 atm)]	Flow [mgd]
Acetate Splitter (U)		0.10
Aer 1	6974.68	18.94
Aer 2	5860.55	18.94

Album page - Page 16

Global Parameters

Common

Name	Default	Value	
Hydrolysis rate [1/d]	2.1000	2.1000	1.0290
Hydrolysis half sat. [-]	0.0600	0.0600	1.0000
Anoxic hydrolysis factor [-]	0.2800	0.2800	1.0000
Anaerobic hydrolysis factor (AS) [-]	0.0400	0.0400	1.0000
Anaerobic hydrolysis factor (AD) [-]	0.5000	0.5000	1.0000
Adsorption rate of colloids [L/(mgCOD d)]	0.1500	0.1500	1.0290
Ammonification rate [L/(mgN d)]	0.0400	0.0400	1.0290

Assimilative nitrate/nitrite reduction rate [1/d]	0.5000	0.5000	1.0000
Endogenous products decay rate [1/d]	0	0	1.0000

AOB

Name	Default	Value	
Max. spec. growth rate [1/d]	0.9000	0.9000	1.0720
Substrate (NH4) half sat. [mgN/L]	0.7000	0.7000	1.0000
Byproduct NH4 logistic slope [-]	50.0000	50.0000	1.0000
Byproduct NH4 inflection point [mgN/L]	1.4000	1.4000	1.0000
AOB denite DO half sat. [mg/L]	0.1000	0.1000	1.0000
AOB denite HNO2 half sat. [mgN/L]	5.000E-6	5.000E-6	1.0000
Aerobic decay rate [1/d]	0.1700	0.1700	1.0290
Anoxic/anaerobic decay rate [1/d]	0.0800	0.0800	1.0290
KiHNO2 [mmol/L]	0.0050	0.0050	1.0000

NOB

Default	Value	
0.7000	0.7000	1.0600
0.1000	0.1000	1.0000
0.1700	0.1700	1.0290
0.0800	0.0800	1.0290
0.0750	0.0750	1.0000
	0.7000 0.1000 0.1700 0.0800	0.7000 0.7000 0.1000 0.1000 0.1700 0.1700 0.0800 0.0800

AAO

Name	Default	Value	
Max. spec. growth rate [1/d]	0.2000	0.2000	1.1000
Substrate (NH4) half sat. [mgN/L]	2.0000	2.0000	1.0000
Substrate (NO2) half sat. [mgN/L]	1.0000	1.0000	1.0000
Aerobic decay rate [1/d]	0.0190	0.0190	1.0290
Anoxic/anaerobic decay rate [1/d]	0.0095	0.0095	1.0290
Ki Nitrite [mgN/L]	1000.0000	1000.0000	1.0000
Nitrite sensitivity constant [L / (d mgN)]	0.0160	0.0160	1.0000

ОНО

Name	Default	Value	
Max. spec. growth rate [1/d]	3.2000	3.2000	1.0290
Substrate half sat. [mgCOD/L]	5.0000	5.0000	1.0000
Anoxic growth factor [-]	0.5000	0.5000	1.0000
Denite N2 producers (N03 or N02) [-]	0.5000	0.5000	1.0000
Aerobic decay rate [1/d]	0.6200	0.6200	1.0290
Anoxic decay rate [1/d]	0.2330	0.2330	1.0290
Anaerobic decay rate [1/d]	0.1310	0.1310	1.0290
Fermentation rate [1/d]	1.6000	1.6000	1.0290
Fermentation half sat. [mgCOD/L]	5.0000	5.0000	1.0000
Fermentation growth factor (AS) [-]	0.2500	0.2500	1.0000
Free nitrous acid inhibition [mmol/L]	1.000E-7	1.000E-7	1.0000

Methylotrophs

Name	Default	Value	
Max. spec. growth rate [1/d]	1.3000	1.3000	1.0720
Methanol half sat. [mgCOD/L]	0.5000	0.5000	1.0000
Denite N2 producers (NO3 or NO2) [-]	0.5000	0.5000	1.0000
Aerobic decay rate [1/d]	0.0400	0.0400	1.0290
Anoxic/anaerobic decay rate [1/d]	0.0300	0.0300	1.0290
Free nitrous acid inhibition [mmol/L]	1.000E-7	1.000E-7	1.0000

PAO

Name	Default	Value	
Max. spec. growth rate [1/d]	0.9500	0.9500	1.0000
Max. spec. growth rate, P-limited [1/d]	0.4200	0.4200	1.0000
Substrate half sat. [mgCOD(PHB)/mgCOD(Zbp)]	0.1000	0.1000	1.0000
Substrate half sat., P-limited [mgCOD(PHB)/mgCOD(Zbp)]	0.0500	0.0500	1.0000
Magnesium half sat. [mgMg/L]	0.1000	0.1000	1.0000
Cation half sat. [mmol/L]	0.1000	0.1000	1.0000
Calcium half sat. [mgCa/L]	0.1000	0.1000	1.0000
Aerobic/anoxic decay rate [1/d]	0.1000	0.1000	1.0000
Aerobic/anoxic maintenance rate [1/d]	0	0	1.0000
Anaerobic decay rate [1/d]	0.0400	0.0400	1.0000
Anaerobic maintenance rate [1/d] Sequestration rate [1/d]	4.5000	4.5000	1.0000
Anoxic growth factor [-]	0.3300	0.3300	1.0000
Alloxic glowth factor [-]	0.3300	0.3300	1.0000

Acetogens

Name	Default	Value	
Max. spec. growth rate [1/d]	0.2500	0.2500	1.0290
Substrate half sat. [mgCOD/L]	10.0000	10.0000	1.0000
Acetate inhibition [mgCOD/L]	10000.0000	10000.0000	1.0000
Anaerobic decay rate [1/d]	0.0500	0.0500	1.0290
Aerobic/anoxic decay rate [1/d]	0.5200	0.5200	1.0290

Methanogens

Name	Default	Value	
Acetoclastic max. spec. growth rate [1/d]	0.3000	0.3000	1.0290
H2-utilizing max. spec. growth rate [1/d]	1.4000	1.4000	1.0290
Acetoclastic substrate half sat. [mgCOD/L]	100.0000	100.0000	1.0000
Acetoclastic methanol half sat. [mgCOD/L]	0.5000	0.5000	1.0000
H2-utilizing CO2 half sat. [mmol/L]	0.1000	0.1000	1.0000
H2-utilizing substrate half sat. [mgCOD/L]	0.1000	0.1000	1.0000
H2-utilizing methanol half sat. [mgCOD/L]	0.5000	0.5000	1.0000
Acetoclastic propionic inhibition [mgCOD/L]	10000.0000	10000.0000	1.0000
Acetoclastic anaerobic decay rate [1/d]	0.1300	0.1300	1.0290
Acetoclastic aerobic/anoxic decay rate [1/d]	0.6000	0.6000	1.0290
H2-utilizing anaerobic decay rate [1/d]	0.1300	0.1300	1.0290
H2-utilizing aerobic/anoxic decay rate [1/d]	2.8000	2.8000	1.0290

рΗ

Name	Default	Value
OHO low pH limit [-]	4.0000	4.0000

OHO high pH limit [-]	10.0000	10.0000
Methylotrophs low pH limit [-]	4.0000	4.0000
Methylotrophs high pH limit [-]	10.0000	10.0000
Autotrophs low pH limit [-]	5.5000	5.5000
Autotrophs high pH limit [-]	9.5000	9.5000
PAO low pH limit [-]	4.0000	4.0000
PAO high pH limit [-]	10.0000	10.0000
OHO low pH limit (anaerobic) [-]	5.5000	5.5000
OHO high pH limit (anaerobic) [-]	8.5000	8.5000
Propionic acetogens low pH limit [-]	4.0000	4.0000
Propionic acetogens high pH limit [-]	10.0000	10.0000
Acetoclastic methanogens low pH limit [-]	5.0000	5.0000
Acetoclastic methanogens high pH limit [-]	9.0000	9.0000
H2-utilizing methanogens low pH limit [-]	5.0000	5.0000
H2-utilizing methanogens high pH limit [-]	9.0000	9.0000

Switches

Name	Default	Value
Aerobic/anoxic DO half sat. [mgO2/L]	0.0500	0.0500
Anoxic/anaerobic NOx half sat. [mgN/L]	0.1500	0.1500
AOB DO half sat. [mgO2/L]	0.2500	0.2500
NOB DO half sat. [mgO2/L]	0.5000	0.5000
AAO DO half sat. [mgO2/L]	0.0100	0.0100
Anoxic NO3(->NO2) half sat. [mgN/L]	0.1000	0.1000
Anoxic NO3(->N2) half sat. [mgN/L]	0.0500	0.0500
Anoxic NO2(->N2) half sat. (mgN/L)	0.0100	0.0100
NH3 nutrient half sat. [mgN/L]	0.0050	0.0050
PolyP half sat. [mgP/mgCOD]	0.0100	0.0100

VFA sequestration half sat. [mgCOD/L]	5.0000	5.0000
P uptake half sat. [mgP/L]	0.1500	0.1500
P nutrient half sat. [mgP/L]	0.0010	0.0010
Autotroph CO2 half sat. [mmol/L]	0.1000	0.1000
H2 low/high half sat. [mgCOD/L]	1.0000	1.0000
Propionic acetogens H2 inhibition [mgCOD/L]	5.0000	5.0000
Synthesis anion/cation half sat. [meq/L]	0.0100	0.0100

Common

Name	Default	Value
Biomass volatile fraction (VSS/TSS)	0.9200	0.9200
Endogenous residue volatile fraction (VSS/TSS)	0.9200	0.9200
N in endogenous residue [mgN/mgCOD]	0.0700	0.0700
P in endogenous residue [mgP/mgCOD]	0.0220	0.0220
Endogenous residue COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Particulate substrate COD:VSS ratio [mgCOD/mgVSS]	1.6000	2.2000
Particulate inert COD:VSS ratio [mgCOD/mgVSS]	1.6000	2.2000

AOB

Name	Default	Value
Yield [mgCOD/mgN]	0.1500	0.1500
AOB denite NO2 fraction as TEA [-]	0.5000	0.5000
Byproduct NH4 fraction to N20 [-]	0.0025	0.0025
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220

Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

NOB

Name	Default	Value
Yield [mgCOD/mgN]	0.0900	0.0900
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

AAO

Name	Default	Value
Yield [mgCOD/mgN]	0.1140	0.1140
Nitrate production [mgN/mgBiomassCOD]	2.2800	2.2800
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

ОНО

Name	Default	Value

Yield (aerobic) [-]	0.6660	0.6660
Yield (fermentation, low H2) [-]	0.1000	0.1000
Yield (fermentation, high H2) [-]	0.1000	0.1000
H2 yield (fermentation low H2) [-]	0.3500	0.3500
H2 yield (fermentation high H2) [-]	0	0
Propionate yield (fermentation, low H2) [-]	0	0
Propionate yield (fermentation, high H2) [-]	0.7000	0.7000
CO2 yield (fermentation, low H2) [-]	0.7000	0.7000
CO2 yield (fermentation, high H2) [-]	0	0
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Endogenous fraction - aerobic [-]	0.0800	0.0800
Endogenous fraction - anoxic [-]	0.1030	0.1030
Endogenous fraction - anaerobic [-]	0.1840	0.1840
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Yield (anoxic) [-]	0.5400	0.5400
Yield propionic (aerobic) [-]	0.6400	0.6400
Yield propionic (anoxic) [-]	0.4600	0.4600
Yield acetic (aerobic) [-]	0.6000	0.6000
Yield acetic (anoxic) [-]	0.4300	0.4300
Yield methanol (aerobic) [-]	0.5000	0.5000
Adsorp. max. [-]	1.0000	1.0000
Max fraction to N2O at high FNA over nitrate [-]	0.0500	0.0500
Max fraction to N2O at high FNA over nitrite [-]	0.1000	0.1000

Methylotrophs

Name	Default	Value
Yield (anoxic) [-]	0.4000	0.4000

N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Max fraction to N2O at high FNA over nitrate [-]	0.1000	0.1000
Max fraction to N2O at high FNA over nitrite [-]	0.1500	0.1500

PAO

Name	Default	Value
Yield (aerobic) [-]	0.6390	0.6390
Yield (anoxic) [-]	0.5200	0.5200
Aerobic P/PHA uptake [mgP/mgCOD]	0.9300	0.9300
Anoxic P/PHA uptake [mgP/mgCOD]	0.3500	0.3500
Yield of PHA on sequestration [-]	0.8890	0.8890
N in biomass [mgN/mgCOD]	0.0700	0.0700
N in sol. inert [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous part. [-]	0.2500	0.2500
Inert fraction of endogenous sol. [-]	0.2000	0.2000
P/Ac release ratio [mgP/mgCOD]	0.5100	0.5100
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
Yield of low PP [-]	0.9400	0.9400

Acetogens

Name	Default	Value

Yield [-]	0.1000	0.1000
H2 yield [-]	0.4000	0.4000
CO2 yield [-]	1.0000	1.0000
N in biomass [mgN/mgCOD]	0.0700	0.0700
P in biomass [mgP/mgCOD]	0.0220	0.0220
Fraction to endogenous residue [-]	0.0800	0.0800
COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

Methanogens

Name	Default	Value
Acetoclastic yield [-]	0.1000	0.1000
Methanol acetoclastic yield [-]	0.1000	0.1000
H2-utilizing yield [-]	0.1000	0.1000
Methanol H2-utilizing yield [-]	0.1000	0.1000
N in acetoclastic biomass [mgN/mgCOD]	0.0700	0.0700
N in H2-utilizing biomass [mgN/mgCOD]	0.0700	0.0700
P in acetoclastic biomass [mgP/mgCOD]	0.0220	0.0220
P in H2-utilizing biomass [mgP/mgCOD]	0.0220	0.0220
Acetoclastic fraction to endog. residue [-]	0.0800	0.0800
H2-utilizing fraction to endog. residue [-]	0.0800	0.0800
Acetoclastic COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200
H2-utilizing COD:VSS ratio [mgCOD/mgVSS]	1.4200	1.4200

General

Name	Default	Value

Molecular weight of other anions [mg/mmol]	35.5000	35.5000
Molecular weight of other cations [mg/mmol]	39.1000	39.1000
Mg to P mole ratio in polyphosphate [mmolMg/mmolP]	0.3000	0.3000
Cation to P mole ratio in polyphosphate [meq/mmolP]	0.1500	0.3000
Ca to P mole ratio in polyphosphate [mmolCa/mmolP]	0.0500	0.0500
Cation to P mole ratio in organic phosphate [meq/mmolP]	0.0100	0.0100
Bubble rise velocity (anaerobic digester) [cm/s]	23.9000	23.9000
Bubble Sauter mean diameter (anaerobic digester) [cm]	0.3500	0.3500
Anaerobic digester gas hold-up factor []	1.0000	1.0000
Tank head loss per metre of length (from flow) [m/m]	0.0025	0.0025

Mass transfer

Name	Default	Value	
KI for H2 [m/d]	17.0000	17.0000	1.0240
KI for CO2 [m/d]	10.0000	10.0000	1.0240
KI for NH3 [m/d]	1.0000	1.0000	1.0240
KI for CH4 [m/d]	8.0000	8.0000	1.0240
KI for N2 [m/d]	15.0000	15.0000	1.0240
KI for N20 [m/d]	8.0000	8.0000	1.0240
KI for 02 [m/d]	13.0000	13.0000	1.0240

Henry's law constants

Name	Default	Value	
CO2 [M/atm]	3.4000E-2	3.4000E-2	2400.0000
02 [M/atm]	1.3000E-3	1.3000E-3	1500.0000

N2 [M/atm]	6.5000E-4	6.5000E-4	1300.0000
N20 [M/atm]	2.5000E-2	2.5000E-2	2600.0000
NH3 [M/atm]	5.8000E+1	5.8000E+1	4100.0000
CH4 [M/atm]	1.4000E-3	1.4000E-3	1600.0000
H2 [M/atm]	7.8000E-4	7.8000E-4	500.0000

Physico-chemical rates

Name	Default	Value	
Struvite precipitation rate [1/d]	3.000E+10	3.000E+10	1.0240
Struvite redissolution rate [1/d]	3.000E+11	3.000E+11	1.0240
Struvite half sat. [mgTSS/L]	1.0000	1.0000	1.0000
HDP precipitation rate [L/(molP d)]	1.000E+8	1.000E+8	1.0000
HDP redissolution rate [L/(mol P d)]	1.000E+8	1.000E+8	1.0000
HAP precipitation rate [molHDP/(L d)]	5.000E-4	5.000E-4	1.0000

Physico-chemical constants

Name	Default	Value
Struvite solubility constant [mol/L]	6.918E-14	6.918E-14
HDP solubility product [mol/L]	2.750E-22	2.750E-22
HDP half sat. [mgTSS/L]	1.0000	1.0000
Equilibrium soluble PO4 with AI dosing at pH 7 [mgP/L]	0.0100	0.0100
Al to P ratio [molAl/molP]	0.8000	0.8000
Al(OH)3 solubility product [mol/L]	1.259E+9	1.259E+9
AIHPO4+ dissociation constant [mol/L]	7.943E-13	7.943E-13
Equilibrium soluble PO4 with Fe dosing at pH 7 [mgP/L]	0.0100	0.0100

Fe to P ratio [molFe/molP]	1.6000	1.6000
Fe(OH)3 solubility product [mol/L]	0.0500	0.0500
FeH2P04++ dissociation constant [mol/L]	5.012E-22	5.012E-22

Aeration

Name	Default	Value
Alpha (surf) OR Alpha F (diff) [-]	0.5000	0.5000
Beta [-]	0.9500	0.9500
Surface pressure [kPa]	101.3250	101.3250
Fractional effective saturation depth (Fed) [-]	0.3250	0.3250
Supply gas CO2 content [vol. %]	0.0350	0.0350
Supply gas O2 [vol. %]	20.9500	20.9500
Off-gas CO2 [vol. %]	2.0000	2.0000
Off-gas 02 [vol. %]	18.8000	18.8000
Off-gas H2 [vol. %]	0	0
Off-gas NH3 [vol. %]	0	0
Off-gas CH4 [vol. %]	0	0
Surface turbulence factor [-]	2.0000	2.0000
Set point controller gain []	1.0000	1.0000

Modified Vesilind

Name	Default	Value
Maximum Vesilind settling velocity (Vo) [ft/min]	0.387	0.387
Vesilind hindered zone settling parameter (K) $[\mathrm{L/g}]$	0.370	0.370
Clarification switching function [mg/L]	100.000	100.000

Specified TSS conc.for height calc. [mg/L]	2500.000	2500.000
Maximum compactability constant [mg/L]	15000.000	15000.000

Double exponential

Name	Default	Value
Maximum Vesilind settling velocity (Vo) [ft/min]	0.934	0.934
Maximum (practical) settling velocity (Vo') [ft/min]	0.615	0.615
Hindered zone settling parameter (Kh) [L/g]	0.400	0.400
Flocculent zone settling parameter (Kf) [L/g]	2.500	2.500
Maximum non-settleable TSS [mg/L]	20.0000	20.0000
Non-settleable fraction [-]	0.0010	0.0010
Specified TSS conc. for height calc. [mg/L]	2500.0000	2500.0000

Emission factors

Name	Default	Value
Carbon dioxide equivalence of nitrous oxide	296.0000	296.0000
Carbon dioxide equivalence of methane	23.0000	23.0000

Biofilm general

Name	Default	Value	
Attachment rate [g / (m2 d)]	80.0000	80.0000	1.0000
Attachment TSS half sat. [mg/L]	100.0000	100.0000	1.0000

Detachment rate [g/(m3 d)]	8.000E+4	8.000E+4	1.0000
Solids movement factor []	10.0000	10.0000	1.0000
Diffusion neta []	0.8000	0.8000	1.0000
Thin film limit [mm]	0.5000	0.5000	1.0000
Thick film limit [mm]	3.0000	3.0000	1.0000
Assumed Film thickness for tank volume correction (temp independent) [mm]	0.7500	0.7500	1.0000
Film surface area to media area ratio - Max.[]	1.0000	1.0000	1.0000
Minimum biofilm conc. for streamer formation [gTSS/m2]	4.0000	4.0000	1.0000

Maximum biofilm concentrations [mg/L]

Name	Default	Value	
Ordinary heterotrophic organisms (OHO)	5.000E+4	5.000E+4	1.0000
Methylotrophs	5.000E+4	5.000E+4	1.0000
Ammonia oxidizing biomass (AOB)	1.000E+5	1.000E+5	1.0000
Nitrite oxidizing biomass (NOB)	1.000E+5	1.000E+5	1.0000
Anaerobic ammonia oxidizers (AAO)	5.000E+4	5.000E+4	1.0000
Polyphosphate accumulating organisms (PAO)	5.000E+4	5.000E+4	1.0000
Propionic acetogens	5.000E+4	5.000E+4	1.0000
Methanogens - acetoclastic	5.000E+4	5.000E+4	1.0000
Methanogens - hydrogenotrophic	5.000E+4	5.000E+4	1.0000
Endogenous products	3.000E+4	3.000E+4	1.0000
Slowly bio. COD (part.)	5000.0000	5000.0000	1.0000
Slowly bio. COD (colloid.)	4000.0000	4000.0000	1.0000
Part. inert. COD	5000.0000	5000.0000	1.0000
Part. bio. org. N	0	0	1.0000
Part. bio. org. P	0	0	1.0000
Part. inert N	0	0	1.0000
Part. inert P	0	0	1.0000

Stored PHA	5000.0000	5000.0000	1.0000
Releasable stored polyP	1.150E+6	1.150E+6	1.0000
Fixed stored polyP	1.150E+6	1.150E+6	1.0000
Readily bio. COD (complex)	0	0	1.0000
Acetate	0	0	1.0000
Propionate	0	0	1.0000
Methanol	0	0	1.0000
Dissolved H2	0	0	1.0000
Dissolved methane	0	0	1.0000
Ammonia N	0	0	1.0000
Sol. bio. org. N	0	0	1.0000
Nitrous Oxide N	0	0	1.0000
Nitrite N	0	0	1.0000
Nitrate N	0	0	1.0000
Dissolved nitrogen gas	0	0	1.0000
PO4-P (Sol. & Me Complexed)	1.000E+10	1.000E+10	1.0000
Sol. inert COD	0	0	1.0000
Sol. inert TKN	0	0	1.0000
ISS Influent	1.300E+6	1.300E+6	1.0000
Struvite	8.500E+5	8.500E+5	1.0000
Hydroxy-dicalcium-phosphate	1.150E+6	1.150E+6	1.0000
Hydroxy-apatite	1.600E+6	1.600E+6	1.0000
Magnesium	0	0	1.0000
Calcium	0	0	1.0000
Metal	1.000E+10	1.000E+10	1.0000
Other Cations (strong bases)	0	0	1.0000
Other Anions (strong acids)	0	0	1.0000
Total CO2	0	0	1.0000
User defined 1	0	0	1.0000
User defined 2	0	0	1.0000
User defined 3	5.000E+4	5.000E+4	1.0000

User defined 4	5.000E+4	5.000E+4	1.0000
Dissolved oxygen	0	0	1.0000

Effective diffusivities [m2/s]

Name	Default	Value	
Ordinary heterotrophic organisms (OHO)	5.000E-14	5.000E-14	1.0290
Methylotrophs	5.000E-14	5.000E-14	1.0290
Ammonia oxidizing biomass (AOB)	5.000E-14	5.000E-14	1.0290
Nitrite oxidizing biomass (NOB)	5.000E-14	5.000E-14	1.0290
Anaerobic ammonia oxidizers (AAO)	5.000E-14	5.000E-14	1.0290
Polyphosphate accumulating organisms (PAO)	5.000E-14	5.000E-14	1.0290
Propionic acetogens	5.000E-14	5.000E-14	1.0290
Methanogens - acetoclastic	5.000E-14	5.000E-14	1.0290
Methanogens - hydrogenotrophic	5.000E-14	5.000E-14	1.0290
Endogenous products	5.000E-14	5.000E-14	1.0290
Slowly bio. COD (part.)	5.000E-14	5.000E-14	1.0290
Slowly bio. COD (colloid.)	5.000E-12	5.000E-12	1.0290
Part. inert. COD	5.000E-14	5.000E-14	1.0290
Part. bio. org. N	5.000E-14	5.000E-14	1.0290
Part. bio. org. P	5.000E-14	5.000E-14	1.0290
Part. inert N	5.000E-14	5.000E-14	1.0290
Part. inert P	5.000E-14	5.000E-14	1.0290
Stored PHA	5.000E-14	5.000E-14	1.0290
Releasable stored polyP	5.000E-14	5.000E-14	1.0290
Fixed stored polyP	5.000E-14	5.000E-14	1.0290
Readily bio. COD (complex)	6.900E-10	6.900E-10	1.0290
Acetate	1.240E-9	1.240E-9	1.0290
Propionate	8.300E-10	8.300E-10	1.0290

Methanol	1.600E-9	1.600E-9	1.0290
Dissolved H2	5.850E-9	5.850E-9	1.0290
Dissolved methane	1.963E-9	1.963E-9	1.0290
Ammonia N	2.000E-9	2.000E-9	1.0290
Sol. bio. org. N	1.370E-9	1.370E-9	1.0290
Nitrous Oxide N	1.607E-9	1.607E-9	1.0290
Nitrite N	2.980E-9	2.980E-9	1.0290
Nitrate N	2.980E-9	2.980E-9	1.0290
Dissolved nitrogen gas	1.900E-9	1.900E-9	1.0290
PO4-P (Sol. & Me Complexed)	2.000E-9	2.000E-9	1.0290
Sol. inert COD	6.900E-10	6.900E-10	1.0290
Sol. inert TKN	6.850E-10	6.850E-10	1.0290
ISS Influent	5.000E-14	5.000E-14	1.0290
Struvite	5.000E-14	5.000E-14	1.0290
Hydroxy-dicalcium-phosphate	5.000E-14	5.000E-14	1.0290
Hydroxy-apatite	5.000E-14	5.000E-14	1.0290
Magnesium	7.200E-10	7.200E-10	1.0290
Calcium	7.200E-10	7.200E-10	1.0290
Metal	4.800E-10	4.800E-10	1.0290
Other Cations (strong bases)	1.440E-9	1.440E-9	1.0290
Other Anions (strong acids)	1.440E-9	1.440E-9	1.0290
Total CO2	1.960E-9	1.960E-9	1.0290
User defined 1	6.900E-10	6.900E-10	1.0290
User defined 2	6.900E-10	6.900E-10	1.0290
User defined 3	5.000E-14	5.000E-14	1.0290
User defined 4	5.000E-14	5.000E-14	1.0290
Dissolved oxygen	2.500E-9	2.500E-9	1.0290

EPS Strength coefficients []

Name	Default	Value	
Ordinary heterotrophic organisms (OHO)	1.0000	1.0000	1.0000
Methylotrophs	1.0000	1.0000	1.0000
Ammonia oxidizing biomass (AOB)	5.0000	1.0000	1.0000
Nitrite oxidizing biomass (NOB)	25.0000	1.0000	1.0000
Anaerobic ammonia oxidizers (AAO)	10.0000	1.0000	1.0000
Polyphosphate accumulating organisms (PAO)	1.0000	1.0000	1.0000
Propionic acetogens	1.0000	1.0000	1.0000
Methanogens - acetoclastic	1.0000	1.0000	1.0000
Methanogens - hydrogenotrophic	1.0000	1.0000	1.0000
Endogenous products	1.0000	1.0000	1.0000
Slowly bio. COD (part.)	1.0000	1.0000	1.0000
Slowly bio. COD (colloid.)	1.0000	1.0000	1.0000
Part. inert. COD	1.0000	1.0000	1.0000
Part. bio. org. N	1.0000	1.0000	1.0000
Part. bio. org. P	1.0000	1.0000	1.0000
Part. inert N	1.0000	1.0000	1.0000
Part. inert P	1.0000	1.0000	1.0000
Stored PHA	1.0000	1.0000	1.0000
Releasable stored polyP	1.0000	1.0000	1.0000
Fixed stored polyP	1.0000	1.0000	1.0000
Readily bio. COD (complex)	0	0	1.0000
Acetate	0	0	1.0000
Propionate	0	0	1.0000
Methanol	0	0	1.0000
Dissolved H2	0	0	1.0000
Dissolved methane	0	0	1.0000
Ammonia N	0	0	1.0000
Sol. bio. org. N	0	0	1.0000
Nitrous Oxide N	0	0	1.0000
Nitrite N	0	0	1.0000

Nitrate N	0	0	1.0000
Dissolved nitrogen gas	0	0	1.0000
PO4-P (Sol. & Me Complexed)	1.0000	1.0000	1.0000
Sol. inert COD	0	0	1.0000
Sol. inert TKN	0	0	1.0000
ISS Influent	0.3300	0.3300	1.0000
Struvite	1.0000	1.0000	1.0000
Hydroxy-dicalcium-phosphate	1.0000	1.0000	1.0000
Hydroxy-apatite	1.0000	1.0000	1.0000
Magnesium	0	0	1.0000
Calcium	0	0	1.0000
Metal	1.0000	1.0000	1.0000
Other Cations (strong bases)	0	0	1.0000
Other Anions (strong acids)	0	0	1.0000
Total CO2	0	0	1.0000
User defined 1	0	0	1.0000
User defined 2	0	0	1.0000
User defined 3	1.0000	1.0000	1.0000
User defined 4	1.0000	1.0000	1.0000
Dissolved oxygen	0	0	1.0000

Meridian Alternative's Analysis version 1

Expansion using selectable 5 stage modified Bardenpho/A2O process

Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

$\frac{\text{To achieve target effluent concentrations, for Bardenpho process:}}{\text{Set BDF IMLR at 200\% influent, Set A2O IMLR at 0\%}}$

Set Swing 1 Aerated, Swing 2a and 2b unaerated.

SRT = 12 days

Acetate flow pace at 0.8% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. All methanol to swing 2a

$\frac{\text{To achieve target effluent concentrations, for A2O process:}}{\text{Set BDF IMLR at }0\% \text{ influent, Set A2O IMLR at }400\%$

Set Swing 1 unaerated, Swing 2a and 2b aerated.

SRT = 12 days

Acetate flow pace at 0.6% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 1.5% of PE flow rate, 1% methanol solution. all methanol to Anoxic 1a

INFILCO DEGREMONT INC.

BUDGET PROPOSAL

PROJECT: BOISE, ID WWTP

ENGINEER: BROWN & CALDWELL

PROPOSAL#: 50157596.01

DATE: MARCH 24, 2015

COMMITTED TOGETHER TO WATER, A SOURCE OF LIFE

REGIONAL BUSINESS MANAGER:

SUSAN PILGRAM

INFILCO DEGREMONT, INC.

BOULDER, CO

CELL: 303-652-7139

EMAIL: SUSAN.PILGRAM@INFILCODEGREMONT.COM CELL: 303-601-5215

LOCAL REPRESENTATIVE:

SCOTT MARSHALL

MISCOWATER, INC.

651 CORPORATE CIRCLE, SUITE #100

GOLDEN, CO 80401

EMAIL: SMARSHALL@MISCOWATER.COM

INFILCO DEGREMONT INC.

8007 DISCOVERY DRIVE, RICHMOND, VA 23229 USA P.O. BOX 71390, RICHMOND, VA 23255-1390 USA TEL 804 756-7600 | FAX 804 756-7643

March 24, 2015

Stephanie Fevig Brown and Caldwell, Inc.

Re: Boise, ID Project

BIOFOR® Biological Filtration System

Dear Ms. Fevig:

With regard to your request for a BIOFOR® design for the wastewater facility located in Boise, ID, IDI is pleased to submit the following preliminary design proposal. This proposal describes a BIOFOR® N design for nitrification followed by a BIOFOR® DN at a design water temperature of 14 °C.

The BIOFOR® N system consists of four (8) filter cells sized as follows to produce 14.2 MGD:

BIOFOR® N: 8 cells, 1200 ft² (32.0' x 37.5').

The BIOFOR® DN system consists of six (6) filter cells sized as follows to produce 14.2 MGD:

BIOFOR® DN: 6 cells, 550 ft² (22.0' x 25.0').

The system is sized for treating a design influent flow of 14.2 MGD with one cell in standby each for the BIOFOR® N stage and BIOFOR® DN. We have endeavored to provide complete information in this proposal. However, if you have any questions or need additional information, please don't hesitate to contact our Regional Business Manager, Susan Pilgram, our local representative, Scott Marshall, or me directly.

Sincerely,

Brian McGovern

Brian Milher

Senior Process Engineer - Biological Systems Group

TABLE OF CONTENTS

1.	BIOFOR®- General Description	1
2.	Design Conditions	3
	2.1 DESCRIPTION OF OPERATION	4
3.	BIOLOGICAL REACTORS	5
	3.1 BIOFOR® N & DN	5
	3.2 Backwashing	
4.	SCOPE OF SUPPLY	6
	4.1 BIOFOR®-N & DN FILTER MODULES	6
	4.2 MEDIA AND SUPPORT GRAVEL	6
	4.3 CENTRIFUGAL PUMPS	
	4.4 BLOWERS AND APPURTENANCES	7
	4.5 COMPRESSED AIR FOR AUTOMATIC VALVES	9
	4.6 AUTOMATIC AND MANUAL VALVES	9
	4.7 FLOW SCREENS AND STRAINERS	10
	4.8 CONTROLS AND INSTRUMENTATION	11
	4.9 FIELD SERVICE	11
5.	Items By Others	12
6.	Items By Installing Contractor	13
7.	Budget Estimate	15

1. BIOFOR®- General Description

The BIOFOR® is a biological, submerged filter containing a fixed, dense granular bed with influent water flowing in the upward direction. The BIOFOR® Process is applied individually or in separate stages for nitrification (BIOFOR® -"N"), and denitrification (BIOFOR® -"DN"). In the BIOFOR® N process air is introduced at the bottom of the media bed and flows co-currently with the influent water. In the BIOFOR® DN an external carbon source is mixed with the filter influent.

The BIOFOR® is based on the following basic principles:

- a single layer of granular BIOLITE media for biomass attachment and retention of suspended solids.
- a discrete process air distribution system (for aerated systems only)
- upflow, co-current distribution of air and water
- backwash sequence automated and optimized per application requirements

BIOLITE™ Media

BIOLITE media is an expanded clay material with a high specific surface area, low density, and good resistance to attrition. The porosity of the material ensures biomass attachment. Different particle sizes ranging from 1mm to 5mm are available depending on the application.

OXAZUR® Air Diffusers

OXAZUR air diffusers, present in all aerated BIOFOR® units, are aerating devices with elastic rubber membranes enclosed in a polypropylene casing. The diffusers are installed on a series of process air distribution pipes located at the bottom of the media bed, directly above the plenum. The combination of diffused air and media retention produces a highly efficient aeration system with fine bubble diffusion characteristics. In order to assure homogeneous distribution over long-term operation, a pressurized cleaning water system is provided and operated approximately once per month to flush the diffusers.

Boise, ID WWTP

Upflow Distribution of Air and Water

Distribution of process air and influent water is upward through the BIOLITE media. This co-current, upward flow ensures an even distribution of water and air. It enables the media to retain solids and biomass throughout the entire bed depth and prevents short-circuiting and gas entrapment. In anoxic, denitrifying systems, nitrogen gas bubbles are continuously and effectively released from the media to atmosphere. The media operates in slight expansion, thereby ensuring full use of the available media volume and allowing high hydraulic loading rates.

MONOFLOR® Underdrain

Concrete BIOFOR® installations have the distribution nozzles located in the poured-in-place filter floor. To ensure an accurate, grout-free installation, the MONOFLOR underdrain is used. This underdrain is simple to install, leak-proof, and has been widely used on filter systems for many years.

Backwash Sequence

Backwash sequences for biological aerated filters must comply with several requirements:

- The filter bed must be cleaned of retained solids and excess biomass
- Sufficient biomass must remain in the reactor following a backwash
- Air and water flows must not cause filter media to be lost
- Water and energy consumption must be minimized
- The backwash sequence must be initiated and carried out automatically.

The standard BIOFOR® backwash sequence has been developed specifically to meet the requirements listed above. The backwash sequence may be optimized during start-up and can be modified based on operating experience.

The sequence may be initiated manually, on operating time, or upon reaching a pre-set terminal headloss. The main steps of the sequence are:

- quick drain to backflush the influent distribution nozzles
- air scour
- a series of simultaneous air/water washes
- water rinse

Boise, ID WWTP

Design Conditions 2.

The Submerged Biological Filter, BIOFOR® System, described herein is a dual-stage water treatment system designed for the reduction of ammonia nitrogen and nitrate nitrogen.

The dual-stage biofilter system will be furnished and installed as described herein. The system is based on treating influent water with the following characteristics:

Influent Parameter	
Average Daily Flow – MGD	11.3
Max Month Flow – MGD	14.2
Total K Nitrogen (TKN) – mg/L	42.0
Ammonia Nitrogen (NH ₃ -N) – mg/L	40.0
Biological Oxygen Demand (CBOD ₅) – mg/L	20.0
Total Suspended Solids (TSS) – mg/L	20.0
Design Water Temperature: °C	14.0

The BIOFOR®-N and DN system described herein shall be designed to achieve the following monthly effluent quality for the specified flow:

Effluent Requirements	
Ammonia Nitrogen – NH ₃ -N – mg/L	≤ 0.5
Nitrate Nitrogen – NO ₃ -N – mg/L	≤ 8.0
Biological Oxygen Demand (CBOD ₅) – mg/L	≤ 20.0
Total Suspended Solids (TSS) - mg/L	≤ 20.0

The BIOFOR® N system consists of Eight (8) filters of dimensions 1200 ft² (32.0' x 37.5'). The system will be capable of treating the design flow to meet the effluent requirements listed above with one cell in standby or backwash.

The BIOFOR® DN system consists of Six (6) filters of dimensions 550 ft² (22.0' x 25.0'). The system will be capable of treating the design flow to meet the effluent requirements listed above with one cell in standby or backwash.

3 Boise, ID WWTP

2.1 Description of Operation

Water is pumped to a flow channel for the BIOFOR®-N and DN units and is evenly distributed to the cells through a series of weirs in the central gallery. Water to be treated is introduced into the plenum and flows upward through the BIOLITE™ media. As the water and process airflows co-currently through the media bed, attached heterotrophic biomass oxidizes carbonaceous and nitrate compounds, autotrophic biomass oxidizes ammonia and suspended solids and biomass are retained.

Due to solids retention and biomass growth within the filter media, backwashing of the BIOFOR® units is necessary to remove retained solids and maintain a thin, active biofilm. Backwashing is initiated either manually or automatically, based upon elapsed time or on reaching a pre-set terminal headloss. The backwash sequence includes a number of distinct steps, the duration and extent of each step being optimized during plant start-up and modified based on operating experience. The basic backwash sequence includes the following steps:

- Quick drain to backflush the underdrain nozzles
- Air scour
- Combination air and water backwash
- Water rinse
- Repeat of the above steps three times
- Water rinse with influent water (filter to waste)

A centrifugal pump from the clearwell supplies clean water used for backwashing the cells. The backwash water flow rate can be controlled with an automatic flow control valve while a positive displacement blower supplies air used for air scour. Spare, installed units are provided for both the air scour blower and backwash water supply pump.

Water from the quick drain step is collected in a drain sump and typically flows into the backwash waste tank. Water from the remaining steps collects in a common backwash flume and flows to the backwash waste storage tank. Stored backwash water is normally returned to the head of the plant; if necessary, it may need to be treated in a separate side stream due to backwashing considerations.

3. BIOLOGICAL REACTORS

Infilco Degremont, Inc. will provide fourteen (14) upflow, biological, submerged fixed-film reactors; with BIOLITE media for biomass support: Eight (8) BIOFOR® - "N" aerobic reactors and Six (6) BIOFOR® - "DN" anaerobic reactors.

3.1 BIOFOR® N & DN

Unit Filtration Area Total Number of Cells Biolite Media Depth

BIOFOR® N Design	
1200 ft ²	
8	
12 ft – 2 inches	

Unit Filtration Area Total Number of Cells Biolite Media Depth

BIOFOR® DN Design	
550 ft ²	
6	
9 ft – 6 inches	

Each reactor will consist of a concrete tank with monolithic underdrain (MONOFLOR®), bottom influent and air/water backwash distribution system, process air distribution system for N cells only, granular expanded clay media, gravel support bed, influent channel, effluent and backwash waste channels with stilling baffle. Common instrumentation furnished by IDI includes: process air blowers, air distribution system cleaning pump, air scour blowers, backwash pumps, controls and instrumentation and all associated automatic valves and skid piping. An additional Methanol dosing system will be required as a carbon source for the denitrifying bacteria population for the BIOFOR® DN.

3.2 Backwashing

The BIOFOR® reactors will be washed periodically by a sequence of air scour, combination air scour/backwash water, and water only rinse steps. Water used to backwash the biofilter reactors will be pumped from a separate clearwell supplied by others. The air scour blower capacity is based on a maximum air scour rate of 5.8 scfm/sq.ft. of filter media. The backwash pump system is sized for a maximum backwash water rate of 12.0 gpm/sq.ft. of filter media.

Clean Water Tank Volume Dirty Water Tank Volume

BioFOR N and DN
360,000 gal
425,000 gal

Boise, ID WWTP Proposal #: 50157596.01

4. SCOPE OF SUPPLY

4.1 BIOFOR®-N & DN Filter Modules

BIOFOR® N and DN Reactors with all internals and required wall pieces.

Each reactor will include the following:

- Equipment for MONOFLOR underdrain including forms, polyethylene nozzles and accessories.
- One (1) Tranquilizer (stilling) baffle consisting of staggered vertical aluminum slats extending across the width of the reactor. Installation of the tranquilizer baffle is by others.
- Process air distribution system in 316 stainless steel with OXAZUR[®] air diffusers (for BIOFOR[®] N only)

4.2 Media and Support Gravel

- Support gravel, 20" depth in the BIOFOR®-N reactor (includes 5% extra)
- Support gravel, 12" depth in the BIOFOR®-DN reactor (includes 5% extra)
- BIOLITE-"L" media, 2.7 mm, to 12'-2" depth in the BIOFOR®-N reactors (includes 10% extra)
- BIOLITE-"P" media, 3.5 mm, to 9'-6" depth in the BIOFOR®-DN reactors (includes 10% extra)

Total Gravel Volume - ft³
Biolite L 2.7 Media Volume - ft³

N Design
8 Filters
16,800
127,780

Total Gravel Volume - ft³ Biolite L 2.7 Media Volume - ft³

DN Design
6 Filters
3,470
34,490

6

4.3 Centrifugal Pumps

3 - Common Backwash supply pumps, horizontal centrifugal type rated for 60' TDH (2 x 100% duty) and one (1 x 100%) Spare will be provided for the whole BIOFOR system. The BIOFOR N cells will require the operation of two pumps and the BIOFOR DN cells will require the operation of one pump.

BIOFOR® N
Flow
Backwash Pump Capacity
14,721 gpm

BIOFOR® DN
Flow
Backwash Pump Capacity 6,747 gpm

2 - Air distribution system cleaning pumps, horizontal centrifugal type 120' TDH (One duty and one standby) for BIOFOR® N cells

BIOFOR® N
Flow
Cleaning Pump Capacity 3,680 gpm

Pumps will be skidded on a structural steel base with required piping, valves, flange fittings and accessories - fully assembled.

4.4 Blowers and Appurtenances

9 - One process air blower dedicated to each BIOFOR® N reactor. Rotary lobe type rated for 11.5 psig (1 x 100% duty per cell) and one (1 x 100%) common spare for all for BIOFOR® N Cells combined

Process Air Blower Capacity

BIOFOR® N
Flow
709 scfm

3 - Common Air scour blowers, rotary lobe type, rated for 12.5 psig (2 x 100% duty) and one (1 x 100%) Spare for the whole system. The BIOFOR N cells will require the operation of two blowers and the BIOFOR DN cells will require the operation of one blower.

> BIOFOR® N Flow **Air Scour Blower Capacity** 6,334 scfm

BIOFOR® DN Flow 3,228 scfm **Air Scour Blower Capacity**

Each blower provided with:

- ♦ Motor
- ♦ V-belt drive
- Inlet filter/silencer and outlet silencer
- Check valve
- Manual valve for outlet isolation
- ♦ Relief valve
- ♦ Flexible connections
- Discharge pressure gauge
- ♦ Acoustic enclosure, to meet 85 dBA free field noise requirements.

Blowers shipped to site skidded on separate structural steel bases, assembled with piping, silencers, valves and fittings.

An automatic by-pass flow control valve is included with each air scour blower.

4.5 Compressed Air for Automatic Valves

One (1) – Compressed Air System, provided with:

- One (1) dual-head reciprocating type compressor rated for 15 scfm at 100 psig
- One (1) standby head
- One (1) 200 gallon carbon steel receiver
- Air dryer
- Required relief, exit, and blowdown valves
- Pressure gauges

Note: System shipped to site pre-piped and skidded on a structural steel base.

Pneumatic tubing, valves, and appurtenances for air feed to automatic valves are by others.

4.6 Automatic and Manual Valves

	BIOFOR*-N	
Valve Type - Open/Close	Quantity	Diameter
Influent	8	12"
Process Air, Cleaning Water	8	8"
Backwash Water Inlet	8	30"
Air Scour Inlet	8	18"
Air Cushion Vent	8	2.5"
Backwash Waste	8	36"
Quick Drain	8	14"

Valve Type - Open/Close
Influent
Backwash Water Inlet
Air Scour Inlet
Air Cushion Vent
Backwash Waste
Quick Drain

BIOFOR®-DN		
Quantity	Diameter	
6	10"	
6	20"	
4	12"	
4	3.5"	
4	24"	
4	10"	

10

Valve Type – Modulating Air Scour Vent Flow Control Backwash Water Flow Control

Design	
Quantity Diameter	
1	18"
1	30"

- All automatic open/close valves are butterfly type equipped with doubleacting pneumatic cylinder actuators. Solenoids are mounted directly on actuators. Positioners are pneumatic. Valves include open and close limit switches.
- There are no manual valves included in IDI's Scope of Supply.

4.7 Flow Screens and Strainers

Strainer Type Oxazur Cleaning Strainer Backwash Inlet Strainer Inlet Strainer

Design		
Quantity	Diameter	
1	8"	
1	30"	
TBD	12" N	
TBD	10" DN	

- Backwash inlet strainers In-line Y-Type, (one per system with one spare), 2.4-mm stainless steel mesh, carbon steel body with flanged ends
- Air distributor cleaning header strainers in-line Y-Type, 2.4-mm stainless steel mesh, carbon steel body with flanged ends.
 - All required process flow screens or strainers If pumped, the system shall be provided with In-line Y-Type strainers. If flow by gravity, the system shall be provided with stainless steel wedge wire rundown screens.

4.8 Controls and Instrumentation

 One (1) – PLC/PC control system, mounted in a free-standing NEMA 12 enclosure.

Field Instruments - BIOFOR N and DN

	Design
Field Instruments – Lot	Quantity
Pressure Transmitters (Cell)	14
Pressure Transmitters (Plenum)	14

Lot – pressure gauges, local indication only

General Instruments

	Design	
General Instruments – Lot	Quantity	Diameter
Backwash Flowmeter/Transmitter	1	30"
Air Scour Flowmeter/Transmitter	1	16"
Process Air Flowmeter/Transmitter	8	6"
Level Transmitters*	16	N/A
Dissolved Oxygen (DO) Probe	9	N/A
Online Nitrate Analyzer	2	N/A
B/W Strainer Diff. Pressure Gauges	1	30"

^{*} Ultrasonic Level Transmitters located at Clearwell, Mudwell and individual cells

4.9 Field Service

Thirty (30) days total service time by a qualified, factory-trained service engineer to inspect the BIOFOR® equipment installation, provide start-up assistance and training of operations personnel.

Also included: Four (4) O & M Manuals.

5. <u>Items By Others</u>

The following items are specifically <u>not</u> by Infilco Degremont. They may or may not be required.

Ge	eneral
 Backwash Waste Holding Tank and Clearwell 	Motor Control Center (MCC)
 Chemical Feed Systems for alkalinity correction, methanol and defoamer 	Non-potable water supply
 Chemicals for operation: Including methanol, alkaline solution, defoamer 	Overflow structures including baffles and weir plates
Cleanouts	Power
Concrete	Sludge handling and disposal
Control Panel	Support Platforms
• Drains	Transformers
Engines/Generators	Variable Frequency Drives
Foam control	Ventilation
Hoses /Bibs	Walkways/Roofing/Stairs/Gratings/Handrails
Laboratory	Wireways/Wiring
Ladders	Yard Hydrants
Lighting	Yard Piping
Liquid sampling and analytical work	•

6. Items By Installing Contractor

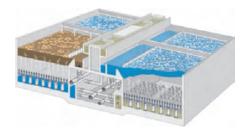
- Obtain necessary construction permits and licenses, construction drawings (including interconnecting piping drawings) field office space, telephone service, and temporary electrical service.
- 2. All site preparation, grading, locating foundation placement, excavation for foundation, underground piping, conduits and drains.
- 3. Demolition and/or removal of any existing structures, equipment or facilities required for construction and installation of the BIOFOR® system.
- 4. Installation of all foundation supply and installation of all embedded or underground piping, conduits and drains.
- 5. All backfill, compaction, finish grading, earthwork and final paving.
- 6. Receiving (preparation of receiving reports), unloading, storage, maintenance preservation and protection of all equipment and materials supplied by Infilco.
- 7. Installation of all equipment and materials supplied by Infilco.
- 8. Supply, fabrication, installation, cleaning, pickling and/or passivation of all interconnecting steel piping components.
- 9. Provide and install all embedded pipe sections and valves for tank drains and reactor inlets and elbows.
- 10. All cutting, welding, fitting and finishing for all field fabricated piping.
- 11. Supply and installation of all flange gaskets and bolts for all piping components.
- 12. Supply and installation of all pipe supports and wall penetrations.
- 13. Install and provide all motor control centers, motor starters, panels, field wiring, wireways, supports and transformers.
- 14. Install all control panels and instrumentation as supplied by Infilco, as applicable.
- 15. Supply and install all electrical power and control wiring and conduit to the equipment served plus interconnection between the Infilco equipment as required, including wire, cable, junction boxes, fittings, conduit, cable trays, safety disconnect switches, circuit breakers, etc.
- 16. Supply and install all insulation, supports, drains, gauges, hold down clamps, condensate drain systems, flanges, flex pipe joints, expansion joints, boots, gaskets, adhesives, fasteners, safety signs, and any specialty items such as traps.
- 17. All labor, materials, supplies and utilities as required for start-up including laboratory facilities and analytical work.
- 18. Provide all chemicals required for plant operation and all chemicals, lubricants, glycol, oils or grease and other supplies thereafter.

- 19. Install all anchor bolts and mounting hardware supplied by Infilco; and supply and install all anchor bolts and mounting hardware not specifically supplied by Infilco.
- 20. Provide all nameplates, safety signs and labels.
- 21. Provide all additional support beams and/or slabs.
- 22. Provide and install all manual valves.
- 23. Provide and install all piping required to interconnect to the Infilco's equipment.
- 24. The Contractor shall coordinate the installation and timing of interface points such as piping and electrical with the Infilco Supplier.

All other necessary equipment and services not otherwise listed as specifically supplied by Infilco.

7. Budget Estimate

PURCHASE PRICE: As Advised By Rep


(Exclusive of taxes per Condition 6 of IDI Conditions of Sale)

- 1. Our Price and Payment Terms are based on IDI's standard terms and conditions, which can be provided upon request.
- 2. Shipping Terms: FOB Shipping point, freight allowed.
- 3. This price will be valid for thirty (30) days.
- 4. All prices are excluding state sales and use taxes and any federal taxes which shall be the sole responsibility of the Purchaser. No additional duties will have to be paid for the equipment supplied by IDI.
- 5. Pricing is subject to the escalation indices for the items in scope of supply calculated from the original proposal date and is in accordance with the Scope of Supply and terms of this proposal and any changes that may require the price to be adjusted. The type of escalation indices can be discussed further and mutually agreed upon.

INFILCO BIOFOR®

Biological Aerated Filtration System

BIOFOR® filters are aerobic or anoxic biological reactors that use attached growth technology for application in municipal or industrial wastewater treatment.

APPLICATIONS

- >> BIOFOR® C for BOD, COD and TSS removal
- >> BIOFOR® N for nitrification of ammonia nitrogen
- >> BIOFOR® C+N for simultaneous BOD removal and nitrification
- » BIOFOR® pre-DN for nitrate removal as a predenitrifcation step without additional carbon source
- » BIOFOR® post-DN for nitrate removal as a final denitrification step with carbon addition

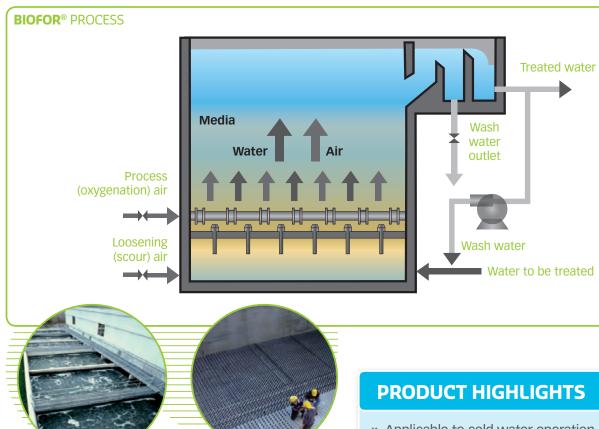
MAIN FEATURES

- » Upflow filtration in which feedwater flow expands the filter media leading to an even distribution of the biomass throughout the bed
- » Co-current flow of feedwater and air prevents short circuiting and also extends the length of filter run times
- » Quick adaptability to flow and load variations
- » Exclusive nozzle floor design which allows for optimum distribution of fluids during filtration as well as wash sequences
- » Highly efficient washing system to accommodate filter bed depths up to 13 ft (4.0 m)

BIOFOR® SPECIFIC TECHNOLOGY

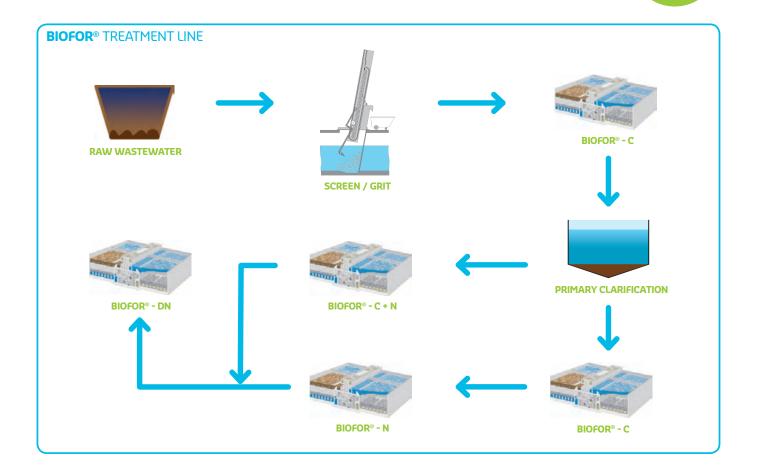
The BIOFOR® process is used primarily for the removal of BOD, TSS and ammonia pollution in secondary and tertiary treatment. BIOFOR® units discharge treated water that conforms to high quality standards for every parameter thanks to the filtering action of the Biolite filter media.

Because BIOFOR® is designed to treat higher organic loadings than conventional systems, the units can accommodate higher filtration velocities. The BIOFOR® units allow treatment of soluble pollution and solids separation in one compact reactor, so no secondary clarifiers are necessary. The PLC based control system automates the filter operation.


HOW IT WORKS

The effluent to be treated enters continuously from the bottom of the reactor and is distributed over the entire filter surface area by the nozzle underdrain. The water then passes through the Biolite filter media which retains the suspended solids. Carbonaceous and nitrogenous pollution is eliminated through the high concentration of fixed-film biomass which is retained on the filter media during the filtration cycle.

In the aerated versions (for BOD removal and nitrification) process air is introduced continuously into the lower part of the reactor by Oxazur® air diffusers.


The use of a co-current upflow design helps to limit odor generation since the treated water is situated at the surface of the filter (in contact with the atmosphere), and the untreated water enters at the bottom of the filter.

The number of filters in filtration service is according to the flow entering the plant. During low flow periods, off-duty filters are aerated periodically to maintain the biomass in optimum condition. Since filters can be taken out of service when not required, operating costs (due to process air production) can be reduced.

- Periodically the BIOFOR® filter is washed after a predetermined run time (24 or 48 hours) or due to a headloss build-up in the filter.
- Filtered water and scour air are used to efficiently clean the filter, preparing it for the next filter run.
- The water for the backwashes is drawn from a dedicated clean backwash tank using pumps.
- The backwash waste water is collected in a dirty backwash water tank for pumping to the backwash water treatment.

- » Applicable to cold water operation
- » Easily adapts to variable flows and pollution loads
- » Treats dilute effluents
- » Excellent solution where limited space is available
- » Very limited odor production
- » Because of small foot-print, can be easily covered and enclosed
- » Modular construction allows for easy plant expansions in the future
- » Eliminates the need for secondary clarifiers

TECHNICAL ADVANTAGES

• Valves and machinery (pumps/blowers) can be installed indoors for easy and convenient maintenance.

- Availaible in sizes up to 1,935 ft2 (180 m²) per filter.
- Variable numbers of filters can allow for energy savings during low flow periods.

DESIGN LOADING

Application	Performance		
	Filtration rate	1.2 - 4.9 gpm/ft² (3-12 m/h)	
BOD removal	Loading	90 - 360 lb/kft³ per day (2 - 8 kg BOD₅/m³ per day)	
	Filtration rate	1.2 - 6.6 gpm/ft ² (3-16 m/h)	
Nitrification	Loading	20 - 90 lb/kft³ per day (0.5 - 2 kg NH₃ - N/m³ per day)	
	Filtration rate	4.1 - 14.3 gpm/ft² (10-35 m/h)	
Pre-denitrification	Loading	135 - 310 lb/kft³ per day (3 - 7 kg NO₃ - N/m³ per day)	
	Filtration rate	4.1 - 12.3 gpm/ft² (10-30 m/h)	
Post-denitrification	Loading	45 - 70 lb/kft³ per day (1-1.5 kg/NO₃ - N/m³ per day)	

TECHNICAL FEATURES

- » TSS and BOD removal to < 10 mg/L
- » Ammonia removal to < 1 mg/L NH₃-N
- » Nitrate removal to < 1 mg/L NO₃-N
- » Total Nitrogen removal to < 3 mg/L TN
- » Aeration oxygen transfer efficiency of 15 25%

COMPLETE TREATMENT SOLUTIONS

Infilco Degremont offers an array of water, wastewater and industrial treatment solutions for any size client. Headworks, clarification, filtration, biological and disinfection systems are several of the product disciplines in our portfolio.

With a variety of filtration and clarification products in our SEPARATIONS department, Infilco engineers carefully evaluate each application to provide the most cost-effective and efficient treatment solution.

If interested in this product, check out some of our complementary products:

- ABW® Automatic Backwash Filter
- AquaDAF® Clarifier
- Cleargreen™
- DensaDeg® Clarifier/Thickener
- Ferazur®/Mangazur®
- Meteor® IFAS/MBBR
- Ultragreen™
- Climber Screen®

- Vortex®
- Cannon® Mixer
- 2PAD
- Thermylis® HTFB

PILOTING SERVICES

Infilco Degremont offers pilot systems and services for this and many other of our product offerings. Pilot studies are a practical means of optimizing physical-chemical and biological process designs and offer the client several benefits, such as:

- Proof of system reliability
- Optimal design conditions for the full-scale system
- · Free raw water lab analysis
- · Regulatory approval

If interested in a pilot study for this system, please contact us for a proposal and more information.

SERVICES - INFILCARE™

PART SALES

Infilco Degremont sells parts and components for most INFILCO brand equipment as well as parts for demineralizers, thickeners, nozzles, pressure filters, and valves. We offer reliable spare parts at competitive prices. We maintain records of previous installations to quickly identify your requirements. Many items are shipped directly from stock for quick delivery.

REBUILDS, RETROFITS AND UPGRADES

Infilco Degremont offers cost-effective rebuilds and upgrades for INFILCO provided systems, no matter what year they were built. If you are interested in an economical alternative to installing a whole new system, contact us for a proposal.

CONTACTS

www.DEGREMONT-TECHNOLOGIES.com

INFILCO DEGREMONT INC.

8007 Discovery Drive Richmond, VA 23229-8605, USA Tel: +1 804 756 7600 Fax: +1 804 756 7643 info-infilco@degtec.com

DEGRÉMONT LIMITÉE

1375, route Transcanadienne, Bureau 400 Dorval (Qc) H9P 2W8, Canada Tel: +1 514 683 1200 Fax: +1 514 683 1203 info-canada@degtec.com

INFILCO DEGREMONT INC.

BUDGET PROPOSAL

PROJECT: BOISE, ID WWTP

ENGINEER: BROWN & CALDWELL

PROPOSAL#: 50157596.01

DATE: APRIL 2, 2015

COMMITTED TOGETHER TO WATER, A SOURCE OF LIFE

REGIONAL BUSINESS MANAGER:

SUSAN PILGRAM

INFILCO DEGREMONT, INC.

BOULDER, CO

CELL: 303-652-7139

EMAIL: SUSAN.PILGRAM@INFILCODEGREMONT.COM CELL: 303-601-5215

LOCAL REPRESENTATIVE:

SCOTT MARSHALL

MISCOWATER, INC.

651 CORPORATE CIRCLE, SUITE #100

GOLDEN, CO 80401

EMAIL: SMARSHALL@MISCOWATER.COM

INFILCO DEGREMONT INC.

8007 DISCOVERY DRIVE, RICHMOND, VA 23229 USA P.O. BOX 71390, RICHMOND, VA 23255-1390 USA TEL 804 756-7600 | FAX 804 756-7643

April 2, 2015

Stephanie Fevig Brown and Caldwell, Inc.

Re: Boise, ID Project

BIOFOR® Biological Filtration System

Dear Ms. Fevig:

With regard to your request for a BIOFOR® design for the wastewater facility located in Boise, ID, IDI is pleased to submit the following preliminary design proposal. This proposal describes a BIOFOR® N design for nitrification followed by a BIOFOR® DN at a design water temperature of 14 °C.

The BIOFOR® N system consists of six (6) filter cells sized as follows to produce 14.2 MGD:

BIOFOR® N: 6 cells, 850 ft² (27.0' x 31.5').

The BIOFOR® DN system consists of six (6) filter cells sized as follows to produce 14.2 MGD:

BIOFOR® DN: 6 cells, 550 ft² (22.0' x 25.0').

The system is sized for treating a design influent flow of 14.2 MGD with one cell in standby each for the BIOFOR® N stage and BIOFOR® DN. We have endeavored to provide complete information in this proposal. However, if you have any questions or need additional information, please don't hesitate to contact our Regional Business Manager, Susan Pilgram, our local representative, Scott Marshall, or me directly.

Sincerely,

Brian McGovern

Brian Molher

Senior Process Engineer - Biological Systems Group

TABLE OF CONTENTS

1.	BIOFOR®- General Description	1
2.	Design Conditions	3
	2.1 DESCRIPTION OF OPERATION	4
3.	BIOLOGICAL REACTORS	5
	3.1 BIOFOR® N & DN	5
	3.2 Backwashing	
4.	SCOPE OF SUPPLY	6
	4.1 BIOFOR®-N & DN FILTER MODULES	6
	4.2 MEDIA AND SUPPORT GRAVEL	6
	4.3 CENTRIFUGAL PUMPS	
	4.4 BLOWERS AND APPURTENANCES	7
	4.5 COMPRESSED AIR FOR AUTOMATIC VALVES	9
	4.6 AUTOMATIC AND MANUAL VALVES	9
	4.7 FLOW SCREENS AND STRAINERS	10
	4.8 CONTROLS AND INSTRUMENTATION	11
	4.9 FIELD SERVICE	11
5.	Items By Others	12
6.	Items By Installing Contractor	13
7.	Budget Estimate	15

1. BIOFOR®- General Description

The BIOFOR® is a biological, submerged filter containing a fixed, dense granular bed with influent water flowing in the upward direction. The BIOFOR® Process is applied individually or in separate stages for nitrification (BIOFOR® -"N"), and denitrification (BIOFOR® -"DN"). In the BIOFOR® N process air is introduced at the bottom of the media bed and flows co-currently with the influent water. In the BIOFOR® DN an external carbon source is mixed with the filter influent.

The BIOFOR® is based on the following basic principles:

- a single layer of granular BIOLITE media for biomass attachment and retention of suspended solids.
- a discrete process air distribution system (for aerated systems only)
- upflow, co-current distribution of air and water
- backwash sequence automated and optimized per application requirements

BIOLITE™ Media

BIOLITE media is an expanded clay material with a high specific surface area, low density, and good resistance to attrition. The porosity of the material ensures biomass attachment. Different particle sizes ranging from 1mm to 5mm are available depending on the application.

OXAZUR® Air Diffusers

OXAZUR air diffusers, present in all aerated BIOFOR® units, are aerating devices with elastic rubber membranes enclosed in a polypropylene casing. The diffusers are installed on a series of process air distribution pipes located at the bottom of the media bed, directly above the plenum. The combination of diffused air and media retention produces a highly efficient aeration system with fine bubble diffusion characteristics. In order to assure homogeneous distribution over long-term operation, a pressurized cleaning water system is provided and operated approximately once per month to flush the diffusers.

Upflow Distribution of Air and Water

Distribution of process air and influent water is upward through the BIOLITE media. This co-current, upward flow ensures an even distribution of water and air. It enables the media to retain solids and biomass throughout the entire bed depth and prevents short-circuiting and gas entrapment. In anoxic, denitrifying systems, nitrogen gas bubbles are continuously and effectively released from the media to atmosphere. The media operates in slight expansion, thereby ensuring full use of the available media volume and allowing high hydraulic loading rates.

MONOFLOR® Underdrain

Concrete BIOFOR® installations have the distribution nozzles located in the poured-in-place filter floor. To ensure an accurate, grout-free installation, the MONOFLOR underdrain is used. This underdrain is simple to install, leak-proof, and has been widely used on filter systems for many years.

Backwash Sequence

Backwash sequences for biological aerated filters must comply with several requirements:

- The filter bed must be cleaned of retained solids and excess biomass
- Sufficient biomass must remain in the reactor following a backwash
- Air and water flows must not cause filter media to be lost
- Water and energy consumption must be minimized
- The backwash sequence must be initiated and carried out automatically.

The standard BIOFOR® backwash sequence has been developed specifically to meet the requirements listed above. The backwash sequence may be optimized during start-up and can be modified based on operating experience.

The sequence may be initiated manually, on operating time, or upon reaching a pre-set terminal headloss. The main steps of the sequence are:

- quick drain to backflush the influent distribution nozzles
- air scour
- a series of simultaneous air/water washes
- water rinse

Design Conditions 2.

The Submerged Biological Filter, BIOFOR® System, described herein is a dual-stage water treatment system designed for the reduction of ammonia nitrogen and nitrate nitrogen.

The dual-stage biofilter system will be furnished and installed as described herein. The system is based on treating influent water with the following characteristics:

Influent Parameter	
Average Daily Flow – MGD	11.3
Max Month Flow – MGD	14.2
Total K Nitrogen (TKN) – mg/L	12.0
Ammonia Nitrogen (NH ₃ -N) – mg/L	10.0
Biological Oxygen Demand (CBOD ₅) – mg/L	20.0
Total Suspended Solids (TSS) – mg/L	20.0
Design Water Temperature: ℃	14.0

The BIOFOR®-N and DN system described herein shall be designed to achieve the following monthly effluent quality for the specified flow:

Effluent Requirements	
Ammonia Nitrogen – NH ₃ -N – mg/L	≤ 0.5
Nitrate Nitrogen – NO ₃ -N – mg/L	≤ 8.0
Biological Oxygen Demand (CBOD ₅) – mg/L	≤ 20.0
Total Suspended Solids (TSS) – mg/L	≤ 20.0

The BIOFOR® N system consists of six (6) filters of dimensions 850 ft² (27.0' x 31.5'). The system will be capable of treating the design flow to meet the effluent requirements listed above with one cell in standby or backwash.

The BIOFOR® DN system consists of six (6) filters of dimensions 550 ft² (22.0' x 25.0'). The system will be capable of treating the design flow to meet the effluent requirements listed above with one cell in standby or backwash.

2.1 Description of Operation

Water is pumped to a flow channel for the BIOFOR®-N and DN units and is evenly distributed to the cells through a series of weirs in the central gallery. Water to be treated is introduced into the plenum and flows upward through the BIOLITE™ media. As the water and process airflows co-currently through the media bed, attached heterotrophic biomass oxidizes carbonaceous and nitrate compounds, autotrophic biomass oxidizes ammonia and suspended solids and biomass are retained.

Due to solids retention and biomass growth within the filter media, backwashing of the BIOFOR® units is necessary to remove retained solids and maintain a thin, active biofilm. Backwashing is initiated either manually or automatically, based upon elapsed time or on reaching a pre-set terminal headloss. The backwash sequence includes a number of distinct steps, the duration and extent of each step being optimized during plant start-up and modified based on operating experience. The basic backwash sequence includes the following steps:

- Quick drain to backflush the underdrain nozzles
- Air scour
- Combination air and water backwash
- Water rinse
- Repeat of the above steps three times
- Water rinse with influent water (filter to waste)

A centrifugal pump from the clearwell supplies clean water used for backwashing the cells. The backwash water flow rate can be controlled with an automatic flow control valve while a positive displacement blower supplies air used for air scour. Spare, installed units are provided for both the air scour blower and backwash water supply pump.

Water from the quick drain step is collected in a drain sump and typically flows into the backwash waste tank. Water from the remaining steps collects in a common backwash flume and flows to the backwash waste storage tank. Stored backwash water is normally returned to the head of the plant; if necessary, it may need to be treated in a separate side stream due to backwashing considerations.

3. BIOLOGICAL REACTORS

Infilco Degremont, Inc. will provide twelve (12) upflow, biological, submerged fixed-film reactors; with BIOLITE media for biomass support: Six (6) BIOFOR® - "N" aerobic reactors and Six (6) BIOFOR® - "DN" anaerobic reactors.

3.1 BIOFOR® N & DN

Unit Filtration Area Total Number of Cells Biolite Media Depth

BIOFOR® N Design	
850 ft ²	
6	
12 ft – 2 inches	

Unit Filtration Area Total Number of Cells Biolite Media Depth

BIOFOR® DN Design	
550 ft ²	
6	
9 ft – 6 inches	

Each reactor will consist of a concrete tank with monolithic underdrain (MONOFLOR®), bottom influent and air/water backwash distribution system, process air distribution system for N cells only, granular expanded clay media, gravel support bed, influent channel, effluent and backwash waste channels with stilling baffle. Common instrumentation furnished by IDI includes: process air blowers, air distribution system cleaning pump, air scour blowers, backwash pumps, controls and instrumentation and all associated automatic valves and skid piping. An additional Methanol dosing system will be required as a carbon source for the denitrifying bacteria population for the BIOFOR® DN.

3.2 Backwashing

The BIOFOR® reactors will be washed periodically by a sequence of air scour, combination air scour/backwash water, and water only rinse steps. Water used to backwash the biofilter reactors will be pumped from a separate clearwell supplied by others. The air scour blower capacity is based on a maximum air scour rate of 5.8 scfm/sq.ft. of filter media. The backwash pump system is sized for a maximum backwash water rate of 12.0 gpm/sq.ft. of filter media.

Clean Water Tank Volume Dirty Water Tank Volume

BioFOR N and DN
255,000 gal
300,000 gal

Boise, ID WWTP

Standard # F0157506 01

4. SCOPE OF SUPPLY

4.1 BIOFOR®-N & DN Filter Modules

BIOFOR® N and DN Reactors with all internals and required wall pieces.

Each reactor will include the following:

- Equipment for MONOFLOR underdrain including forms, polyethylene nozzles and accessories.
- One (1) Tranquilizer (stilling) baffle consisting of staggered vertical aluminum slats extending across the width of the reactor. Installation of the tranquilizer baffle is by others.
- Process air distribution system in 316 stainless steel with OXAZUR[®] air diffusers (for BIOFOR[®] N only)

4.2 Media and Support Gravel

- Support gravel, 20" depth in the BIOFOR®-N reactor (includes 5% extra)
- Support gravel, 12" depth in the BIOFOR®-DN reactor (includes 5% extra)
- BIOLITE-"L" media, 2.7 mm, to 12'-2" depth in the BIOFOR®-N reactors (includes 10% extra)
- BIOLITE-"P" media, 3.5 mm, to 9'-6" depth in the BIOFOR®-DN reactors (includes 10% extra)

Total Gravel Volume - ft³
Biolite L 2.7 Media Volume - ft³

N Design
6 Filters
8,930
67,880

Total Gravel Volume - ft³
Biolite L 2.7 Media Volume - ft³

DN Design
6 Filters
3,470
34,490

Boise, ID WWTP

Proposal # F0157506 01

4.3 Centrifugal Pumps

3 - Common Backwash supply pumps, horizontal centrifugal type rated for 60' TDH (2 x 100% duty) and one (1 x 100%) Spare will be provided for the whole BIOFOR system. The BIOFOR N cells will require the operation of two pumps and the BIOFOR DN cells will require the operation of one pump.

BIOFOR® N
Flow
Backwash Pump Capacity 10,428 gpm

BIOFOR® DN
Flow
Backwash Pump Capacity 6,747 gpm

2 - Air distribution system cleaning pumps, horizontal centrifugal type 120' TDH (One duty and one standby) for BIOFOR® N cells

BIOFOR® N
Flow
Cleaning Pump Capacity 2,607 gpm

Pumps will be skidded on a structural steel base with required piping, valves, flange fittings and accessories - fully assembled.

4.4 Blowers and Appurtenances

7 - One process air blower dedicated to each BIOFOR® N reactor. Rotary lobe type rated for 11.5 psig (1 x 100% duty per cell) and one (1 x 100%) common spare for all for BIOFOR® N Cells combined

Process Air Blower Capacity

BIOFOR® N
Flow
502 scfm

8

3 - Common Air scour blowers, rotary lobe type, rated for 12.5 psig (2 x 100% duty) and one (1 x 100%) Spare for the whole system. The BIOFOR N cells will require the operation of two blowers and the BIOFOR DN cells will require the operation of one blower.

> BIOFOR® N Flow **Air Scour Blower Capacity** 4,487 scfm

BIOFOR® DN Flow 3,228 scfm **Air Scour Blower Capacity**

Each blower provided with:

- ♦ Motor
- ♦ V-belt drive
- Inlet filter/silencer and outlet silencer
- Check valve
- Manual valve for outlet isolation
- Relief valve
- ♦ Flexible connections
- Discharge pressure gauge
- ♦ Acoustic enclosure, to meet 85 dBA free field noise requirements.

Blowers shipped to site skidded on separate structural steel bases, assembled with piping, silencers, valves and fittings.

An automatic by-pass flow control valve is included with each air scour blower.

4.5 Compressed Air for Automatic Valves

One (1) – Compressed Air System, provided with:

- One (1) dual-head reciprocating type compressor rated for 15 scfm at 100 psig
- One (1) standby head
- One (1) 200 gallon carbon steel receiver
- Air dryer
- Required relief, exit, and blowdown valves
- Pressure gauges

Note: System shipped to site pre-piped and skidded on a structural steel base.

Pneumatic tubing, valves, and appurtenances for air feed to automatic valves are by others.

4.6 Automatic and Manual Valves

	BIOFOR*-N	
Valve Type - Open/Close	Quantity	Diameter
Influent	6	16"
Process Air, Cleaning Water	6	6"
Backwash Water Inlet	6	24"
Air Scour Inlet	6	14"
Air Cushion Vent	6	2.5"
Backwash Waste	6	30"
Quick Drain	6	12"

Valve Type - Open/Close
Influent
Backwash Water Inlet
Air Scour Inlet
Air Cushion Vent
Backwash Waste
Quick Drain

	BIOFOR [®] -DN		
)	Quantity	Diameter	
	6	10"	
	6	20"	
	6	12"	
	6	3.5"	
ļ	6	24"	
	6	10"	

Valve Type – Modulating **Air Scour Vent Flow Control Backwash Water Flow Control**

Design	
Quantity	Diameter
1	14"
1	24"

- All automatic open/close valves are butterfly type equipped with doubleacting pneumatic cylinder actuators. Solenoids are mounted directly on actuators. Positioners are pneumatic. Valves include open and close limit switches.
- There are no manual valves included in IDI's Scope of Supply.

4.7 Flow Screens and Strainers

Strainer Type **Oxazur Cleaning Strainer Backwash Inlet Strainer Inlet Strainer**

Design		
Quantity	Diameter	
1	6"	
1	30"	
TBD	16" N	
TBD	10" DN	

10

- Backwash inlet strainers In-line Y-Type, (one per system with one spare), 2.4-mm stainless steel mesh, carbon steel body with flanged ends
- Air distributor cleaning header strainers in-line Y-Type, 2.4-mm stainless steel mesh, carbon steel body with flanged ends.
 - All required process flow screens or strainers If pumped, the system shall be provided with In-line Y-Type strainers. If flow by gravity, the system shall be provided with stainless steel wedge wire rundown screens.

4.8 Controls and Instrumentation

 One (1) – PLC/PC control system, mounted in a free-standing NEMA 12 enclosure.

Field Instruments - BIOFOR N and DN

	Design
Field Instruments – Lot	Quantity
Pressure Transmitters (Cell)	12
Pressure Transmitters (Plenum)	12

Lot – pressure gauges, local indication only

General Instruments

	Design	
General Instruments – Lot	Quantity	Diameter
Backwash Flowmeter/Transmitter	1	24"
Air Scour Flowmeter/Transmitter	1	14"
Process Air Flowmeter/Transmitter	6	6"
Level Transmitters*	14	N/A
Dissolved Oxygen (DO) Probe	7	N/A
Online Nitrate Analyzer	2	N/A
B/W Strainer Diff. Pressure Gauges	1	24"

^{*} Ultrasonic Level Transmitters located at Clearwell, Mudwell and individual cells

4.9 Field Service

Thirty (30) days total service time by a qualified, factory-trained service engineer to inspect the BIOFOR® equipment installation, provide start-up assistance and training of operations personnel.

Also included: Four (4) O & M Manuals.

5. <u>Items By Others</u>

The following items are specifically <u>not</u> by Infilco Degremont. They may or may not be required.

General		
 Backwash Waste Holding Tank and Clearwell 	Motor Control Center (MCC)	
 Chemical Feed Systems for alkalinity correction, methanol and defoamer 	Non-potable water supply	
 Chemicals for operation: Including methanol, alkaline solution, defoamer 	 Overflow structures including baffles and weir plates 	
Cleanouts	Power	
Concrete	Sludge handling and disposal	
Control Panel	Support Platforms	
• Drains	Transformers	
Engines/Generators	Variable Frequency Drives	
Foam control	Ventilation	
Hoses /Bibs	Walkways/Roofing/Stairs/Gratings/Handrails	
Laboratory	Wireways/Wiring	
Ladders	Yard Hydrants	
Lighting	Yard Piping	
Liquid sampling and analytical work	•	

6. Items By Installing Contractor

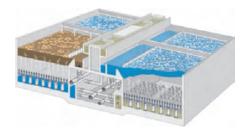
- 1. Obtain necessary construction permits and licenses, construction drawings (including interconnecting piping drawings) field office space, telephone service, and temporary electrical service.
- 2. All site preparation, grading, locating foundation placement, excavation for foundation, underground piping, conduits and drains.
- 3. Demolition and/or removal of any existing structures, equipment or facilities required for construction and installation of the BIOFOR® system.
- 4. Installation of all foundation supply and installation of all embedded or underground piping, conduits and drains.
- 5. All backfill, compaction, finish grading, earthwork and final paving.
- 6. Receiving (preparation of receiving reports), unloading, storage, maintenance preservation and protection of all equipment and materials supplied by Infilco.
- 7. Installation of all equipment and materials supplied by Infilco.
- 8. Supply, fabrication, installation, cleaning, pickling and/or passivation of all interconnecting steel piping components.
- 9. Provide and install all embedded pipe sections and valves for tank drains and reactor inlets and elbows.
- 10. All cutting, welding, fitting and finishing for all field fabricated piping.
- 11. Supply and installation of all flange gaskets and bolts for all piping components.
- 12. Supply and installation of all pipe supports and wall penetrations.
- 13. Install and provide all motor control centers, motor starters, panels, field wiring, wireways, supports and transformers.
- 14. Install all control panels and instrumentation as supplied by Infilco, as applicable.
- 15. Supply and install all electrical power and control wiring and conduit to the equipment served plus interconnection between the Infilco equipment as required, including wire, cable, junction boxes, fittings, conduit, cable trays, safety disconnect switches, circuit breakers, etc.
- 16. Supply and install all insulation, supports, drains, gauges, hold down clamps, condensate drain systems, flanges, flex pipe joints, expansion joints, boots, gaskets, adhesives, fasteners, safety signs, and any specialty items such as traps.
- 17. All labor, materials, supplies and utilities as required for start-up including laboratory facilities and analytical work.
- 18. Provide all chemicals required for plant operation and all chemicals, lubricants, glycol, oils or grease and other supplies thereafter.

- 19. Install all anchor bolts and mounting hardware supplied by Infilco; and supply and install all anchor bolts and mounting hardware not specifically supplied by Infilco.
- 20. Provide all nameplates, safety signs and labels.
- 21. Provide all additional support beams and/or slabs.
- 22. Provide and install all manual valves.
- 23. Provide and install all piping required to interconnect to the Infilco's equipment.
- 24. The Contractor shall coordinate the installation and timing of interface points such as piping and electrical with the Infilco Supplier.

All other necessary equipment and services not otherwise listed as specifically supplied by Infilco.

7. Budget Estimate

PURCHASE PRICE: As Advised By Rep


(Exclusive of taxes per Condition 6 of IDI Conditions of Sale)

- 1. Our Price and Payment Terms are based on IDI's standard terms and conditions, which can be provided upon request.
- 2. Shipping Terms: FOB Shipping point, freight allowed.
- 3. This price will be valid for thirty (30) days.
- 4. All prices are excluding state sales and use taxes and any federal taxes which shall be the sole responsibility of the Purchaser. No additional duties will have to be paid for the equipment supplied by IDI.
- 5. Pricing is subject to the escalation indices for the items in scope of supply calculated from the original proposal date and is in accordance with the Scope of Supply and terms of this proposal and any changes that may require the price to be adjusted. The type of escalation indices can be discussed further and mutually agreed upon.

INFILCO BIOFOR®

Biological Aerated Filtration System

BIOFOR® filters are aerobic or anoxic biological reactors that use attached growth technology for application in municipal or industrial wastewater treatment.

APPLICATIONS

- >> BIOFOR® C for BOD, COD and TSS removal
- >> BIOFOR® N for nitrification of ammonia nitrogen
- >> BIOFOR® C+N for simultaneous BOD removal and nitrification
- » BIOFOR® pre-DN for nitrate removal as a predenitrifcation step without additional carbon source
- » BIOFOR® post-DN for nitrate removal as a final denitrification step with carbon addition

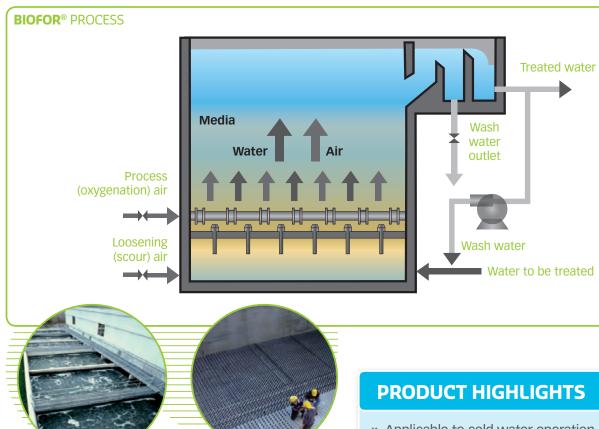
MAIN FEATURES

- » Upflow filtration in which feedwater flow expands the filter media leading to an even distribution of the biomass throughout the bed
- » Co-current flow of feedwater and air prevents short circuiting and also extends the length of filter run times
- » Quick adaptability to flow and load variations
- » Exclusive nozzle floor design which allows for optimum distribution of fluids during filtration as well as wash sequences
- » Highly efficient washing system to accommodate filter bed depths up to 13 ft (4.0 m)

BIOFOR® SPECIFIC TECHNOLOGY

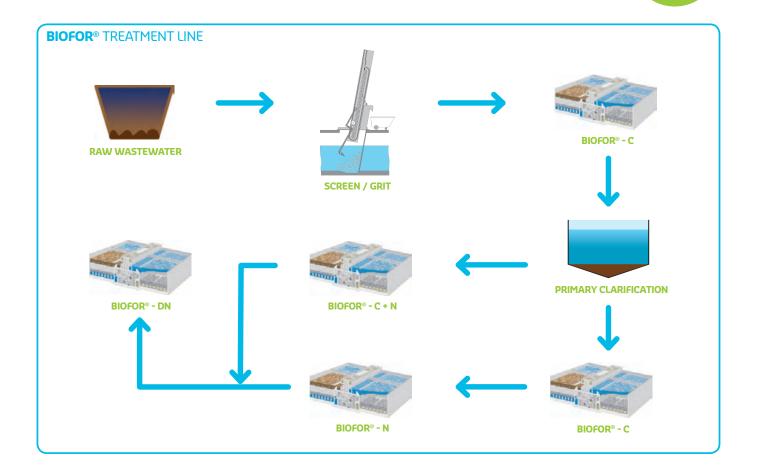
The BIOFOR® process is used primarily for the removal of BOD, TSS and ammonia pollution in secondary and tertiary treatment. BIOFOR® units discharge treated water that conforms to high quality standards for every parameter thanks to the filtering action of the Biolite filter media.

Because BIOFOR® is designed to treat higher organic loadings than conventional systems, the units can accommodate higher filtration velocities. The BIOFOR® units allow treatment of soluble pollution and solids separation in one compact reactor, so no secondary clarifiers are necessary. The PLC based control system automates the filter operation.


HOW IT WORKS

The effluent to be treated enters continuously from the bottom of the reactor and is distributed over the entire filter surface area by the nozzle underdrain. The water then passes through the Biolite filter media which retains the suspended solids. Carbonaceous and nitrogenous pollution is eliminated through the high concentration of fixed-film biomass which is retained on the filter media during the filtration cycle.

In the aerated versions (for BOD removal and nitrification) process air is introduced continuously into the lower part of the reactor by Oxazur® air diffusers.


The use of a co-current upflow design helps to limit odor generation since the treated water is situated at the surface of the filter (in contact with the atmosphere), and the untreated water enters at the bottom of the filter.

The number of filters in filtration service is according to the flow entering the plant. During low flow periods, off-duty filters are aerated periodically to maintain the biomass in optimum condition. Since filters can be taken out of service when not required, operating costs (due to process air production) can be reduced.

- Periodically the BIOFOR® filter is washed after a predetermined run time (24 or 48 hours) or due to a headloss build-up in the filter.
- Filtered water and scour air are used to efficiently clean the filter, preparing it for the next filter run.
- The water for the backwashes is drawn from a dedicated clean backwash tank using pumps.
- The backwash waste water is collected in a dirty backwash water tank for pumping to the backwash water treatment.

- » Applicable to cold water operation
- » Easily adapts to variable flows and pollution loads
- » Treats dilute effluents
- » Excellent solution where limited space is available
- » Very limited odor production
- » Because of small foot-print, can be easily covered and enclosed
- » Modular construction allows for easy plant expansions in the future
- » Eliminates the need for secondary clarifiers

TECHNICAL ADVANTAGES

• Valves and machinery (pumps/blowers) can be installed indoors for easy and convenient maintenance.

- Availaible in sizes up to 1,935 ft2 (180 m²) per filter.
- Variable numbers of filters can allow for energy savings during low flow periods.

DESIGN LOADING

Application		Performance				
	Filtration rate	1.2 - 4.9 gpm/ft² (3-12 m/h)				
BOD removal	Loading	90 - 360 lb/kft³ per day (2 - 8 kg BOD₅/m³ per day)				
	Filtration rate	1.2 - 6.6 gpm/ft² (3-16 m/h)				
Nitrification	Loading	20 - 90 lb/kft³ per day (0.5 - 2 kg NH₃ - N/m³ per day)				
	Filtration rate	4.1 - 14.3 gpm/ft² (10-35 m/h)				
Pre-denitrification	Loading	135 - 310 lb/kft³ per day (3 - 7 kg NO₃ - N/m³ per day)				
	Filtration rate	4.1 - 12.3 gpm/ft² (10-30 m/h)				
Post-denitrification	Loading	45 - 70 lb/kft³ per day (1-1.5 kg/NO₃ - N/m³ per day)				

TECHNICAL FEATURES

- » TSS and BOD removal to < 10 mg/L
- » Ammonia removal to < 1 mg/L NH₃-N
- » Nitrate removal to < 1 mg/L NO₃-N
- » Total Nitrogen removal to < 3 mg/L TN
- » Aeration oxygen transfer efficiency of 15 25%

COMPLETE TREATMENT SOLUTIONS

Infilco Degremont offers an array of water, wastewater and industrial treatment solutions for any size client. Headworks, clarification, filtration, biological and disinfection systems are several of the product disciplines in our portfolio.

With a variety of filtration and clarification products in our SEPARATIONS department, Infilco engineers carefully evaluate each application to provide the most cost-effective and efficient treatment solution.

If interested in this product, check out some of our complementary products:

- ABW® Automatic Backwash Filter
- AquaDAF® Clarifier
- Cleargreen™
- DensaDeg® Clarifier/Thickener
- Ferazur®/Mangazur®
- Meteor® IFAS/MBBR
- Ultragreen™
- Climber Screen®

- Vortex®
- Cannon® Mixer
- 2PAD
- Thermylis® HTFB

PILOTING SERVICES

Infilco Degremont offers pilot systems and services for this and many other of our product offerings. Pilot studies are a practical means of optimizing physical-chemical and biological process designs and offer the client several benefits, such as:

- Proof of system reliability
- Optimal design conditions for the full-scale system
- Free raw water lab analysis
- · Regulatory approval

If interested in a pilot study for this system, please contact us for a proposal and more information.

SERVICES - INFILCARE™

PART SALES

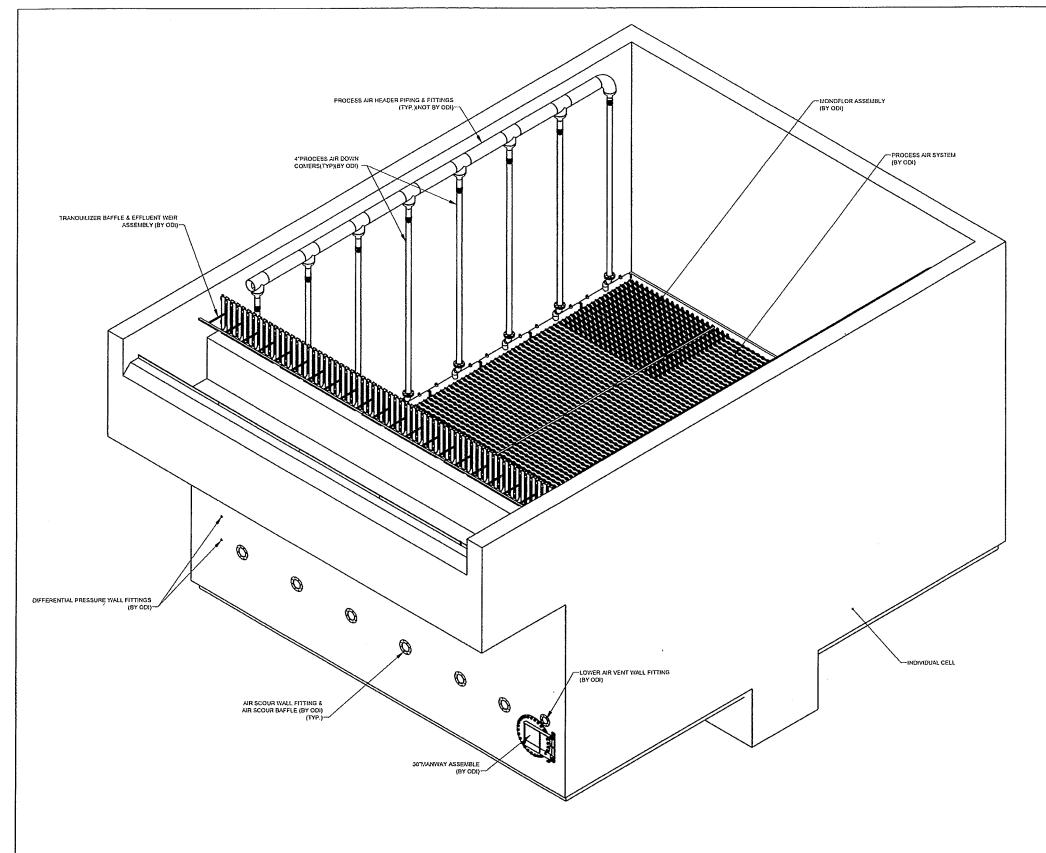
Infilco Degremont sells parts and components for most INFILCO brand equipment as well as parts for demineralizers, thickeners, nozzles, pressure filters, and valves. We offer reliable spare parts at competitive prices. We maintain records of previous installations to quickly identify your requirements. Many items are shipped directly from stock for quick delivery.

REBUILDS, RETROFITS AND UPGRADES

Infilco Degremont offers cost-effective rebuilds and upgrades for INFILCO provided systems, no matter what year they were built. If you are interested in an economical alternative to installing a whole new system, contact us for a proposal.

CONTACTS

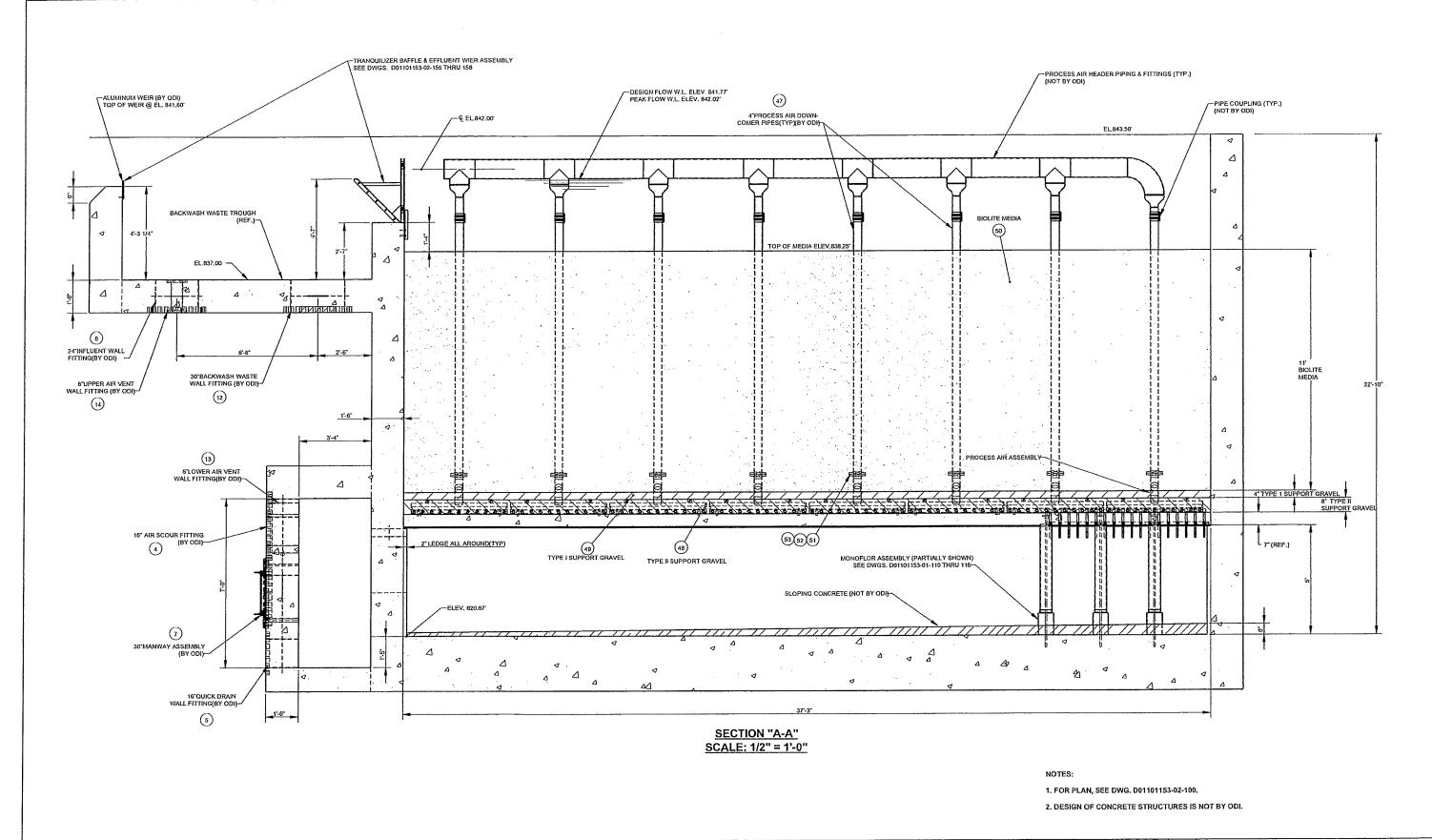
www.DEGREMONT-TECHNOLOGIES.com

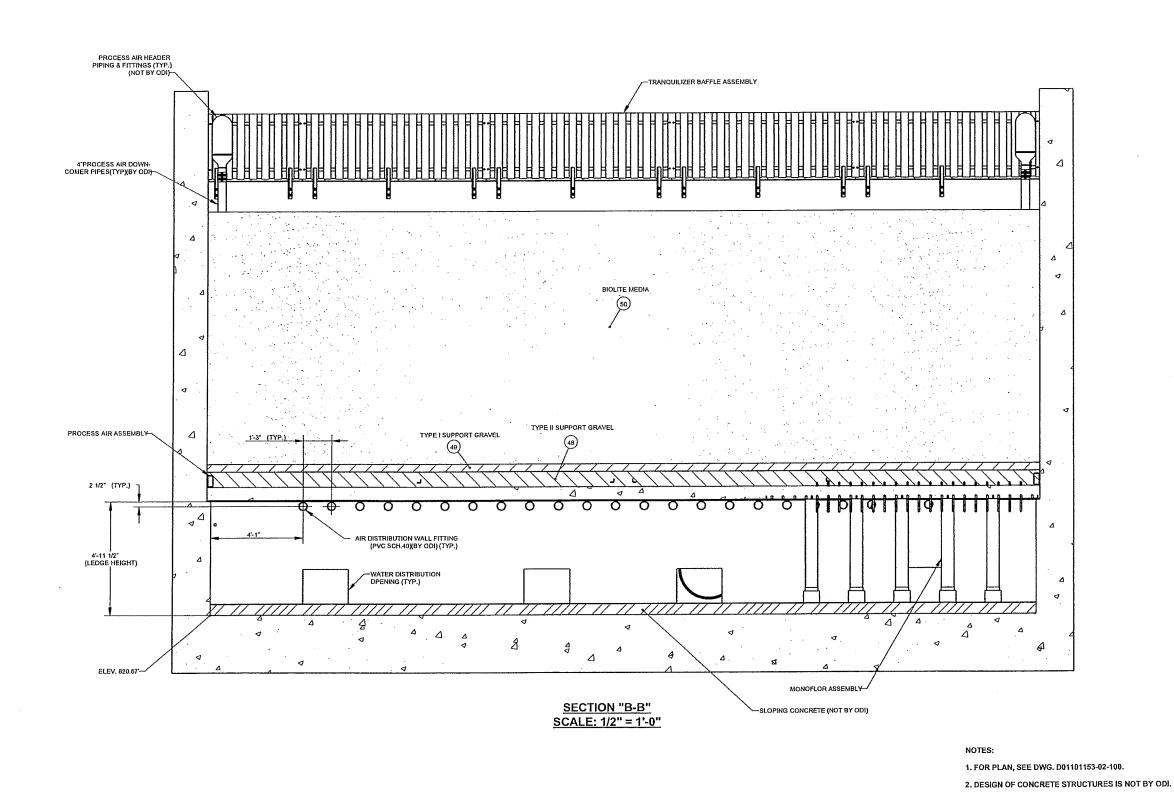

INFILCO DEGREMONT INC.

8007 Discovery Drive Richmond, VA 23229-8605, USA Tel: +1 804 756 7600 Fax: +1 804 756 7643 info-infilco@degtec.com

DEGRÉMONT LIMITÉE

1375, route Transcanadienne, Bureau 400 Dorval (Qc) H9P 2W8, Canada Tel: +1 514 683 1200 Fax: +1 514 683 1203 info-canada@degtec.com




NOTES:

- 1. WORK THIS DRAWING w/ DWGS. D01101153-01-100 THRU 103.
- 2. DESIGN OF CONCRETE STRUCTURES IS NOT BY ODI.
- 3. WALL FITTING LOCATIONS SHOWN ARE FOR CELLS C-1 THRU C-4, CELLS C-5 THRU C-8 ARE OPPOSITE HAND, SEE ENGINEERS PIPING DRAWINGS FOR ORIENTATION.

	REV	REVISION DESCRIPTION D	RAWN	HECKED AR	P DATE	REV	REVISION DESCRIPTION	DRAWN	250	XEC APP	P DAT	E P	PROJECT INFORMATION		ONDEO Degremont, Inc.		BY	DATE	ISOMETRIC
THIS DRAWING CONTAINS INFORMATION PROFRIETAR TO DINCEO DEGREMONT, INC., IT IS SUBMITTED IN CONFIDENCE & IS TO BE USED SOLELY FOR THE	L					IJ <u></u>	ORIGINAL ISSUE		+	B S.5	5. 11/0	01			Post Office Box 71390 Richmond, Virginia 23255-1390	DRAWN	RHB :	11/01	GENERAL ARANGEMENT
PURPOSE FOR WHICH IT IS FLAMISHED & RETURNED UPON REQUEST, THIS DRAWING & SUCH INFORMATION	ļ					 	WALL FITTING LOCATION CHANGED, ADDED NOTE 3. NOTED 4"PROCESS AIR PIPES BY ODI	GEP	배	M JH	10.0	02 '		0	PH: (800) 446-1150	APP	GSB 1	11/01	BIOFOR MONOFLOR HD-1600
IS NOT TO BE REPRODUCED, TRANSMITTED, DISCLOSED, OR USED OTHERWISE IN WHOLE OR IN	-				_	┨┞╸	NOTED 4 PROCESS MR FIFES OF OUT		1	" 3/1		-		~~	ONDEO	REF. 1	5301099	s	SOZE G
PART WITHOUT THE WRITTEN AUTHORIZATION OF ONDEO DEGREMONT, INC.													Cust. Ord. No.:	V	° Degrémont	REF.	-		D
i						7 🗀						_		0		SCALE	N.T.S.		

	REV	REVISION DESCRIPTION	CRAWN	D-ECKED	APP	DATE	REV REVISION DESCRIPTION	DRAWN DECKED	APP	DATE	PROJECT INFORMATION		ONDEO Degrement, Inc.		BY DATE		PLAN & SECTIONS	
THIS DRAWING CONTABLS INFORMATION PROPRETARY TO ONDEO DEGREMONT, INC., IT IS SUBMITTED IN							- ORIGINAL ISSUE	RHB GSB	s.s.	11/01	J		Post Office Box 71390	DRAWN	RHB 11/01		GENERAL ARRANGEMENT	
CONFIDENCE & IS TO BE USED SOLELY FOR THE PURPOSE FOR WHICH IT IS FURNISHED & RETURNED							A REVISED CELL SIZE, ADJUSTED DETAILS	GEP SSS	SSS	2/02	For:	O .	Richmond, Virginia 23255-1390 PH: (800) 446-1150	⊃ÆCXED	G\$B 11/01	↓ —	BIOFOR "N" / MONOFLOR	
UPON REQUEST. THIS DRAWING & SUCH INFORMATION IS NOT TO BE REPRODUCED, TRANSMITTED.							B ADDED EFFLUENT WEIR	RHB GEP	\$,5,	03/02		-9	,	APP	5.S. 11/01	<u> </u>	BIOFOR N / WONOFLOR	
DISCLOSED, OR USED OTHERWISE IN WHOLE OR IN							C REV. WALL FITTING LOCATIONS, 16"QUICK DRAIN WAS 14"	GEP JHM	JHM	3/03		ر کے کار	ONDEO		5302100	SIZE	00.404	
PART WITHOUT THE WRITTEN AUTHORIZATION OF CNDEO DEGREMONT, INC							D NOTED 4"PROCESS AIR PIPES BY ODI	GEP JHM	JHM	11/03	Cust, Qrd. No.:	V ~	Degrémont	REF		D §	-02-101	
												0		SCALE /	AS NOTED	l ol		

GSB S.S. 11/01

GEP SSS 3/02

JHM JHM 11/03

GEP SSS SSS 2/02

GEP JHM JHM 3/03

REVISION DESCRIPTION

- ORIGINAL ISSUE

A REVISED CELL SIZE, ADJUSTED DETAILS

D NOTED 4"PROCESS AIR PIPES BY OOI

C REV. WALL FITTING LOCATIONS, 16"QUICK DRAIN WAS 14"

THIS CRAWING CONTAINS INFORMATION PROPRIETAL TO CNOZO DEGREMONT, INC. IT IS SUBMITTED IN COMPIDENCE AS TO BE USED SOCIETY FOR THE PURPOSE FOR WHICH IT IS FURBISHED A RETURNED UPON REQUEST. THIS DRAWING A SUCH INFORMATION IS NOT TO BE REPRODUCED, TRANSMITTED, DISCLOSED, OR USED DIFFERNISE IN WHICE OR IN PART WITHOUT THE WRITTEN AUTHORIZATION OF CNOZO DEGREMONT, INC.

REVISION DESCRIPTION

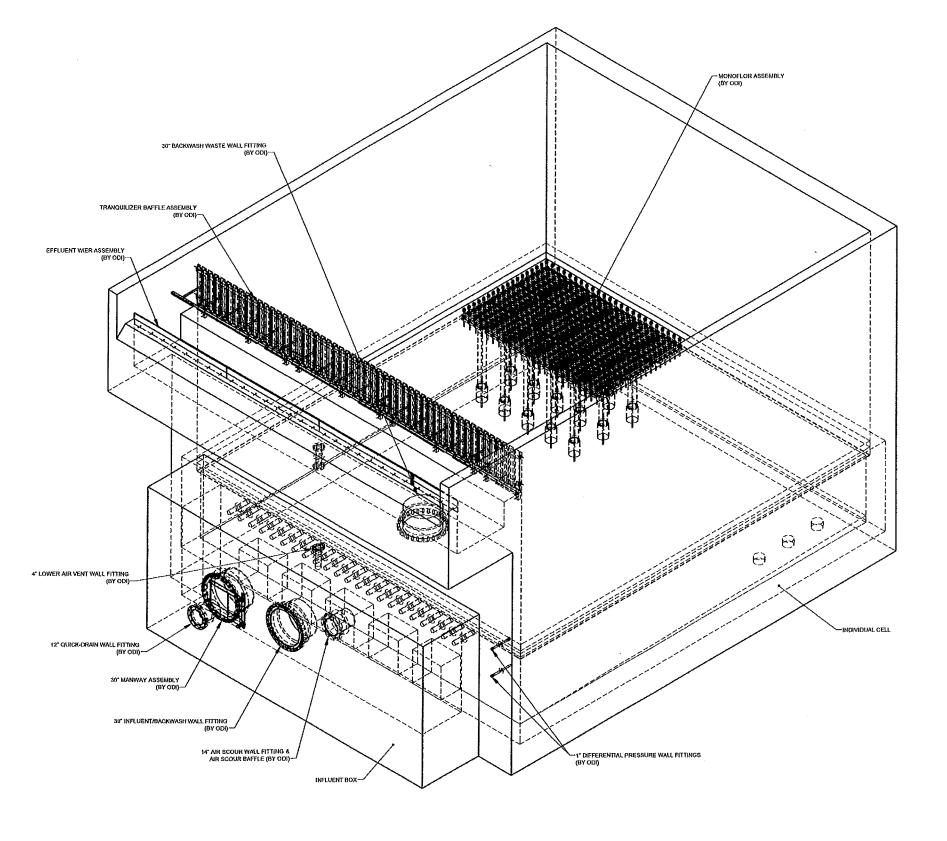
PLAN & SECTIONS

GENERAL ARRANGEMENT

BIOFOR "N" / MONOFLOR

⊉ D

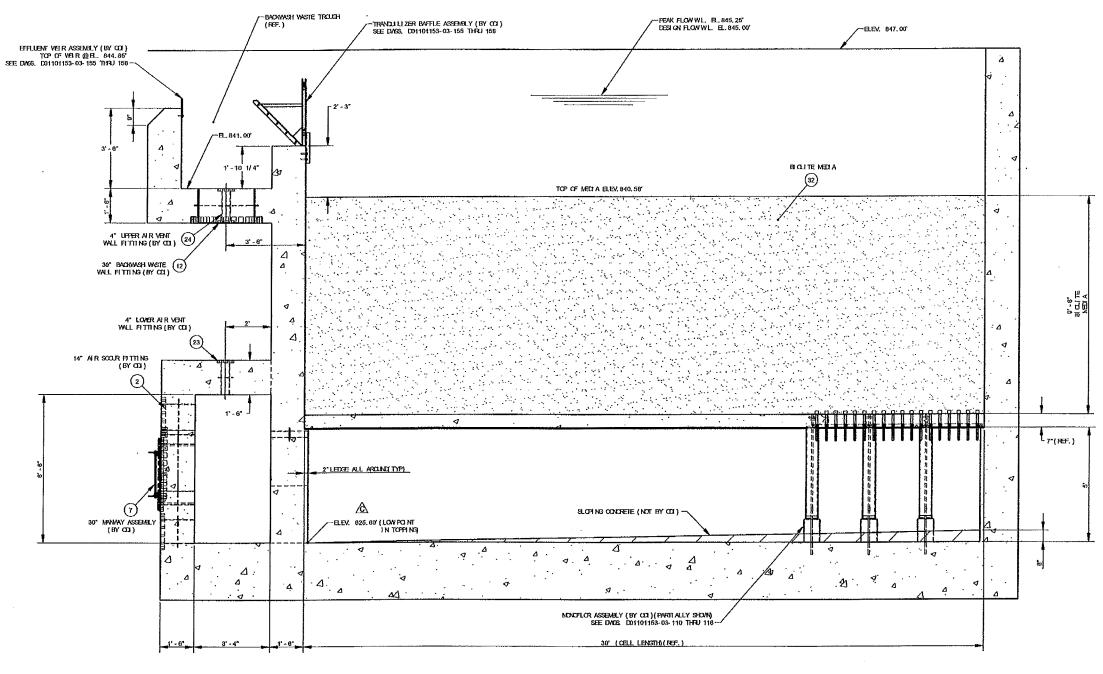
ONDEO Degremont, Inc. Post Office Box 71390 Richmond, Virginia 23255-1390 PH: (800) 446-1150


ONDEO Degrémont RAWN RHB 11/01

ECKED GSB 11/01

APP S.S. 11/01

15302100


D

NOTES:

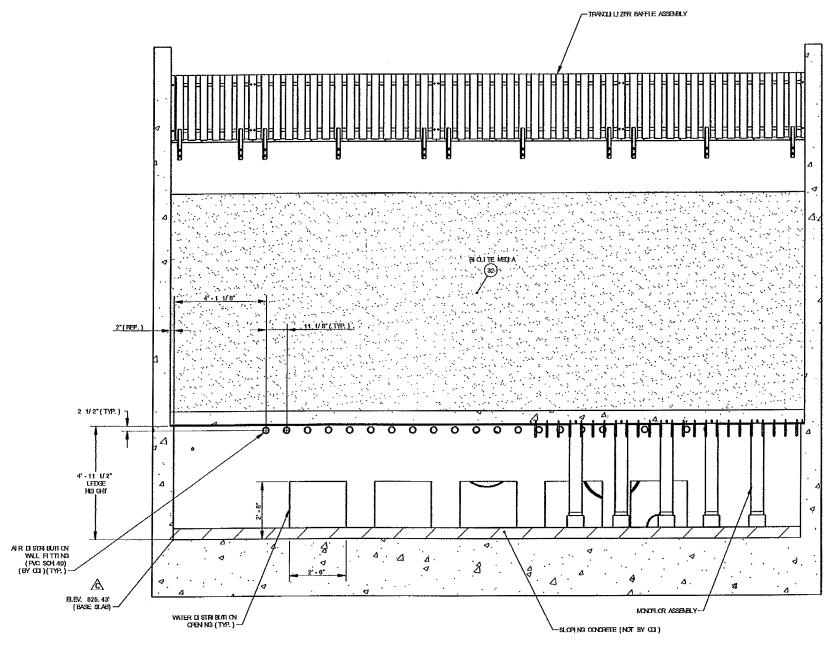
- 1. WORK THIS DRAWING w/ DWGS. D01101153-03-100 THRU 103.
- 2. DESIGN OF CONCRETE STRUCTURES IS NOT BY OD).

ETRIC	ISOMETRIC	ITE	BY DATE	В	ONDEO Degrement, Inc.			MATION	PROJECT INFORMAT	P DATE	HECKED API	DRAWN	REVISION DESCRIPTION	REV	P DATE	HECKED A	DRAWN	REVISION DESCRIPTION	REV	
DANGEMENT	GENERAL ARANGE	/02	RHB 03/02	DRAWN RI	Post Office Box 71390		- 1			S. 03/02	G\$B 8.5	RHB	ORIGINAL ISSUE							MING CONTAINS INFORMATION PRIOPRIETARY DEGREMONT, INC., IT IS SUBMITTED IN
		.02	3SB 03/02	CHECKED GS	Richmourt, Virginia 23255-1390 PH: (800) 446-1150	<u> </u>			For	D3/04	HL MHL	RHB	REVISED PER CUSTOMER'S DRAWINGS	A /						FOR WHICH IT IS FURNISHED & RETURNED
/ MONOFLOR	BIOFOR "DN" / MON	/02	S.S. 03/02	APP S.S	• •	ن را						L. I								DUEST, THIS DRAWING & SUCH INFORMATION SE REPRODUCED, TRANSMITTED.
	g .	SIZE 9	303099	REF. 1530	ONDEO	o< - ((— lo													D, DR USED OTHERWISE IN WHOLE OR IN
3- 03-099	[향] 4 3 3 - / 1 3 3 - / 1 3 3 - / 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		-	REF.	egrémont	~ V~ _{° I}	— I	Biofor - DN	Cell Type:											GREMONT, INC.
	pwd. a	D 🖁	N.T.S.	REF.	egrémont	۱ مراً د	-	Biofor - DN	Cell Type :			-			1					HOU? THE WRITTEN AUTHORIZATION OF GREMONT, INC.

<u>SECTI ON "A-A"</u> <u>SCALE: 1/2" = 1'-0"</u>

NOTE

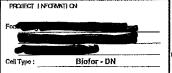
- 1. FOR PLAN, SEE DWG D01101153-03-100.
- 2. DESIGN OF CONCRETE STRUCTURES IS NOT BY ODI.


HEVI SI ON CESOR PTI ON REM SI ON DESCRIPTION DRAWI O-ECKED APP DATE PROJECT INFORMATION THIS DWITTER COLINIAS INFORMITION FROM EVANY
TO OUTCO EXCEPTION, INC. IT IS SUM TIED IN
COMPLEXES, IS TO SEE USED SOLEN FOR THE
PROCES FOR WHO IT IT IS ANNOH SEE A RELINFED
UPON RELEST, THIS DWINTER & BUDTINFORMITION
IS NOT TO SE REPREDUZED, THE WITTER
IN SOLUTION OF THE WITTER
DISCUSSED, OT USED OFFERNES IN WITTER OT IN
PART WITHOUT THE WITTER AUTHOR OF
OUTCO ESCREDON, INC. FHB GSB S.S. 03/02 OT-ICINAL ISSUE A REVISED ELEVATIONS OED 1HW 1HW 61.03 B REM SED PER CLETOMER S DRAWINGS RHB JHM JHM 03/04 C ELEV. 825.43' VAS 825.5' ON DAGS. 101, 102, & 103 RHB JHM JHM 07/04 D DELETED SUPPORT GRAVEL CEP JHM JHM 6/05 E INDICATED EL LOWPT. OF FL. TOPPING GEP JHM JHM 7/05

	ONDEO Degrement, Inc. Past Office Box 71390
	Richmond, Virginia 23255-1390
O -0	PH: (800) 446-1150
7	ONDEO
	Degrémont

	BY	DATE				
DRAVIN	RHB	03/02	-	_		~
O#O#D	GSB	03/02	_		_	G
JPP -	S.S.	03/02				В
FEF.	1530310	ж	SIZE	9		
occ			I —	121		

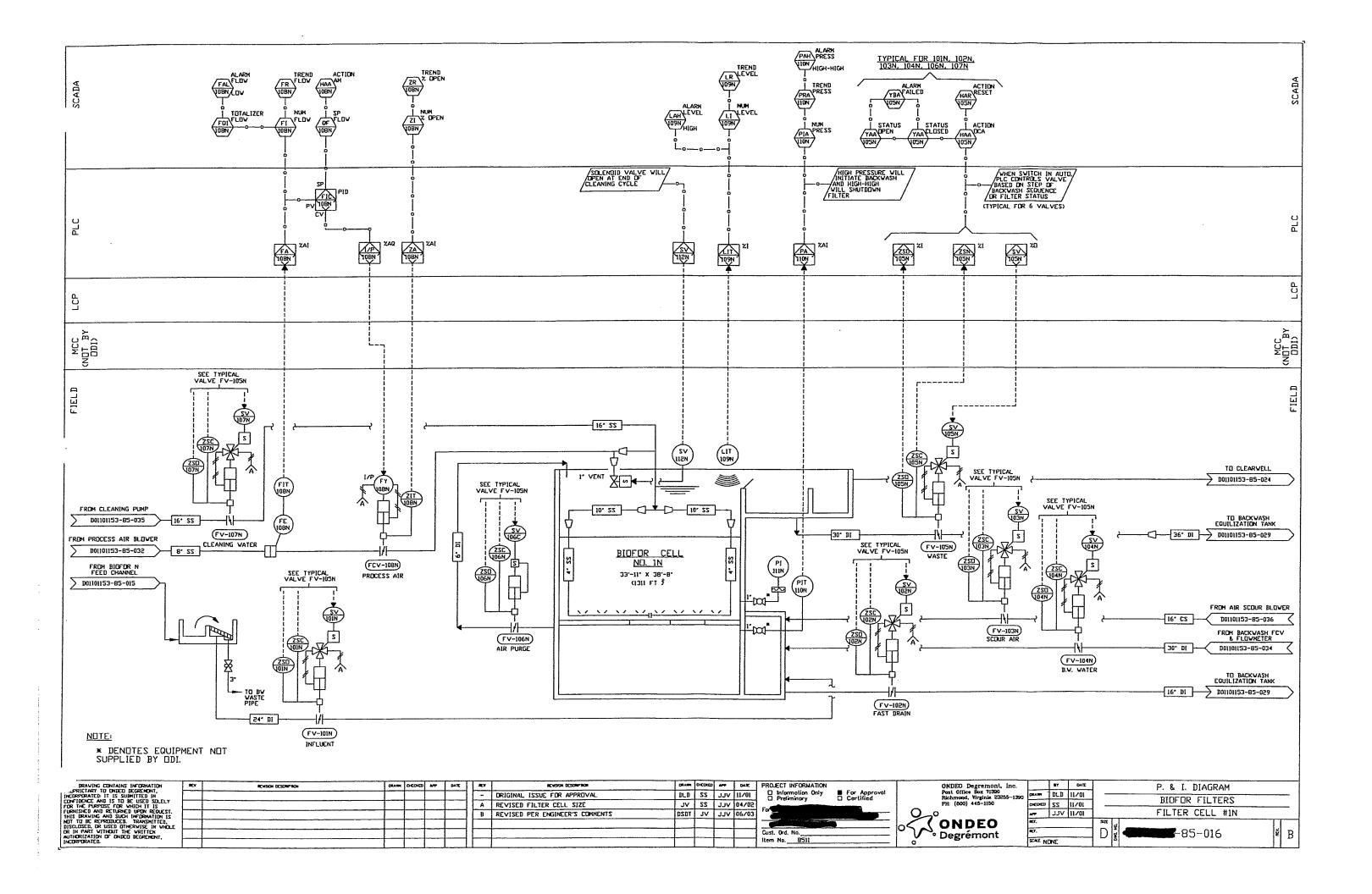
PLAN & SECTIONS
GENERAL ARRANGEMENT
BIOFOR "DN" / MONOFLOR

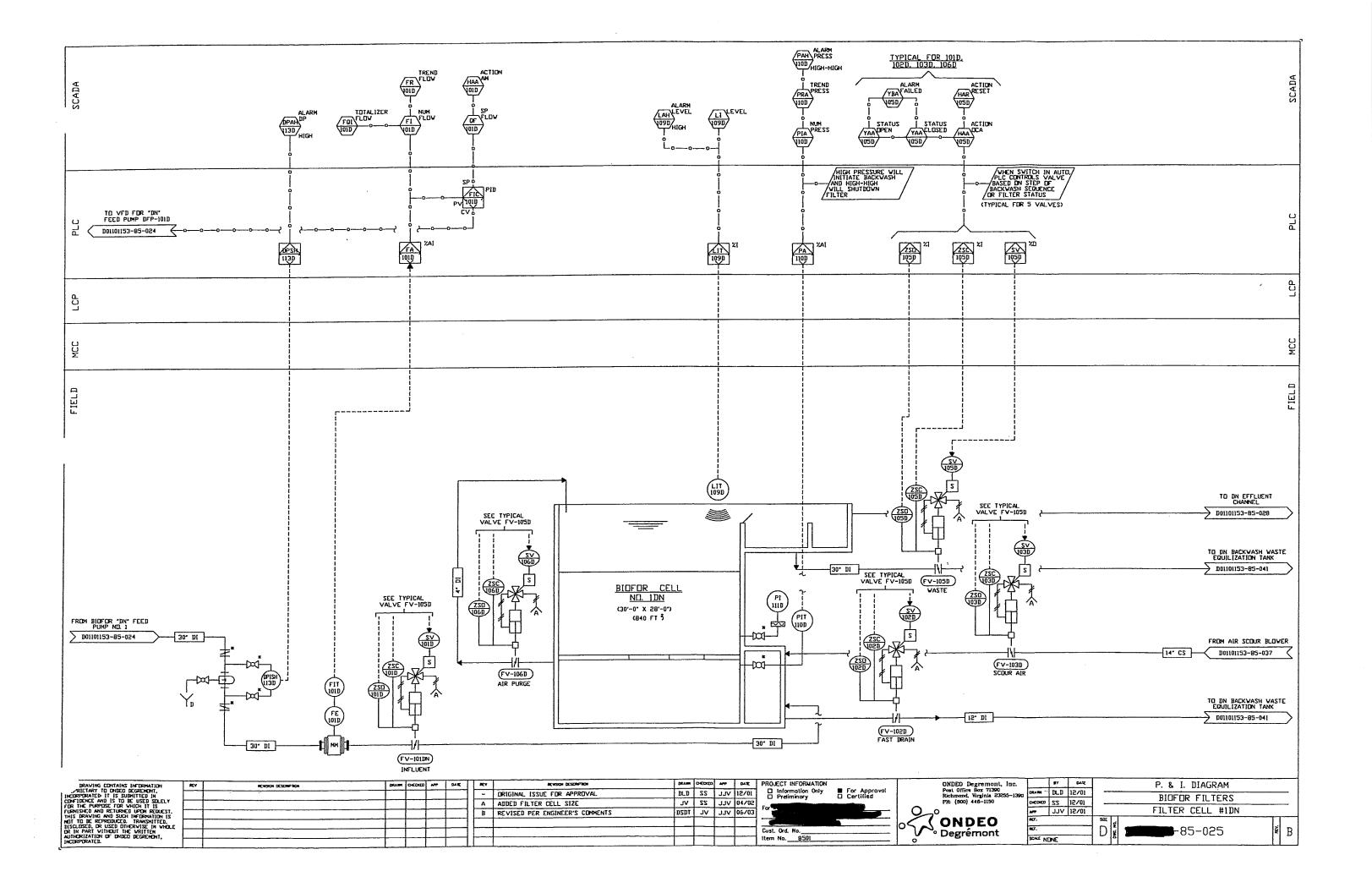


<u>SECTI ON "B-B"</u> <u>SCALE: 1/2" = 1'-0"</u>

NOTES:

- 1. FOR PLAN, SEE DWG. D01101153-03-100.
- 2. DESIGN OF CONCRETE STRUCTURES IS NOT BY ODI,


	ÆΥ	REM SLON DESCRIPTION	DRAWI	O-EO(ED)	APP	DATE	REN	PEM SI ON DESCRIPTI ON	CONTAIN	CHECKED)	APP	DATE
THIS DRAWING CONTAINS INFORMATION PROPRIETARY TO ONDEO DECREMENT, INC., IT IS SUBMITTED IN							T-	OFFICINAL ISSUE	FP4B	688	8.8.	03/02
CONFIDENCE & IS TO BE USED SOLELY FOR THE PURPOSE FOR WHO! IT IS PURN SHED & RETURNED							А	REM SED ELEVATIONS	Ð	JHM	JHM	6/03
LPOY RECLEST. THIS TRAWING & SUCH INFORMER ON IS NOT TO BE REPRODUCED. TRAVENTTIED							В	REM SED PER CUSTOMER S DRAWINGS	ПВ	JHM	JHM	03/04
DISOLOSED, OR USED OTHERWISE IN WILLE OR IN							C	ELEV. 825, 43" WAS 826, 6" CN DAYES, 101, 102, & 103	F#HB	THW	JHM	07/ 04
PART WITHOUT THE YMITTEN AUTHOR ZATION OF ONDEO DEGREADAT, INC.							E	DELETED SUPPORT GRAVEL	ŒP	JHM	JHM	6/05
				1			E	INDICATED ELLOWPT. OF FL. TOPPING	æ	JHM	JHM	7/ 05



	ONDEO Degremont, Inc. Post Office Box 71390
	Richmond, Virginia 23255-1390
00	PH: (800) 446-1150
	ONDEO Degrémont
$\sim N \sim$	Degrémont
0	

		BA	DATE		
	CPAVN	RHB	03/02	-	
	OEOED	GSB	03/02	l –	
	APP	5.5.	03/02	1	
ı	REF.	1530310	ю	917E	g
	FEF.	-		ח	I I
	SCALE	AD ATT	IED)	-	8

	PLAN & SECTIONS		
	GENERAL ARRANGEMENT		
	BIOFOR "DN" / MONOFLOR		
ă	03-102	REV.	Е

2 April 2015

Stephanie Fevig, P.E. Brown and Caldwell Lakewood, CO

Subject: WWTP near Boise, ID

STWP Denite[®] Filters STWP Proposal P79797

Dear Ms. Fevig:

Severn Trent Services Suite 600 1000 Cliff Mine Road Pittsburgh, PA 15275 United States

T: +1 412 788 8300 TF: +1 800 364 1600 F: +1 412 788 8304

www.severntrentservices.com

Severn Trent Water Purification, Inc. (STWP) is pleased to offer this preliminary proposal for the supply of equipment, materials and services for the WWTP in Idaho. Our proposal is based on the criteria listed in our Design Calculation sheet attached. With these criteria we sized for eight (8) 11'78" x 100'70" Denite[®] filters, each with 8' of Tetra[®] #5 media.

The process calculation sheets attached will provide additional information regarding hydraulic loading and backwash frequency at the various process conditions. Also attached is a typical general arrangement drawing and PFD.

Our Scope of supply for the filters will be;

3 Backwash Air Blowers

Positive displacement type, two operating and one stand by

2 Backwash Water Pumps

End suction, frame mounted, centrifugal pumps with mechanical seals. Operated by a VSD supplied by MCC vendor.

2 Mudwell Pumps

End suction, frame mounted, centrifugal pumps with mechanical seals

8 lots Filter Internals

This includes sump cover plates, air headers and laterals, underdrain block (SNAP $T^{\text{@}}$), gravel, Tetra #5 media, and stainless steel weir plate.

1 lot Manual Valves

These will be the check valves and isolation valves for backwash pumps, backwash blowers and mudwell pumps.

8 lots Filter Control Valves

Electric actuated AWWA butterfly valves for open/close service, modulating service and blower unloading.

1 lot Filter Instruments

Backwash air pressure switch, backwash water flow meter and sonic level elements for filters, clearwell and mudwell and low level cut"off switches for clearwell and mudwell.

1 TETRAPace® Nitrate Analyzer and Sample Pumps

TETRAPace[®] will optimize the usage of methanol and minimize operator attention to the Denite[®] process, both contributing operating cost savings to the Owner.

1 Methanol Feed System

This will include three metering pumps (2 operating, 1 stand"by), stainless steel storage tank with accessories, and filter system influent flow meter.

1 Main Control Panel

NEMA 12 enclosure for indoor location with Allen "Bradley HMI and PLC

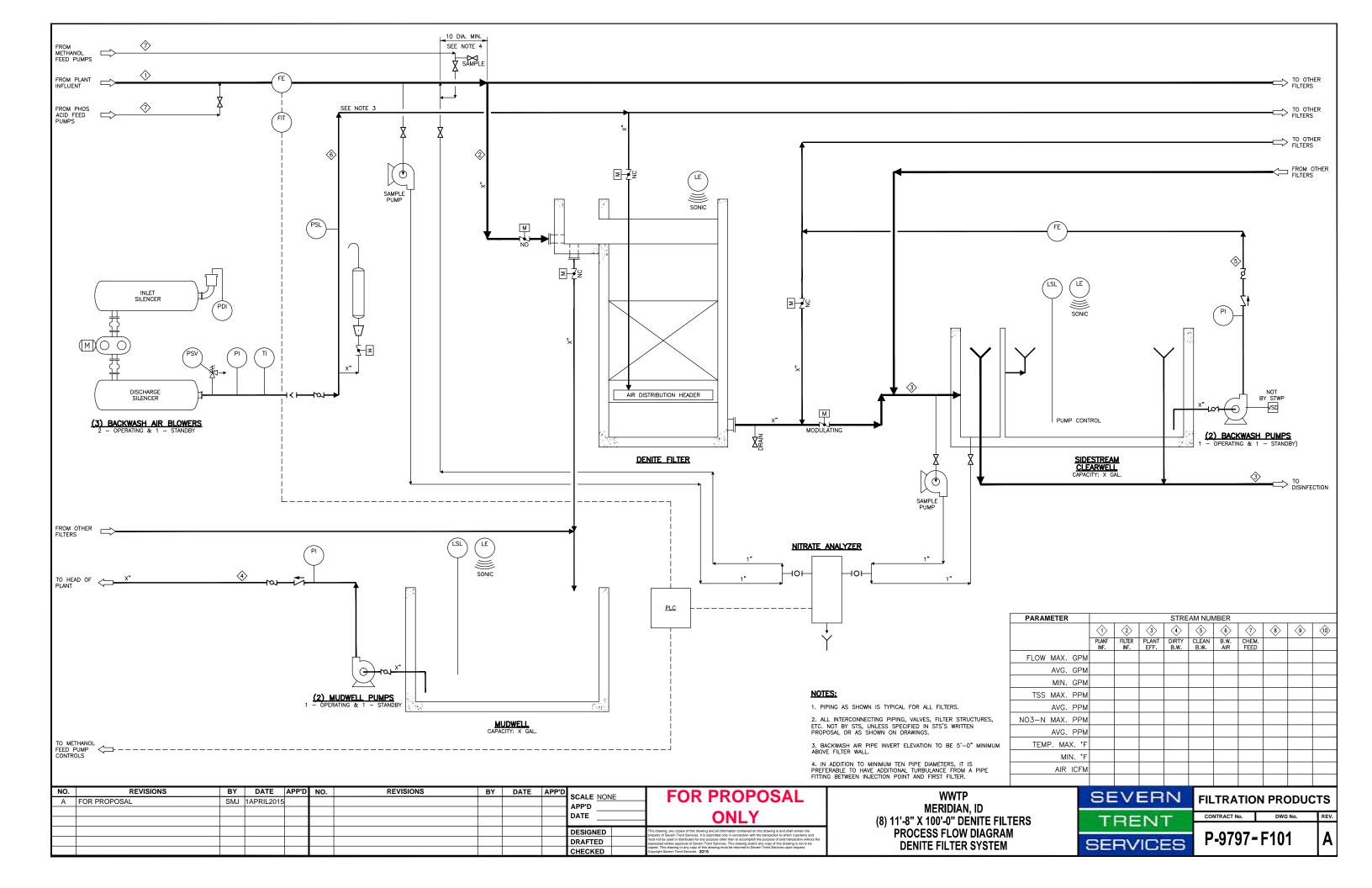
1 lot Field Service

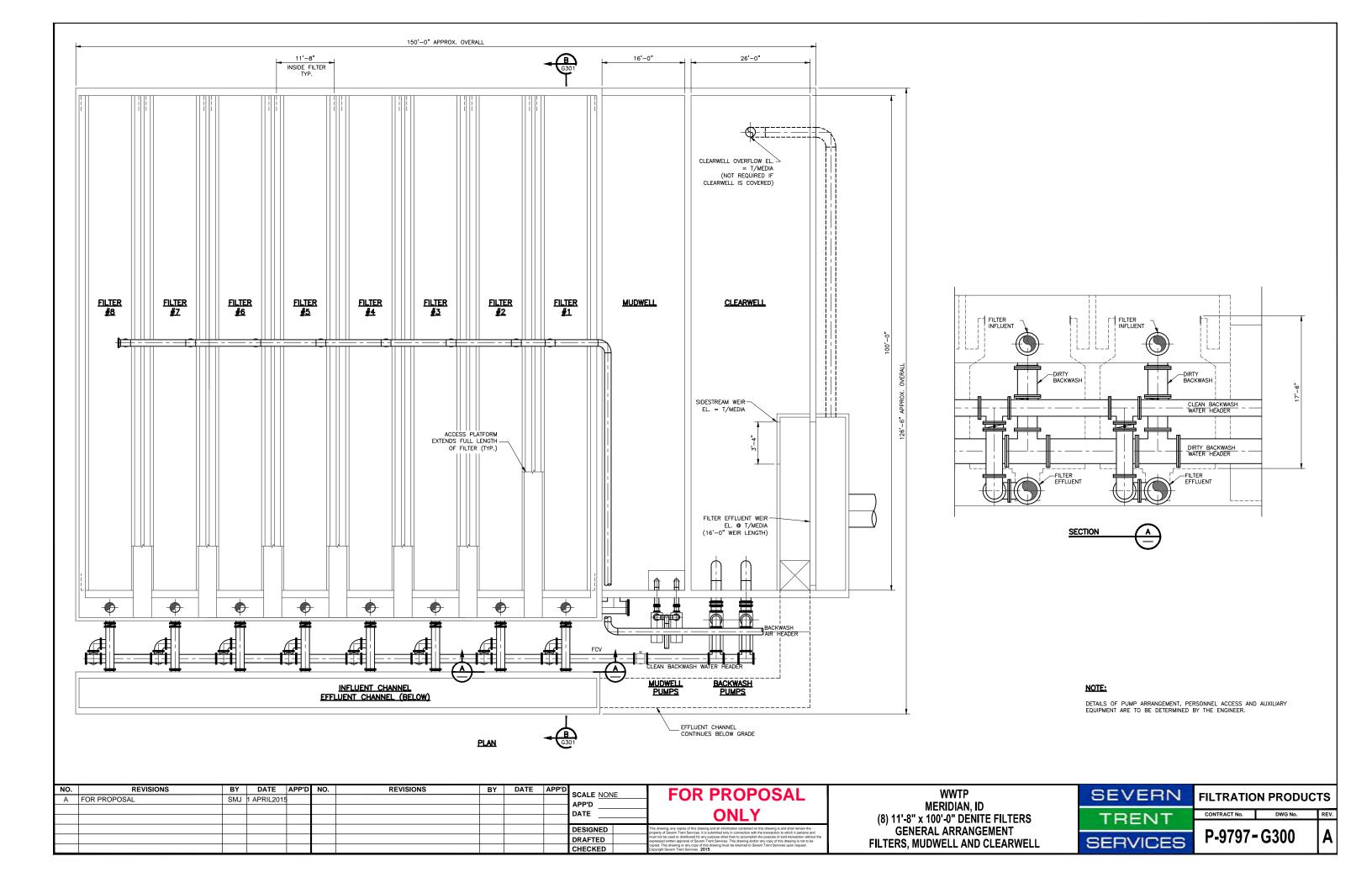
Supervision for underdrain installation, control system start"up and operator training

The following items are not included in the STWP package

- Receiving, unloading, storing and installation of STWP supplied equipment.
- Concrete for filter vessels, building/architectural work and engineering thereof
- Grout after air/water distribution block placement in vessels
- Platform, walkways or stairways
- Anchor bolts for mechanical equipment
- Lubricants for mechanical equipment and motors
- Interconnecting piping and engineering thereof
- Electrical starters, motor control center, conduit and wire and engineering thereof
- Performance testing lab services
- Spare parts
- Methanol supply
- Phosphoric acid system storage and supply equipment.

STWP will deliver the equipment, materials and service described above for a rough"order"of" magnitude lump sum, including freight, and license to practice the Tetra[®] DeepBed™ Denite[®] Denitrification Process, TETRAPace[®], SPEEDBUMP[®] and a Process Performance Warranty for \$5,400,000.


Thank you for considering Severn Trent Water Purification, Inc.


Joseph M Bonazza

Global Sales Manager - DBF & Inorganics

Attachments: F101 Process Flow Diagram – Denite System

G300 General Arrangement – Filters, Clearwell and Mudwell

DENITE^R DESIGN CALCULATIONS

31-Mar-2015

Project Name: City of Meridian

STS #:

Sales Rep.: Misco Water

Brown & Caldwell, Stephanie Fevig, sfevig@brwncald.com, 303-239-5403 Client:

Plant Location: ID STS Engineer: PAM

Comments:

Rev 0: ADF & MM flow given, no peak flow given
No Peak Flows Giiven: Peak-Day and Peak-Hour flows/nitrate are assumed

TRENT SERVICES

Pumped and UV Disinfection

Partial Denitrification OK with UV Disinfection

Given P of 0.5 mg/l. Supplemental P is required for this operation. Assume Minimum 3 week supply methanol at Max-Mo conditions

I. DESIGN BASIS

A. General Design Parameters

Media depth	=		ft of 2-3 mm	2.44 m
Media void volume factor	=	0.4		
Media specific surface area	=	200	ft ² /ft ³	656 m ² /m ³
Reactor width	=	11.7	ft	3.56 m
Reactor length	=	100.0	ft	30.49 m
Reactor surface area	=	1.167	ft ² , 11'-8" x 100'-0"	
Type of supplemental carbon		Methanol	·	
Feed strength of supplemental C	=	100%		
Specific Gravity of supplemental C	=	0.79		
Supplemental C cost	=	\$1.50	per gallon	
Supplemental C storage tank(s)	=	20,000	gallons	
COD/NO3-N ratio for supplemental C	=	4.6	lb COD/lb NO3-N re	emoved
COD/O2 ratio for supplemental C	=	1.3	lb COD/lb O2 remo	ved
COD content of supplemental C	=	1.50	lb COD/lb suppleme	ental carbon
COD content of biomass VSS	=	1.42	lb COD/lb VSS	
Biomass yield temperature coefficient	=	1.00		
Solids yield factor for infl. TSS decay	=	0.95	lb. solids/lb. infl. TS	S removed
Solids yield factor for bio. VSS decay	=	0.90	lb. solids/lb. bio VS	S generated
S.G. of dry biosolids	=	1.40		•
Effective MLSS assumed	=	20,000	mg/L average	
BW initial draindown duration estimate	=		minutes	
BW air scour duration	=	2	minutes	
BW water rise time to trough estimate	=	5	minutes	
Initial BW water rate	=	6	gpm/ft ²	
Initial BW water duration with overflow	=	20	minutes, 2 bed volu	imes
Final BW water rinse rate	=	6	gpm/ft ²	
Final BW water rinse duration	=	5	minutes	
Final BW draindown duration estimate	=		minutes	
Est. valve operating time during a BW	=	2	minutes (assuming	pneumatic actuators)
Bump duration per filter	=	2	minutes	,
BW air rate @ std. atm pressure	=	6	icfm/ft ²	
Altitude above sea level	=	0	ft	0 m
Max. spec. solids loading	=	1.33	lb/ft ²	
Max. spec. NO _x -N loading	=	0.07	lb/ft ²	
P nutrient requirement	=		of biomass	
Power cost	=		per kWh	
		Ψ0.10	P =	

Severn Trent Services Proprietary and Confidential 1

Nitrate analyzer power draw	=	6 amps	
Nitrate analyzer voltage	=	120 VAC	
Number of analyzer sample pumps	s =	2 pumps	
Sample pump flow to analyzer	=	15 gpm	
Sample pump head	=	35 ft.	
Carbon feed pump head	=	90 psig	
BW pump head	=	10.8 psig	25.0 ft TDH
BW pump efficiency	=	70%	
BW pump motor efficiency	=	90%	
BW blower head	=	10.0 psig	23.1 ft TDH
Mudwell pump head	=	10.8 psig	25.0 ft TDH
Mudwell pump efficiency	=	70%	
Mudwell pump motor efficiency	=	90%	

B. Flow

	_	Summer	Winter_
ADF,	MGD =	11.30	11.30 Given
	gpm =	7,847	7,847
Max-Mo,	MGD =	14.20	14.20 Given
Design Flow	gpm =	9,861	9,861
Pk-Day,	MGD =	18.00	18.00 Assumed
	gpm =	12,500	12,500
Pk-Hour,	MGD =	34.00	34.00 Assumed
	gpm =	23,611	23,611 PF = 3.01

C. Hydraulic Criteria

Filtr. Rate @ ADF w/all in service	=	3.0 gpm/ft ²
Filtr. Rate @ ADF w/1 in BW	=	3.5 gpm/ft ²
Filtr. Rate @ Max-Mo w/all in service	=	3.0 gpm/ft ²
Filtr. Rate @ Max-Mo w/1 in BW	=	3.5 gpm/ft ²
Filtr. Rate @ Pk-Day w/all in service	=	3.0 gpm/ft ²
Filtr. Rate @ Pk-Day w/1 in BW	=	5.0 gpm/ft ²
Filtr. Rate @ Pk-hr w/1 in BW	=	5.0 gpm/ft ²

D. Influent Characteristics

Parameter		Summer	Winter
Nitrate as N, mg/L @ ADF	=	40.0	40.0 Given
Nitrate as N, mg/L @ Max-Mo	=	40.0	40.0 Given
Nitrate as N, mg/L @ Pk-day	=	33.0	33.0 Assumed
Nitrate as N, mg/L @ Pk-hr	=	20.0	20.0 Assumed
TSS, mg/L	=	20.0	20.0 Given 10-20
Phosphate as P, mg/L	=	0.5	0.5 Given
pH, SU	=	7-8	7-8 Assumed
DO, mg/L	=	4.0	4.0 Assumed
Min. wastewater temperature, deg.C	=	20.0	14.0 Given
Avg. wastewater temperature, deg.C	=	22.0	18.0 Assumed
Min. air temperature, deg.C	=	15.0	8.0 Assumed

E. Desired Effluent Characteristics (Discharge Limits)

Parameter		Summer	Winter	
Nitrate as N, mg/L @ ADF	=	7.0	7.0	(8 Required)
Nitrate as N, mg/L @ Max-Mo	=	7.0	7.0	(8 Required)
Nitrate as N, mg/L @ Pk-Day	=	7.0	7.0	
Nitrate as N, mg/L @ Pk-hr	=	7.0	7.0	
TSS, mg/L	=	5.0	5.0	(20 Required)
pH, SU	=	6-9	6-9	

II. DENITER CALCULATION SUMMARY

DENITER CALCULATION SUMMARY							
Hydraulic Design:		Su	mmer		Wir	iter	
Raw size at ADF w/all in-service	= _	2.24	reactors		2.24	reactors	
Actual size at ADF w/all in-service	=		reactors			reactors	
Raw size at ADF w/1 in BW	=		reactors			reactors	
Actual size at ADF w/1 in BW Raw size at Max-Mo w/all in-service	=		reactors			reactors reactors	
Actual size at Max-Mo w/all in-service	_		reactors			reactors	
Raw size at Max-Mo w/1 in BW	=		reactors			reactors	
Actual size at Max-Mo w/1 in BW	=		reactors			reactors	
Raw size at Pk-Day w/all in-service	=	3.57	reactors		3.57	reactors	
Actual size at Pk-Day w/all in-service	=	4.00	reactors		4.00	reactors	
Raw size at Pk-Day w/1 in BW	=	3.14	reactors		3.14	reactors	
Actual size at Pk-Day w/1 in BW	=		reactors			reactors	
Raw size at Pk-hr w/1 in BW	=		reactors			reactors	
Actual size at Pk-hr w/1 in BW Design based on hydraulics	=		reactors			reactors reactors	
Design based on nydradiics	_	3	reactors		3	Teactors	
Recommended Design							
Hydraulic Loadings:	_		nmer		Wir		
Number of reactors required	=		reactors		8	reactors	2
Total surface area	=	9,336		$m^2 = 868$	9,336		$m^2 = 868$
Total media volume	=	74,688		$m^3 = 2,117$	74,688		m ³ = 2,117
ADF hydraulic loading	=		gpm/ft ² ,	m/h = 2.1		gpm/ft ² ,	m/h = 2.1
ADF hyd. loading w/1 filter in BW	=		gpm/ft ² ,	m/h = 2.3		gpm/ft ² ,	m/h = 2.3
Max-Mo hydraulic loading	=		gpm/ft ² ,	m/h = 2.6		gpm/ft ² ,	m/h = 2.6
Max-Mo hyd. loading w/1 filter in BW	=		gpm/ft ² ,	m/h = 3.0		gpm/ft ² ,	m/h = 3.0
Pk-Day hydraulic loading	=		gpm/ft ² ,	m/h = 3.3		gpm/ft ² ,	m/h = 3.3
Pk-Day hydraulic loading w/1 filter in BW	=		gpm/ft ² ,	m/h = 3.7		gpm/ft ² ,	m/h = 3.7
Pk hour hydraulic loading	=		gpm/ft ² ,	m/h = 6.2		gpm/ft ² ,	m/h = 6.2
Pk hour hydraulic loading w/1 in BW	=	2.89	gpm/ft ² ,	m/h = 7.1	2.89	gpm/ft ² ,	m/h = 7.1
75% Pk hour hydraulic loading w/1 in BW	=		gpm/ft ² ,	m/h = 5.3		gpm/ft ² ,	m/h = 5.3
Empty Bed D.T. @ ADF	=		minutes			minutes	
Empty Bed D.T. @ Max-Mo Empty Bed D.T. @ Pk-Day	=		minutes minutes			minutes minutes	
Empty Bed D.T. @ Pk-hr	=		minutes			minutes	
Volumetric Removals:							
Methanol equivalent BOD removal @ ADF	=			kg/m^3 -d = 1.20			kg/m ³ -d = 1.20
NOx-N removal/volume @ ADF	=			kg/m^3 -d = 0.67			kg/m^3 -d = 0.67
NOx-N removal/volume @ ADF less DO volume	=			$kg/m^3-d = 0.68$			kg/m^3 -d = 0.68
NOx-N removal/media SA @ ADF	=		lb/kft ² -d			lb/kft ² -d	
NOx-N removal/reactor x-sectional SA @ ADF	=	0.33	lb/ft ² -d			lb/ft ² -d	
Methanol equivalent BOD removal @ Max-Mo	=			$kg/m^3-d = 1.51$			kg/m³-d = 1.51
NOx-N removal/volume @ Max-Mo	=			$kg/m^3-d = 0.84$			kg/m³-d = 0.84
NOx-N removal/volume @ Max-Mo less DO volume	=	54	lb/kft ³ -d,	$kg/m^3-d = 0.86$			kg/m³-d = 0.86
NOx-N removal/media SA @ Max-Mo	=	0.26	lb/kft ² -d			lb/kft ² -d	
NOx-N removal/reactor x-sectional SA @ Max-Mo	=	0.42	lb/ft ² -d			lb/ft ² -d	
Methanol equivalent BOD removal @ Pk-Day	=	54	lb/kft3-d,	kg/m^3 -d = 0.87	54	lb/kft ³ -d,	kg/m³-d = 0.87
NOx-N removal/volume @ Pk-Day	=			kg/m^3 -d = 0.84			kg/m³-d = 0.84
NOx-N removal/media SA @ Pk-Day	=		lb/kft ² -d			lb/kft ² -d	
NOx-N removal/reactor x-sectional SA @ Pk-Day	=		lb/ft ² -d		0.42	lb/ft ² -d	
Methanol equivalent BOD removal @ Pk-hr	=	51	lb/kft3-d,	kg/m^3 -d = 0.82			kg/m³-d = 0.82
NOx-N removal/volume @ Pk-hr	=	49	lb/kft3-d,	kg/m^3 -d = 0.79			kg/m^3 -d = 0.79
NOx-N removal/media SA @ Pk-hr	=		lb/kft ² -d			lb/kft ² -d	
NOx-N removal/reactor x-sectional SA @ Pk-hr	=	0.39	lb/ft ² -d		0.39	lb/ft ² -d	

Mass	Removal	s
------	---------	---

Mass Removals:					
Total NOx-N removal @ ADF	=		lb N/day	3,108	lb N/day
Total NOx-N removal @ Max-Mo	=		lb N/day		lb N/day
Total NOx-N removal @ Pk-Day	=		lb N/day		lb N/day
Total NOx-N removal @ Pk-hr	=	3,683	lb N/day	3,683	lb N/day
0 NO N LOADE		0.00		0.00	11 N1/11 1 :
Spec. NOx-N removal @ ADF	=		lb N/lb bio		lb N/lb bio
MESSAGE:		Rate ok	II- NI/II- I-:-	Rate ok	II- N1/II- I-:-
Spec. NOx-N removal @ Max-Mo MESSAGE:	=		lb N/lb bio		lb N/lb bio
Spec. NOx-N removal @ Pk-Day	=	Rate ok	lb N/lb bio	Rate ok	lb N/lb bio
MESSAGE:	_	Rate ok	ID 14/ID DIO	Rate ok	וט ואווט טוט
Spec. NOx-N removal @ Pk-hr	=		lb N/lb bio		lb N/lb bio
MESSAGE:		Rate ok		Rate ok	
Alkalinity generation @ ADF	=	99	mg/L CaCO ₃	99	mg/L CaCO ₃
ANX Biomass yield for selected carbon source @ 20 C	=		lb VSS/lb COD	0.27	lb VSS/lb COD
ANX Biomass yield for selected carbon source @ design			lb VSS/lb COD		lb VSS/lb COD
ANX Biomass generation @ ADF	=		lb VSS/day		lb VSS/day
AER Biomass yield for selected carbon source @ 20 C	=		lb VSS/lb COD		lb VSS/lb COD
AER Biomass yield for selected carbon source @ design	=	0.16	lb VSS/lb COD	0.16	lb VSS/lb COD
AER Biomass generation @ ADF	=	80	lb VSS/day	80	lb VSS/day
ANX +AER Biomass generation minus decay @ ADF	=		lb VSS/day	3,499	lb VSS/day
Biomass generation relative to N removed	=		lb VSS/lb N rem		lb VSS/lb N rem
Influent TSS removal @ ADF	=		lb/day		lb/day
Influent TSS removal ADF minus decay @ ADF	=	1,342	lb/day	1,342	lb/day
Alkalinity generation @ Max-Mo	=		mg/L CaCO ₃		mg/L CaCO ₃
ANX Biomass yield for selected carbon source @ 20 C	=		lb VSS/lb COD		lb VSS/lb COD
ANX Biomass yield for selected carbon source @ design			lb VSS/lb COD		lb VSS/lb COD
ANX Biomass generation @ Max-Mo	=		lb VSS/day		lb VSS/day
AER Biomass yield for selected carbon source @ 20 C			lb VSS/lb COD		Ib VSS/Ib COD
AER Biomass yield for selected carbon source @ design	= =		lb VSS/lb COD		lb VSS/lb COD
AER Biomass generation @ Max-Mo ANX + AER Biomass generation minus decay @ Max-M			lb VSS/day lb VSS/day		lb VSS/day lb VSS/day
Biomass generation relative to N removed	_		lb VSS/lb N rem		lb VSS/lb N rem
Influent TSS removal @ Max-Mo	=		lb/day		lb/day
Influent TSS removal minus decay @ Max-Mo	=		lb/day		lb/day
		1,000		1,000	, ,
Alkalinity generation @ Pk-Day	=	78	mg/L CaCO ₃	78	mg/L CaCO ₃
ANX + AER Biomasss generation @ Pk-D minus decay	=		lb VSS/day	4 415	lb VSS/day
Influent TSS removal @ Pk-Day	=		lb/day		lb/day
Influent TSS removal minus decay @ Pk-Day	=		lb/day		lb/day
, ,		,	•	,	,
Alkalinity generation @ Pk-hr	=	39	mg/L CaCO ₃	39	mg/L CaCO₃
ANX + AER Biomass generation @ Pk-hr minus decay	=		lb VSS/day	4.278	lb VSS/day
Influent TSS removal @ Pk-hr	=		lb/day		lb/day
Influent TSS removal minus decay @ Pk-hr	=		lb/day	4,038	
BW Air and Water Flows:					
BW air @ standard baro psi = 14.7	=	7,002	icfm, $m^3/h = 11,908$	7,002	icfm, $m^3/h = 11,908$
BW air @ actual baro psia = 14.7	=	7,002	icfm, $m^3/h = 11,908$	7,002	icfm, $m^3/h = 11,908$
BW air rate at corrected pressure	=	,	icfm/sf, m/h = 110	,	icfm/sf, m/h = 110
Estimated BW blower motor	=		hp @ psig = 10.0	393	hp @ psig = 10.0
Initial BW water flow	=	7,002	gpm, $m^3/h = 1,590$	7,002	gpm, $m^3/h = 1,590$
Final BW water flow	=	7,002	•	7,002	
Estimated BW pump brake horsepower	=		hp @ psig = 10.8		hp @ psig = 10.8
Estimated electrical power to BW pump motor	=		hp @ psig = 10.8		hp @ psig = 10.8
BW water volume required per BW	=		gallons, $m^3 = 794$	209,687	
Dirty BW volume discharged per BW	=	174,677		174,677	
Clearwell size DF = 1.2	=	251,624		251,624	
Min. Clearwell size req'd @ Max-Mo forward flow	=		gallons, $m^3 = 0$		gallons, m ³ = 0
Mudwell size DF = 1.2	=	209,612	•	209,612	•
Mudwell pump, return @min(BI or 2 hrs)	=	1,456	0. .	1,456	
Estimated mudwell pump brake horsepower	=		hp @ psig = 10.8		hp @ psig = 10.8
Estimated electrical power to mudwell pump motor	=	15	hp @ psig = 10.8	15	hp @ psig = 10.8

Backwash & Bump Frequencies:

Backwash & Bump Frequencies:				
Backwash frequency @ ADF	=	2.57 days/reactor	2.57	days/reactor
		61.72 hrs/reactor		hrs/reactor
BW Sys. Interval, <u>start</u> to next start		7.71 hrs/syst. BW		hrs/syst. BW
		3.11 system BW/day		system BW/day
BW sequence duration		48.95 minutes		minutes
BW Sys. Interval, <u>finish</u> to next start (time for bump & MV		6.90 hrs/syst. BW		hrs/syst. BW
DIAM OV. CC		0.57% BW as % op. time		BW as % op. time
BW: % of forward flow @ ADF w/dariadawa		5.77%	5.77%	
BW: % of forward flow @ ADF w/draindown		1.81%	4.81%	
SpeedBump frequency @ ADF (including all filters)		4.81 hrs/system SBump 4.99 SBumps/day		hrs/system SBump SBumps/day
SpeedBump duration including all filters		17.0 minutes		minutes
Max # SpeedBumps that can occur btw. System BWs		24.3 Sbumps/BI		Sbumps/BI
wax # opecubumps that can occur biw. System bivs		5.89% SBump as % op. time		Sbump as % ot
Number of bumps btw. reactor BW if no SpeedBump		12.84 bumps/ BW		bumps/ BW
Biomass accum. btw BWs after decay		1,125 lbs	1,125	
Influent TSS accum. btw BWs after decay	= .	431 lbs	431	
Total solids accum. btw BWs	= 1	1,556 lbs	1,556	
Average TSS in BW		1,070 mg/L	1,070	
			,	j
Backwash frequency @ Max-Mo	=	2.05 days/reactor	2.05	days/reactor
		19.26 hrs/reactor		hrs/reactor
BW Sys. Interval, start to next start		6.16 hrs/syst. BW		hrs/syst. BW
		3.90 system BW/day		system BW/day
BW Sys. Interval, finish to next start (time for bump & MV		5.34 hrs/syst. BW	5.34	hrs/syst. BW
		3.25% BW as % op. time		BW as % op. time
BW: % of forward flow @ Max-Mo w/o draindown		5.76%	5.76%	
BW: % of forward flow @ Max-Mo w/draindown		1.79%	4.79%	
SpeedBump frequency @ Max-Mo (including all filters)		3.83 hrs/system SBump		hrs/system SBump
M # 0		6.27 SBumps/day		SBumps/day
Max # SpeedBumps that can occur btw. System BWs		18.9 Sbumps/BI		Sbumps/BI
Number of human have an atom DNA if we Constitute		6.97% Sbump as % op. time		Sbump as % ot
Number of bumps btw. reactor BW if no SpeedBump		12.88 bumps/ BW 1,123 lbs	1,123	bumps/ BW
Biomass accum. btw BWs after decay	= 1	1 125 IDS	1 1/3	IDS
				lbo
Influent TSS accum. btw BWs after decay	=	433 lbs	433	
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs	= = 1	433 lbs 1,556 lbs	433 1,556	lbs
Influent TSS accum. btw BWs after decay	= = 1	433 lbs	433	lbs
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW	= = 1 = 1	433 lbs 1,556 lbs 1,070 mg/L	433 1,556 1,070	lbs mg/L
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs	= = 1 = 1	433 lbs 1,556 lbs	433 1,556 1,070 1.90	lbs
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day	= = 1 = 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor	433 1,556 1,070 1.90 45.59	lbs mg/L days/reactor
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW	= 1 = 1 = 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor	433 1,556 1,070 1.90 45.59 5.70	lbs mg/L days/reactor hrs/reactor hrs/syst. BW
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day	= = 1 = 1 = = 4	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW	433 1,556 1,070 1.90 45.59 5.70 4.21	lbs mg/L days/reactor hrs/reactor
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day	= = 1 = 1 = 4 = 4	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day	433 1,556 1,070 1.90 45.59 5.70 4.21	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown	= 1 = 1 = 4 = 4 = 4	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22%	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1.91% 1.09% 3.83 hrs/system SBump	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day	= 1 = 1 = 4 = 4 = 4 = 4	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1.91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1.91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day 1.90 bumps/ BW	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 4.91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day 1.90 bumps/ BW 1,048 lbs	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 45.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 4.91% 4.09% 3.83 hrs/system SBump 6.27 SBumps/day 1,048 lbs 508 lbs	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1,91% 4,09% 3.83 hrs/system SBump 6.27 SBumps/day 11.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 45.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 4.91% 4.09% 3.83 hrs/system SBump 6.27 SBumps/day 1,048 lbs 508 lbs	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1.91% 1.09% 1.09% 1.09% 1.09% 1.09% 1.09 bumps/day 1.190 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,070 mg/L	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs mg/L
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1.91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day 11.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,070 mg/L 1.50 days/reactor	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs mg/L days/reactor
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-hr	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 15.59 hrs/reactor 15.70 hrs/syst. BW 4.21 system BW/day 1.02% BW as % op. time 1.91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day 11.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,070 mg/L 1.50 days/reactor 185.93 hrs/reactor	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs mg/L days/reactor hrs/reactor
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW	= 1 1 = 1 = 1 = 1 = 1 = 1 = 3 = 3	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1.91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day 11.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,570 mg/L 1.50 days/reactor 1.50 days/reactor 1.50 days/reactor 1.50 hrs/reactor 1.50 days/reactor 1.50 hrs/reactor	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs mg/L days/reactor hrs/reactor hrs/syst. BW
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-hr	= 1 1 = 1 = 1 = 1 = 1 = 1 = 3 = 3	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 45.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1.91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day 11.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,070 mg/L 1.50 days/reactor 4.49 hrs/syst. BW 5.34 system BW/day	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070 1.50 35.93 4.49 5.34	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-hr BW Sys. Interval, start to next start	= 1 1 = 1 = 1 = 1 = 1 = 3 = 12	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 45.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1.91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day 11.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,070 mg/L 1.50 days/reactor 4.49 hrs/syst. BW 5.34 system BW/day 2.97% BW as % op. time	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070 1.50 35.93 4.49 5.34	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-hr BW Sys. Interval, start to next start BW: % of forward flow @ Pk-hr w/o draindown	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 45.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1.91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day 11.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,070 mg/L 1.50 days/reactor 4.49 hrs/syst. BW 5.34 system BW/day	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070 1.50 35.93 4.49 5.34	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-hr BW Sys. Interval, start to next start BW: % of forward flow @ Pk-hr w/o draindown BW: % of forward flow @ Pk-hr w/draindown	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 45.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 4.91% 4.09% 3.83 hrs/system SBump 6.27 SBumps/day 1.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,070 mg/L 1.50 days/reactor 35.93 hrs/reactor 4.49 hrs/syst. BW 5.34 system BW/day 2.97% BW as % op. time 3.30% 2.75%	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070 1.50 35.93 4.49 5.34 12.97% 3.30% 2.75%	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs mg/L days/reactor hrs/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-hr BW Sys. Interval, start to next start BW: % of forward flow @ Pk-hr w/o draindown	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1,91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day 1.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,070 mg/L 1.50 days/reactor 35.93 hrs/reactor 4.49 hrs/syst. BW 5.34 system BW/day 2.97% BW as % op. time 3.30% 2.75% 4.06 hrs/system SBump	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070 1.50 35.93 4.49 5.34 12.97% 3.30% 2.75% 4.06	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs mg/L days/reactor hrs/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-hr BW Sys. Interval, start to next start BW: % of forward flow @ Pk-hr w/o draindown BW: % of forward flow @ Pk-hr w/draindown	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 45.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 4.91% 4.09% 3.83 hrs/system SBump 6.27 SBumps/day 1.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,070 mg/L 1.50 days/reactor 35.93 hrs/reactor 4.49 hrs/syst. BW 5.34 system BW/day 2.97% BW as % op. time 3.30% 2.75%	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070 1.50 35.93 4.49 5.34 12.97% 3.30% 2.75% 4.06 5.92	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs mg/L days/reactor hrs/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-hr BW Sys. Interval, start to next start BW: % of forward flow @ Pk-hr w/o draindown BW: % of forward flow @ Pk-hr w/draindown BW: % of forward flow @ Pk-hr w/draindown Bump frequency @ Pk-hr	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1,91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day 11.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,070 mg/L 1.50 days/reactor hrs/reactor hrs/syst. BW 5.34 system BW/day 2.97% BW as % op. time 3.30% 2.75% 4.06 hrs/system SBump 5.92 SBumps/day	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070 1.50 35.93 4.49 5.34 12.97% 3.30% 2.75% 4.06 5.92	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs mg/L days/reactor hrs/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-hr BW Sys. Interval, start to next start BW: % of forward flow @ Pk-hr w/o draindown BW: % of forward flow @ Pk-hr w/draindown Bump frequency @ Pk-hr Number of bumps btw. reactor BW	= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 5.70 hrs/syst. BW 4.21 system BW/day 0.22% BW as % op. time 1,91% 1.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,070 mg/L 1.50 days/reactor	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070 1.50 35.93 4.49 5.34 12.97% 3.30% 2.75% 4.06 5.92 8.86	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs mg/L days/reactor hrs/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-hr BW Sys. Interval, start to next start BW: % of forward flow @ Pk-hr w/o draindown BW: % of forward flow @ Pk-hr w/draindown Bump frequency @ Pk-hr Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs	= 1 1 1 = 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 15.59 hrs/reactor 15.70 hrs/syst. BW 4.21 system BW/day 1.02% BW as % op. time 1.91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day 11.90 bumps/ BW 1,048 lbs 5.08 lbs 1,556 lbs 1,070 mg/L 1.50 days/reactor	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070 1.50 35.93 4.49 5.34 12.97% 3.30% 2.75% 4.06 5.92 8.86 800	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs mg/L days/reactor hrs/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs
Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-Day BW Sys. Interval, start to next start BW: % of forward flow @ Pk-Day w/o draindown BW: % of forward flow @ Pk-Day w/draindown Bump frequency @ Pk-Day Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay Total solids accum. btw BWs Average TSS in BW Backwash frequency @ Pk-hr BW Sys. Interval, start to next start BW: % of forward flow @ Pk-hr w/o draindown BW: % of forward flow @ Pk-hr w/o draindown BW: % of forward flow @ Pk-hr w/o draindown BW: % of forward flow @ Pk-hr w/o draindown BW: % of forward flow @ Pk-hr w/o draindown Bump frequency @ Pk-hr Number of bumps btw. reactor BW Biomass accum. btw BWs after decay Influent TSS accum. btw BWs after decay	= 1 1 1 = 1	433 lbs 1,556 lbs 1,070 mg/L 1.90 days/reactor 15.59 hrs/reactor 15.70 hrs/syst. BW 4.21 system BW/day 1.02% BW as % op. time 1.91% 1.09% 3.83 hrs/system SBump 6.27 SBumps/day 11.90 bumps/ BW 1,048 lbs 508 lbs 1,556 lbs 1,070 mg/L 1.50 days/reactor	433 1,556 1,070 1.90 45.59 5.70 4.21 10.22% 4.91% 4.09% 3.83 6.27 11.90 1,048 508 1,556 1,070 1.50 35.93 4.49 5.34 12.97% 3.30% 2.75% 4.06 5.92 8.86 800 756	lbs mg/L days/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs mg/L days/reactor hrs/reactor hrs/reactor hrs/syst. BW system BW/day BW as % op. time hrs/system SBump SBumps/day bumps/ BW lbs lbs lbs lbs

Sidestream Clearwell Fill Rate (for UV disinfection and Clearwell Fill Rate After Backwash, 2-hr fill period ADF Percent of Forward Flow Used for Fill Flow to Disinfection During Fill @ ADF Supplemental Carbon choice is Methanol	= 1,747 = 22% = 8.8	MGD	2	17 gpm 2% .8 MGD	
Theoretical C:N ratio @ ADF Theoretical C:DO ratio @ ADF Carbon required @ ADF conditions for N & DO, DF = 1.0 100% feed solution @ SG = 0.79 Carbon pump power @ ADF conditions Carbon storage @ ADF conditions	= 62.19 = 0.09	lb/d	0. 9,8 62. 90 0.	07 87 87 19 gph 09 hp@psig= \$ 27 days	90
Theoretical C:N ratio @ Max-Mo Theoretical C:DO ratio @ Max-Mo Carbon required @ MM conditions for N & DO, DF = 1.0 100% feed solution @ SG = 0.79 Carbon pump power @ Max-Mo conditions Carbon storage @ Max-Mo conditions	= 78.15 = 0.12	lb/d	0. 12,3 78. 90 0.	07 87 86 lb/d 15 gph 12 hp@psig= 9 21 days	90
Theoretical C:N ratio @ Pk-Day Theoretical C:DO ratio @ Pk-Day Carbon required @ Pk-D conditions for N & DO, DF = 1. DO, DF : feed solution @ SG = 0.79 Carbon pump power @ Pk-Day conditions Carbon storage @ Pk-Day conditions	= 78.74 = 0.12	lb/d	0. 12,4 78. 90 0.	07 87 80 lb/d 74 gph 12 hp@psig= \$ 21 days	90
Theoretical C:N ratio @ Pk-hr Theoretical C:DO ratio @ Pk-hr Carbon required @ Pk-hr conditions 100% feed solution @ SG = 0.79 Carbon pump power @ Pk-hr conditions Carbon storage @ Pk-hr conditions		lb/d	0. 12,2 77. 90 0.	07 87 78 lb/d 47 gph 12 hp@psig= 9 22 days	90
Nutrient Requirements:					
Theoretical P required as nutrient @ ADF Est. actual P required, DF = 1 P available in raw wastewater @ ADF Supplemental P required Supplemental P as 75% H ₃ PO ₄ 275-gal Tote of 75% H ₃ PO ₄ will last	= 0.56 = 0.017 = 52.48 = 47.08 = 5.40	lb/day, temp adj mg/L P mg P/mg Nr lb/day lb/day lb/day gpd days	0. 0.0 62 47 15. 4.	66 lb/day, temp adj 67 mg/L P 20 mg P/mg Nr 66 lb/day 08 lb/day 58 lb/day 37 gpd 48 days	
Theoretical P required as nutrient @ Max-Mo	= 65.67	lb/day, temp adj	70	12 lb/day, temp adj	
Est. actual P required, DF = 1 P available in raw wastewater @ Max-Mo Supplemental P required Supplemental P as 75% H ₃ PO ₄ 275-gal Tote of 75% H ₃ PO ₄ will last	= 0.55 = 0.017 = 65.67 = 59.17 = 6.51	mg/L P mg P/mg Nr lb/day lb/day gpd	0.0 0.0 78 59 19. 6.	mg/L P mg/L P	
Theoretical P required as nutrient @ Pk-Day Est. actual P required, DF = 1 P available in raw wastewater @ Pk-Day Supplemental P required Supplemental P as 75% H ₃ PO ₄ 275-gal Tote of 75% H ₃ PO ₄ will last	= 66.23 = 75.00 = 0.00 = 0.00	lb/day, temp adj lb/day lb/day lb/day gpd days	79. 75. 4. 1.	08 lb/day, temp adj 08 lb/day 00 lb/day 08 lb/day 27 gpd 30 days	
Theoretical P required as nutrient @ Pk-hr Est. actual P required, DF = 1 P available in raw wastewater @ Pk-hr Supplemental P required Supplemental P as 75% H ₃ PO ₄ 275-gal Tote of 75% H ₃ PO ₄ will last	= 64.16 = 141.67 = 0.00 = 0.00	lb/day, temp adj lb/day lb/day lb/day gpd days	76. 141. 0. 0.	61 lb/day, temp adj 61 lb/day 67 lb/day 00 lb/day 00 gpd 00 days	

III. ESTIMATED OPERATING COSTS

A. Chemical @ ADF			Summer		Winter
Carbon cost/gal @	\$1.50	= -	\$408,581 per 6 mos.		\$408,581 per 6 mos.
H ₃ PO ₄ cost /lb @	\$0.50	=	\$492 per 6 mos.		\$1,422 per 6 mos.
		Subtotal =	\$409,073 per 6 mos.	+	\$410,003 per 6 mos.
B. Power @ ADF					\$819,076 per year
\$/I	kWh = \$0.10				
BW pump power w/drain	down	=	\$1,483 per 6 mos.		\$1,483 per 6 mos.
BW blower power		=	\$7,327 per 6 mos.		\$7,328 per 6 mos.
Bump pump power		=	\$1,272 per 6 mos.		\$1,272 per 6 mos.
Mudwell pump power		=	\$1,236 per 6 mos.		\$1,236 per 6 mos.
Nitrate analyzer power		=	\$315 per 6 mos.		\$315 per 6 mos.
Analyzer sample pump(s) power	=	\$149 per 6 mos.		\$149 per 6 mos.
Carbon feed pump(s) pov	wer	=	\$31 per 6 mos.		\$31 per 6 mos.
		Subtotal =	\$11,813 per 6 mos.	+	\$11,814 per 6 mos.
					\$23,627 per year

IV. EQUIPMENT LIST FOR ROM-TYPE ESTIMATE (based on winter conditions)

Final equip. selection to be made by Mechanical Dept. after design is finalized. HP and psig values are estimated typical operating conditions.

Qty Description				
8 Denite ^R hardware @	1,167.0	ft2, 11'-8" x 100'-0"		108 m ²
1 lot TETRA #5 Denite media @	3,734.4	tons of 2-3 mm ES silica sand	8.0 ft	2.44 m
1 lot Denite gravel @	700.2	tons	1.5 ft	0.46 m
1 Mudwell basin @	209,612	gallons		793 m ³
1 Clearwell basin @	251,624	gallons		952 m ³
2 BW water pumps @	7,002	gpm @ psig= 10.8	25.0 ft TDH	1,590 m ³ /h
3 BW air blowers @	3,501	icfm @ psig= 10.0	23.1 ft TDH	5,954 m ³ /h
2 Carbon storage system @	20,000	gallons		76 m ³
3 50% Carbon pumps @	39.37	gph =	2,484 ml/min	Methanol 100%
2 Phos. acid pumps @		gph =	16 ml/min	H ₃ PO ₄ 75%
2 Mudwell pumps @	1,456	gpm @ psig= 10.8	25.0 ft TDH	331 m ³ /h
1 Instrument air comp	10	scfm @ 100 psig		
1 Instrument air dryer	20	-scfm @ 100 psig -		

¹ Control system

¹ TETRAPace Carbon Dosing System

¹ Filter Water Level Control

¹ lot Weir Plate

							Aer 1 Air flow	Aer 2 Air flow		
		Eff NH3	Eff NO3	Eff TN	Eff TP		rate	rate	WAS Mas Rate	
Date		mg/L	mg/L	mg/L	mg/L		scfm	scfm	lb/d	Acetate mgd
	1/5/2015	38.	30 (0.11	41.76	0.55	4957.52	4550.09	21769	0.10
	1/6/2015	38.	45 (0.11	41.88	0.47	4698.85	4475.13	22303	0.10
	1/7/2015	38.	86 (0.12	42.36	0.53	4428.50	4114.24	21887	0.10
	1/8/2015	42.	50 (0.11	45.99	0.62	4571.24	4304.67	22001	0.11
	1/9/2015	38.	86 (0.11	42.25	0.49	4549.24	4302.26	22052	0.10
	1/10/2015	39.	51 (0.11	43.00	0.51	4833.06	4546.70	22075	0.10
	1/11/2015	37.	46 (0.10	40.90	0.41	4948.60	4603.32	2 22404	0.10
	1/12/2015	41.	06 (0.12	44.66	0.38	4390.20	4005.60	21998	0.10
	1/13/2015	45.	54 (0.13	49.24	0.45	4096.51	3690.05	21062	0.09
	1/14/2015	42.	02 (0.12	45.64	0.59	4772.97	4356.41	21021	0.10
	1/15/2015	36.	60 (0.10	40.06	0.49	5273.96	4896.73	3 22131	0.10
	1/16/2015	37.	95 (0.11	41.42	0.41	4730.28	4297.42	2 22304	0.10
	1/17/2015	45.	20 (0.12	48.85	0.47	4412.57	3945.92	21557	0.10
	1/18/2015	46.	21 (0.12	49.92	0.52	4257.38	3942.19	21275	0.10
	1/19/2015	39.	63 (0.12	43.13	0.68	4454.48	4113.37	21054	0.10
	1/20/2015	36.	43 (0.10	39.79	0.60	4925.18	4635.49	21813	0.11
	1/21/2015	38.	69 (0.10	42.12	0.47	4703.08	4413.73	3 22207	0.10
	1/22/2015	37.	53 (0.12	40.96	0.48	4490.16	4176.09	21870	0.10
	1/23/2015	44.	56 (0.12	48.22	0.46	4346.49	4092.26	21669	0.10
	1/24/2015	39.	92 (0.12	43.43	0.55	4443.34	4143.00	21351	0.10
	1/25/2015	41.	32 (0.10	44.84	0.51	4566.33	4300.20	21580	0.11
	1/26/2015	39.	91 (0.11	43.40	0.42	4437.22	4079.72	21357	0.10
	1/27/2015	39.	24 (0.12	42.80	0.40	4361.00	3996.26	21081	0.10
	1/28/2015	40.	70 (0.12	44.29	0.45	4426.00	4004.84	20794	0.10
	1/29/2015	38.	45 (0.11	41.97	0.47	4618.13	4207.84	21021	0.10
	1/30/2015	37.	49 (0.11	40.99	0.50	4531.17	4181.75	21316	0.10
	1/31/2015	44.	17 (0.12	47.84	0.47	4085.57	3789.10	21007	0.10
	2/1/2015	43.	00 (0.13	46.64	0.50	3969.78	3638.54	20293	0.10
	2/2/2015	37.	84 (0.12	41.36	0.44	4382.96	3977.39	20154	0.10
	2/3/2015	38.	08 (0.11	41.59	0.49	4334.61	3989.44	20611	0.10
	2/4/2015	41.	57 (0.12	45.09	0.47	4179.17	3792.43	3 20569	0.10
Average		40.	23 (0.11	43.75	0.49	4521.79	4179.42	21,470	0.10
Max		46.	21 (0.13	49.92	0.68	5273.96	4896.73	22,404	0.11

Total Ave Air	8,701 scfm	
Total Max Air	10,171 scfm	
BIOFOR N Air	5,672 scfm	provided by IDI - 8 blowers @ 709 scfm
Total Ave Air with BIOFOR	14,373 scfm	
Total Acetate	3.0 MG	
ADF MeOH	9900 lb/d	provided by Severn Trent
ADF MeOH	1493 gpd	provided by Severn Trent
Monthly Use	44790 gallons	
Ave WAS calc	27,912 lb/d	with 1.3 factor
Denite Backwash TSS	1,070 mg/L	provided by Severn Trent
Dirty BW volume discharge	174,677 gallons	provided by Severn Trent, per BW
BW frequency Max Month	3.9 per day	provided by Severn Trent, per BW
BW TSS Load	6,079 lb/d	
Total Wastage	33,991 lb/d	

Info from :	30-DaySimulationWithQAir	
power/scfm/yr \$/kwhr		350 0.069
WAS Rate increase		1.3
Methanol Solution Purchased Methanol	mg COD/L	11880 1188000
Methanol Price \$/gal	\$	2.25
Monthly Ave Air Cost Ave MeOH Cost	\$ \$	29,000.00 101,000.00
MeOH Facilities 5-Stage Bardenpho Facility Cost MeOH Use	\$	568,000.00 615 gpd
PostDN MeOH Use		1493 gpd
Ratio		2.427642276
Est MeOH Facility Cost for Post DN	\$	1,379,000.00

Ave WAS calc

Est BW TSS Load

Total Wastage

26,420 lb/d

4,559 lb/d

30,979 lb/d

				Aer	1 Air flow A	er 2 Air flow		
	Eff NH3	Eff NO3 Eff 1	N Eff TP	rate			WAS Mas Rate	
Date		mg/L mg/		scfm				Acetate mgd
1/5/2015	_	1.03	33.50	0.43	7743.58	6218.68	-	0.10
1/6/2015		1.00	33.98	0.41	7406.64	6113.16		0.10
1/7/2015		1.09	33.98	0.44	7043.55	5883.68		0.10
1/8/2015		0.96	38.04	0.48	7259.41	6157.53		0.11
1/9/2015		0.96	34.65	0.42	7252.98	6072.20		0.10
1/10/2015		0.99	34.99	0.43	7585.26	6256.47		0.10
1/11/2015		0.96	33.31	0.38	7630.64	6254.04		0.10
1/12/2015		1.05	36.73	0.37	6873.77	5769.04		0.10
1/13/2015		1.10	41.07	0.41	6571.65	5505.67		0.09
1/14/2015		1.06	37.35	0.46	7482.46	6018.36		0.10
1/15/2015		0.97	32.20	0.40	7999.05	6415.99		0.10
1/16/2015		1.01	33.76	0.37	7224.97	5993.34		0.10
1/17/2015		1.07	40.78	0.41	6921.30	5752.95		0.10
1/18/2015		1.07	41.76	0.43	6771.90	5708.47		0.10
1/19/2015		1.05	35.06	0.50	7073.50	5820.99		0.10
1/20/2015		0.94	32.06	0.45	7640.26	6305.49		0.11
1/21/2015		0.95	34.77	0.40	7315.93	6097.30		0.10
1/22/2015		1.03	33.17	0.42	7074.46	5893.99		0.10
1/23/2015		1.04	40.28	0.41	6898.82	5823.08		0.10
1/24/2015		1.04	35.44	0.45	7040.14	5869.17		0.10
1/25/2015		0.94	37.19	0.42	7167.64	6051.54		0.11
1/26/2015		0.97	36.02	0.38	6989.16	5804.50		0.10
1/27/2015		1.05	34.96	0.38	6859.82	5665.42		0.10
1/28/2015		1.05	36.30	0.40	6929.90	5686.62		0.10
1/29/2015		1.03	34.20	0.41	7175.46	5800.36		0.10
1/30/2015		1.05	33.03	0.41	7060.20	5810.04		0.10
1/31/2015		1.05	39.80	0.40	6512.57	5532.85	19913	0.10
2/1/2015		1.07	38.65	0.42	6406.62	5366.20		0.10
2/2/2015		1.03	33.54	0.42	6883.04	5583.43	19201	0.10
2/3/2015		1.03	33.79	0.38	6804.44	5630.76	19541	0.10
2/4/2015		1.03	36.88	0.41	6662.85	5630.61	19503	0.10
2/4/2013	13.43	1.03	30.88	0.41	0002.83	3030.01	19303	0.10
Average	14.17	1.02	35.85	0.42	7105.22	5886.84	20,323	0.10
Max	18.95	1.10	41.76	0.50	7999.05	6415.99	21,105	0.11
							•	
Total Ave Air	12,992	scfm						
Total Max Air	14,415	scfm						
BIOFOR N Air	3,012	scfm prov	ided by IDI - 6 blo	wers @ 502 s	scfm			
Total Ave Air with B	16,004	scfm						
Total Acetate	3.0	MG						
ADEM. 611	=	L. 7.1			al to the	20/1		20/40
ADF MeOH	7425	•	vided by Severn Tr			-	•	
ADF MeOH	1120 (ided by Severn Tr	ent assume o	nly treating 3	sumg/L as NO	x so reduced by 3	30/40
Monthly Use	33592.5	gallons						

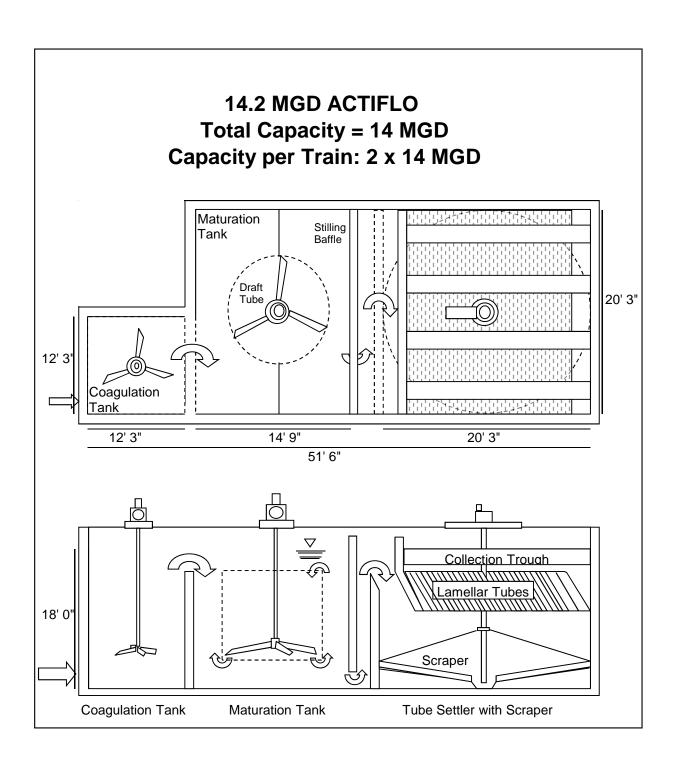
provided by Severn Trent assume only treating 30mg/L as NOx so reduced by 30/40

Info from :	30-DaySimulation	WithQAir
power/scfm/yr \$/kwhr		350 0.069
WAS Rate increase		1.3
Methanol Solution Purchased Methanol	mg COD/L	11880 1188000
Methanol Price \$/gal	\$	2.25
Monthly Ave Air Cost Ave MeOH Cost	\$ \$	32,000.00 76,000.00
MeOH Facilities 5-Stage Bardenpho Facility Cost MeOH Use	\$	568,000.00 615 gpd
PostDN MeOH Use		1119.75 gpd
Ratio		1.820731707
Est MeOH Facility Cost for Post DN	\$	1,034,000.00

Summary of Costs without Markups

	Direc	ct Cost	Notes
Denite Filters	\$	11,500,000	Does not include MeOH Facility and piping
BioFor N - 40	\$	12,200,000	
BioForN - 10	\$	7,700,000	

Preliminary Capital Costs for Denite Filters	s (based on sir	nilar f	ootpri	nt a	is LE WWTP)
Cost Element					Cost
Equipment - Main Component					
<u>Item</u> Denite Equipment	Number of Units 1 Equipment Mechan	\$ 5,40 ent Insta		\$ \$ \$	5,400,000 540,000 810,000
Denite Filters, Clearwell, Mudwell, Inf and Eff Channels and Gallery	1	\$ 4,31	10,000		\$ 4,310,000
Other Equipment					
Electrical Support Building by square foot	1,560	\$	250	\$	390,000
Electrical Building Foundation Construction by cubic yard	60	\$	350	\$	21,000
Methanol Support Building by square foot	544	\$	250	\$	136,000
Methanol Foundation Construction by cubic yard	46	\$	350	\$	16,204
Double Containment Piping for Methanol by foot	500	\$	100	\$	50,000
		Sub	total A:	\$	11,673,204
	Contractor Gene	eral Con	ditions	\$	1,167,320
Site Civil and Grading ^d \$ 933,8					933,856
EI&C Allowance ^e \$ 2,918,3				2,918,301	
		Sub	total B:	\$	16,692,681
	Contractor Overl	head an	d Profit ^f	\$	2,503,902
Subtotal C: \$ 19,196,				19,196,583	
Contractor Contigency ^g \$ 5,758,9				5,758,975	
Subtotal D: \$ 24,95				24,955,559	
Engineering and SDC ^h \$ 4,99			4,991,112		
		Sub	ototal E:	\$	29,946,670
		10 "	.10		
	lota	aı Capit	al Cost:	\$	30,000,000


^a Equipment Installation Cost calculated as 10% of vendor supplied equipment.	10%
^b Mechanical Allowance calculated as 15% of vendor supplied equipment.	15%
^c Contractor general conditions calculated as 10% of subtotal A.	10%
^d Site civil and grading calculated as 8% of subtotal A.	8%
^e El&C allowance calculated as 25% of subtotal A.	25%
f Contractor Overhead and Profit calculated as 15% of subtotal B.	15%
g Contractor Contingency calculated as 30% of subtotal C.	30%
h Engineering and SDC calculated as 20% of subtotal D.	20%

Preliminary Capital Costs for E	BioForN [10 mg/L	Influe	nt Ammonia]	
Cost Element				Cost
Equipment - Main Compo	nent			
<u>ltem</u>	Number of Units		<u>Unit Price</u>	
BioFor N Equipment	1	\$	3,900,000	\$ 3,900,000
		Equipr	nent Installation ^a	\$ 390,000
		Mecha	nical Allowance ^b	\$ 585,000
Cells, Clearwell, Mudwell, Inf and Eff Channels and Gallery ¹	1	\$	2,400,000	\$ 2,400,000
Other Equipment				
Electrical Support Building by square foot	1,560	\$	250	\$ 390,000
Electrical Building Foundation Construction by cubic yard	60	\$	350	\$ 21,000
			Subtotal A:	\$ 7,686,000
	Cont	ractor Ge	neral Conditions ^c	\$ 768,600
		Site C	Civil and Grading ^d	\$ 614,880.00
			EI&C Allowance ^e	\$ 1,921,500.00
			Subtotal B:	\$ 10,990,980
	Cont	ractor Ove	erhead and Profit ^f	\$ 1,648,647
			Subtotal C:	\$ 12,639,627
		Contra	actor Contigency ^g	\$ 3,791,888.10
			Subtotal D:	\$ 16,431,515
		Engir	neering and SDC ^h	\$ 3,286,303.02
			Subtotal E:	\$ 19,717,818
		To	tal Capital Cost:	\$ 20,000,000

^a Equipment Installation Cost calculated as 10% of vendor supplied equipment.	10%
^b Mechanical Allowance calculated as 15% of vendor supplied equipment.	15%
^c Contractor general conditions calculated as 10% of subtotal A.	10%
^d Site civil and grading calculated as 8% of subtotal A.	8%
^e EI&C allowance calculated as 25% of subtotal A.	25%
f Contractor Overhead and Profit calculated as 15% of subtotal B.	15%
^g Contractor Contingency calculated as 30% of subtotal C.	30%
^h Engineering and SDC calculated as 20% of subtotal D.	20%

Preliminary Capital Costs for B	ioForN [40 mg/l	_ Influe	nt Ammonia]		
Cost Element					Cost
Equipment – Main Compor	ent				
<u>Item</u>	Number of Units		<u>Unit Price</u>		
BioFor N Equipment	1	\$	5,900,000	\$	5,900,000
		Equipn	nent Installation ^a	\$	590,000
		Mecha	nical Allowance ^b	\$	885,000
Cells, Clearwell, Mudwell, Inf and Eff Channels and Gallery ¹	1	\$	4,400,000		\$ 4,400,000
Other Equipment					
Electrical Support Building by square foot	1,560	\$	250	\$	390,000
Electrical Building Foundation Construction by cubic yard	60	\$	350	\$	21,000
			Subtotal A:	\$	12,186,000
	Cont	ractor Ge	neral Conditions ^c	\$	1,218,600
		Site C	civil and Grading ^d	\$	974,880.00
			EI&C Allowance ^e	\$	3,046,500.00
			Subtotal B:	\$	17,425,980
	Cont	ractor Ove	erhead and Profit ^f	\$	2,613,897
			Subtotal C:	\$	20,039,877
		Contra	actor Contigency ^g	\$	6,011,963.10
			Subtotal D:	\$	26,051,840
		Engir	neering and SDC ^h	\$	5,210,368.02
			Subtotal E:	\$	31,262,208
		To	tal Capital Cost:	•	31,000,000

^a Equipment Installation Cost calculated as 10% of vendor supplied equipment.	10%
^b Mechanical Allowance calculated as 15% of vendor supplied equipment.	15%
^c Contractor general conditions calculated as 10% of subtotal A.	10%
^d Site civil and grading calculated as 8% of subtotal A.	8%
^e EI&C allowance calculated as 25% of subtotal A.	25%
f Contractor Overhead and Profit calculated as 15% of subtotal B.	15%
^g Contractor Contingency calculated as 30% of subtotal C.	30%
^h Engineering and SDC calculated as 20% of subtotal D.	20%

On Wed, Apr 22, 2015 at 7:37 AM, Georger, Jim < <u>jim.georger@veolia.com</u>> wrote: Ben

Please see attached Preliminary Proposal for Actiflo. This will help you better understand our typical scope. Budget Price for the Actiflo only with Chemical Feed Systems is \$2.3 MM.

I have also requested our Typical O&M Table based on the Proposal and shroud have for you today.

As far as discfilters go:

Our typical media replacement estimates is: (percent of panels replaced)

- Years 1-5: ~0% Annual Replacement
- Years 6-8: ~4-6% Annual Replacement
- Years 7-20: ~6-8% Annual Replacement

Cost per Media Panel for HSF2200: ~\$125

We expect that a full replacement of the filters' media will occur after 20 years. As a rule of thumb we estimate that 5% of the media panels are replaced in Years 6-8; and 7% of the media panels annually thereafter. We feel confident that these are conservative estimates. We know of sites that have operated for more than 10 years with original media.

We like to stress that individual media panels can be replaced, replacing an entire disc, drum, and tank is not necessary.

Please let me know what else you may need. Actiflo O&M Table is coming. I have also requested Budget Prices for the Discfilters and typical drawings for each size noted in the Table.

Jim

James T. Georger, P.E. Regional Sales Manager, US Municipal Solutions WATER TECHNOLOGIES

office: +1 972-377-2927 / cell: +1 972-489-4235 Kruger Inc. / 4001 Weston Pkwy / Cary, NC 27513 / USA

jim.georger@veolia.com

www.krugerusa.com / www.veoliawaterstna.com

Brown and Caldwell Meridian, ID

4/21/2015

ACTIFLO® Proposal Kruger Project No.: - 5700112503

Submitted to: Ben Watson Wastewater Engineer Brown and Caldwell 701 Pike St # 1200, Seattle, WA 98101

Submitted by:

Daniel M. Austria Jr. ACTIFLO® Systems Application Engineer I Kruger Inc. 4001 Weston Parkway Cary, NC 27513 USA

This document is confidential and contains proprietary information. It is not to be disclosed to a third party without the written consent of Veolia Water Technologies

Introduction

I Kruger Inc (Krüger) is pleased to present this budgetary ACTIFLO® System proposal for a potential tertiary waste water treatment project in Meridian, ID.

Enclosed is the preliminary process description, design summary, scope of supply, design options, procurement schedule, and price estimate for the following offering:

2 x 14.2 MGD ACTIFLO® System

Over the past 11 years, Kruger has been very active in establishing performance expectations and specific design criteria for our ACTIFLO® process in regards to TP removal. This process knowledge development has come from Kruger design engineers working closely with our full- scale tertiary WW removal installations (11 currently in operation with 2 more currently under construction) coupled with our research and development efforts in pilot testing different wastewater sources throughout the country. Our efforts over the years have proven that the ACTIFLO® process can treat clarified effluent from numerous biological treatment processes (fixed film, activated sludge, processes with or without biological phosphorus removal) and still achieve extremely low TP.

The ACTIFLO® process offers many advantages to include:

- 1) Well established Tertiary WW removal installation base in the US to include cold climates.
- 2) A small process footprint that can fit into the existing site or be retro-fitted into existing basins no longer in use.
- 3) A low system head loss that allows for incorporation of ACTIFLO® system into the existing hydraulic profile without the need for pumping.
- 4) Low power demand and overall operating costs with the ability to start and stop the process for extended periods of time without having a negative impact on process performance or start-up time.
- 5) The ability to meet future phosphorus limits by adding more chemicals as opposed to adding more equipment .
- 6) Can be operated with multiple coagulant types.
- 7) The ability to handle an increase in solids loading for a prolonged period of time while maintaining consistent effluent quality (solids washout during peak flow conditions).
- 8) Readily available ballast material (microsand) that can be purchased from multiple suppliers in the US to include a supplier in the regional ID area.

We appreciate the opportunity to provide this proposal to you. If you have any questions or need further information, please contact our local representative, Mike Brown (Coombs Hopkins) or our Regional Product Manager, Jim Georger (jim.georger@veolia.com, 972-377-2927).

cc: Sales/Proces Dept, project file (Kruger) Mike Brown (Cooms Hopkins)

Revision	Date	Process Eng.	Comments
0	4/21/2015	MDC	Initial request for 2 x 14.2 MGD ACTIFLO system

We Know Water

I. Kruger Inc. (Kruger) is a water and wastewater solutions provider specializing in advanced and differentiating technologies. Kruger provides complete processes and systems ranging from biological nutrient removal to mobile surface water treatment. The ACTIFLO[®] Microsand Ballasted Clarifier, BioCon[®] Dryer, BIOSTYR[®] Biological Aerated Filter (BAF) and NEOSEP[™] MBR are just a few of the innovative technologies offered by Kruger. Kruger is a subsidiary of Veolia Water, a world leader in engineering and technological solutions in water treatment for industrial companies and municipal authorities.

Veolia Water Solutions & Technologies, the fully-owned subsidiary of **Veolia Water**, is the world leader in water and wastewater treatment with over 155 years of experience. As an experienced design-build company and a specialized provider of technological solutions in water treatment, Veolia combines proven expertise with unsurpassed innovation to offer technological excellence to our industrial customers. Based on this expertise, we believe that we have developed the best solution for your application. Below is a brief description of the proposed project.

Energy Focus

Kruger, along with Veolia Water Solutions & Technologies (VWS) is dedicated to delivering sustainable and innovative technologies and solutions.

We offer our customers integrated solutions which include resource-efficient technology to improve operations, reduce costs, achieve sustainability goals, decrease dependency on limited resources, and comply with current and anticipated regulations.

Veolia's investments in R&D outpace that of our competition. Our focus is on delivering

- neutral or positive energy solutions
- migration towards green chemicals or zero chemical consumption
- water-footprint-efficient technologies with high recovery rates

Our carbon footprint reduction program drives innovation, accelerates adoption and development of clean technologies, and offers our customers sustainable solutions.

Kruger is benchmarking its technologies and solutions by working with our customers and performing total carbon cost analysis over the lifetime of the installation.

By committing to the innovative development of clean and sustainable technologies and solutions worldwide, Kruger and VWS will continue to maximize the financial benefits for every customer.

Process Description

ACTIFLO® Process

The ACTIFLO® process is a compact clarification system that utilizes microsand as a seed for floc formation. The microsand serves several important roles in the ACTIFLO® process such as forming a seed which promotes the formation of large stable, high-density floc, dampens the effects of changes in the raw water quality due to its high concentration within in the process, and is effectively removed from the chemical sludge and reused in the process due to its chemically inert qualities. This floc has considerably higher settling velocities than conventional floc and allows significantly higher clarifier overflow rates. The higher overflow rates possible with ACTIFLO® translate directly into reduced process volume, reduced system footprint, and significant reductions in total civil cost. Overall, these factors provide a process that is extremely efficient in the treatment of "difficult" waters, stable with changes in raw water quality, and relatively easy to operate and optimize. ACTIFLO designs result in system footprints that are between 5 and 20 times smaller for water and 5 to 50 times smaller for wastewater applications when compared to conventional clarification systems of similar capacity.

In wastewater treatment, the ACTIFLO® process is appropriate for use in any application that would benefit from physical-chemical treatment including coagulation, flocculation and settling. It can be applied to primary and tertiary wastewater treatment where either better performance or cost reduction is desired. It is ideally suited for storm water treatment including CSO, SSO or other overflows due to its high performance, small footprint, and extremely short start-up time. The process consistently displays efficient removals of TSS, BOD, Total P, COD, metals, fecal coliform, and other typical wastewater contaminants, which can be removed by physical-chemical processes.

The ACTIFLO® process is currently in operation worldwide in small communities as well as large metropolitan areas.

Design Summary

Tables 1 and 2 summarize the design criteria and preliminary process parameters for the proposed design option(s).

Table 1: General Design Summary

Parameter	Unit	Values
ACTIFLO System Trains	#	2
Total Influent Flow per ACTIFLO Train	MGD	14.2
Total Influent Flow to ACTIFLO System	MGD	28
Total Effluent Flow per ACTIFLO Train	MGD	13.6
Total Effluent Flow per ACTIFLO System	MGD	27.2
Peak Hourly Flow	MGD	28
Max Month Flow	MGD	14.2
Average Daily Flow	MGD	5.5
Max Influent TSS	mg/L	TBD
Max Influent Total Phosphorus	mg/L	TBD
Max Influent Un-reactive Phosphorus	mg/L	< 0.02
Target Effluent TSS	mg/L	TBD
Target Effluent Total Phosphorus	mg/L	< 0.07 mg/L
Assumed Effluent pH		TBD

Table 2: ACTIFLO SINGLE TRAIN Design Criteria

Parameter	Unit	Values
Coagulation Tank HRT	min	2.0
Maturation Tank HRT	min	4.6
Settling Tank HLR	gpm/sf	32.5
Sand Recirculation Flow (per pump) +/- 10%	gpm	300
Estimated Total Sludge Waste Flow +/- 10% (per train)	gpm	240
Estimated Sludge Solids Concentration	%	0.1-0.5
ACTIFLO Train Dimensions		See General Arrangement DWG

Scope of Supply

Kruger is pleased to present our scope of supply which includes process engineering design, package plant fabrication, equipment procurement, and field services required for the proposed treatment system. The work will be performed to Kruger's high standards under the direction of a Project Manager. All matters related to the design, installation, or performance of the system shall be communicated through the Kruger representative giving the Engineer and Owner ready access to Kruger's extensive capabilities.

Process and Design Engineering

Kruger will provide process engineering and design support for the system as follows:

- Equipment specifications for equipment supplied by Kruger
- Technical instructions for operation and start-up of the system
- Equipment drawings and installation instructions
- Project specific O&M manuals

Field Services

Kruger will furnish a Service Engineer as specified at the time of start-up to inspect the installation of the system, place the system in initial operation, and to instruct operating personnel on the proper use of the equipment. Specifically, Kruger will provide:

• Field Service Engineer/Technician – Fifteen (15) man days on site in not more than four (4) site visits to assist with inspection check-out, start-up, and operator training.

Equipment Supply

ACTIFLO System General Equipment	Quantity (Details)
In-Line Mechanical Mixer	
In-line rapid mixer: TEFC 460/3/60 premium efficient – inverter duty – AC induction motor, low pressure stuffing box type seal, 316 SS internal baffles, dual chemical injection ports, epoxy-coated carbon steel body, 316 SS radial flow turbine impellers, 316 SS shaft.	1 (2 HP)
Coagulation Tank (s)	
Top Entering Type Mixer: TEFC 460/3/60 premium efficient – severe duty - AC induction motor. 304 SS shaft and hydrofoil impeller.	2 (5 HP)
Maturation Tank (s)	

ACTIFLO System General Equipment				
Top Entering Type Mixer: TEFC 460/3/60 premium efficient – inverter duty - AC				
induction motor, 304SS shaft and draft tube impeller.	(7.5 HP)			
TURBOMIX Draft Tube: 304 SS with supports, flux converter cells	2			
Settling Tank(s)				
Scraper Drive: TEFC 460/3/60 premium efficient –inverter duty – AC induction motor, hydrostatic primary reducer, final reduction planetary gearbox, torque indication and overload protection	2 (0.75 HP)			
Scraper Assembly: 304 SS torque tube shaft, 304 SS rake arms, 304 SS blades, 304SS shaft protector and 304 SS squeegees.				
Lamella Settler Set: Polystyrene tube modules				
Lamella Settler Support Set: 304 SS tube type supports				
Lamella Tube Tie-down Assembly: Appurtenances including wire rope, clips				
Effluent Collection Trough Set: 304 SS troughs and supports				
Microsand Recycle Circuits				
Microsand Recirculation Pumps: TEFC, 460/3/60 premium efficient – severe duty – AC induction motor, centrifugal, cast iron body, with rubber-lined volute and closed-vane impeller, dry gland seal, drip pan, with V-belt and pulley drive.				
		Discharge Side Pump Isolation Valve: Manual eccentric plug type	4 (4")	
Suction Side Pump Isolation Valve: Manual eccentric plug type	4 (4")			

ACTIFLO System General Equipment				
	4			
Flush Connection Valve: Ball valve, 304 SS, manual.	(2")			
Microsand Recirculation Pump Pressure Transmitter Isolation Valve: Ball valve, 304 SS, manual.	4 (0.5")			
	4			
Sand Sampling Valve: Ball valve, 304 SS, manual.	(0.5")			
Hydrocyclone Recycle Equipment				
Hydrocyclones: Urethane body	1 duty + 1 standby (per train)			
Hydrocyclone Support Stand: 304 SS	4			
Sand Concentration Sampling Device: Imhoff Cone, plastic	4			
Commissioning Consumables				
Microsand Ballast (Tons)	28			
Polymer Flocculant (lbs)	1500			

ACTIFLO System Spare Parts	Quantity (Details)
Mechanical Spare Parts	
Inline Mixer bearings and seals set	1
Coagulation Tank mixer bearings and seals set	1
Maturation Tank mixer bearings and seals set	1
Microsand Pump V-belt sets	4
Hydrocyclone Apex Tip	4

ACTIFLO System Controls	Quantity (Details)
Control Panels	
NEMA 12 Painted Steel (for indoor use only) Panel, to control the ACTIFLO® System based on operator setpoints, completely assembled, tested, and programmed for the required functionality	1
Back Panel for Control Panel	1
Panelview Plus 6 1000 Color Touchscreen Operator Interface w/Ethernet – ALLEN BRADLEY	1
Control Logix PLC Processor – ALLEN BRADLEY	1
UPS 850VA 120VAC Input/ 120VAC Output – SOLA	1
PLC Control Panel I/O + 20% "LIVE" spare wired signals for additional signal interface - KRUGER	1
Complete Set of Control Panel Internals per Kruger Standard Scope - KRUGER	1
PLC and Operator Interface Programming – KRUGER	1
PLC site Start-Up and Testing – KRUGER	1

ACTIFLO System Instrumentation	
Instrumentation	
Influent Pipe Turbidity (pre-chem feed): NTU Sensor, Pipe Insertion Mounting (Hach Solitax NTU Analyzer LVX424), Controller (SC200)	1
Influent Pipe pH (pre-chem feed): pH Sensor Pipe Insertion Mounting (Hach DPD1P1), Controller (SC200)	1
Settling Tank Turbidity (post chem feed): NTU Sensor, Tank Immersion Mounting (Hach Solitax NTU Analyzer LVX423), Controller (SC200)	2
Settling Tank pH (post-chem feed): pH Sensor, Immersion Mounting (Hach DPD1P1), Controller (SC200)	2

ACTIFLO System Instrumentation	
Sand Recirculation Pumps Pressure Indicating Transmitter: Ceramic Diaphragm (E+H PMC71)	4
Sand Recirculation Pump Discharge Flowmeter: Magnetic flowmeter (E+H ProMag W), Controller (ProMag 50)	4

Notable Scope of Supply Items BY INSTALLER/PURCHASER

- General Installation of all equipment and materials provided by Krüger Inc.
- Provisions for pH/Alkalinity adjustment
- Reliable and accurate flow signal for each ACTIFLO System Train for chem feed pacing
- Pre-screening equipment prior to ACTIFLO System (typically not required for tertiary ww projects as screening upstream is sufficient)
- All VFDs for ACTIFLO Equipment (Mixers, Scrapers, Recirculation Pumps)
- Scraper support bridge design/supply
- Dispersion Device (if not supplied by Kruger), for properly dispersing Coagulant upstream of the ACTIFLO system
- Water Heater, for maintaining potable polymer solution make-up water temperature between 55

 90 °F
- Turbidimeter sensors which require angled tap/weld to influent piping
- If the Influent Turbidimeter is to be installed in Ductile Iron Pipe a Stainless Steel spool piece with flanged ends will be required
 - o Turbidimeter flanged adapter will require welding to the spool piece
 - o Supply, installation and welding of the described spool piece
- Bulk storage tanks, pads, and supports including the concrete basins required for the ACTIFLO® system
- Provide all concrete work for the ACTIFLO® tankage, including all corner fillets.
- Install and terminate all motor control centers, motor starters, panels, transformers, instrumentation, and VFD's.
- Supply and install all electrical power and control wiring and conduit to the equipment served plus interconnection between the ACTIFLO[®] Supplier's furnished equipment as required, including wire, cable, junction boxes, fittings, conduit, etc.
- Provide all chemicals (not provided by Kruger), lubricants, glycol, oils, or grease and other supplies required for equipment start-up or plant operation.
- Provide all anchor bolts and mounting hardware.
- Labor and material for winterizing the ACTIFLO® System (insulating/heat tracing piping for example). Provisions for insulating the hydrocyclone may also be required.
- Supply and install all sunshields and/or additional enclosures as needed when installing ACTIFLO[®] equipment and instrumentation outdoors.
- Plumbing/interconnecting piping, weather protection, electrical connections, access platforms, grating & handrails
- Control Panels are shipped loose and require installation and field wiring
- Field Instruments are shipped loose and require installation and field wiring
- All other necessary equipment and services not otherwise listed as specifically supplied by Kruger Inc.

Design Options

In addition to the proposed system as detailed herein, Kruger is able to further incorporate our equipment, process, and controls expertise into treatment plants, allowing municipalities to meet stringent effluent requirements and future plant upgrades. Kruger is able to offer the following, providing clients single source responsibility:

- Customized plant-wide SCADA system
- Motor Control Center (MCC) design
- Chemicals
- Influent screening
- Rotary drum thickeners
- HCS system
- Equipment installation service
- Commissioning services

Please contact Kruger if the options above are of interest or are to be included in the current proposed system or future upgrades. **Please note that the Design Options listed above are not included in the pricing noted herein.

Schedule

- Shop drawings will be submitted within 6-8 weeks of receipt of an executed contract by all parties.
- All equipment will be delivered within 18-20 weeks after receipt of written approval of the shop drawings.
- Installation manuals will be furnished upon delivery of equipment.
- Operation and Maintenance Manuals will be submitted within 90 days after receipt of approved shop drawings.

Pricing

The pricing for the ACTIFLO System offering(s) as defined herein, including process and design engineering, field services, and equipment supply is:

2 x 14.2 MGD ACTIFLO® System: \$TBD.

Pricing is FOB shipping point, with freight allowed to the job site. This pricing does not include any sales or use taxes. In addition, pricing is valid for ninety (90) days from the date of issue and is subject to negotiation of a mutually acceptable contract.

Please note that the above pricing is expressly contingent upon the items in this proposal and are subject to I. Kruger Inc. Standard Terms of Sale detailed herein.

Kruger Standard Terms of Payment

The terms of payment are as follows:

- 10% on receipt of fully executed contract
- 15% on submittal of shop drawings
- 75% on the delivery of equipment to the site

Payment shall not be contingent upon receipt of funds by the Contractor from the Owner. There shall be no retention in payments due to I. Kruger Inc. All other terms per our Standard Terms of Sale are attached.

All payment terms are net 30 days from the date of invoice. Final payment not to exceed 120 days from delivery of equipment.

I. Kruger Inc. Standard Terms of Sale

- 1. <u>Applicable Terms.</u> These terms govern the purchase and sale of the equipment and related services, if any (collectively, "Equipment"), referred to in Seller's purchase order, quotation, proposal or acknowledgment, as the case may be ("Seller's Documentation"). Whether these terms are included in an offer or an acceptance by Seller, such offer or acceptance is conditioned on Buyer's assent to these terms. Seller rejects all additional or different terms in any of Buyer's forms or documents.
- 2. <u>Payment.</u> Buyer shall pay Seller the full purchase price as set forth in Seller's Documentation. Unless Seller's Documentation provides otherwise, freight, storage, insurance and all taxes, duties or other governmental charges relating to the Equipment shall be paid by Buyer. If Seller is required to pay any such charges, Buyer shall immediately reimburse Seller. All payments are due within 30 days after receipt of invoice. Buyer shall be charged the lower of 1 ½% interest per month or the maximum legal rate on all amounts not received by the due date and shall pay all of Seller's reasonable costs (including attorneys' fees) of collecting amounts due but unpaid. All orders are subject to credit approval.
- 3. <u>Delivery.</u> Delivery of the Equipment shall be in material compliance with the schedule in Seller's Documentation. Unless Seller's Documentation provides otherwise, Delivery terms are F.O.B. Seller's facility.
- 4. <u>Ownership of Materials.</u> All devices, designs (including drawings, plans and specifications), estimates, prices, notes, electronic data and other documents or information prepared or disclosed by Seller, and all related intellectual property rights, shall remain Seller's property. Seller grants Buyer a non-exclusive, non-transferable license to use any such material solely for Buyer's use of the Equipment. Buyer shall not disclose any such material to third parties without Seller's prior written consent.
- 5. <u>Changes.</u> Seller shall not implement any changes in the scope of work described in Seller's Documentation unless Buyer and Seller agree in writing to the details of the change and any resulting price, schedule or other contractual modifications. This includes any changes necessitated by a change in applicable law occurring after the effective date of any contract including these terms.
- 6. Warranty. Subject to the following sentence, Seller warrants to Buyer that the Equipment shall materially conform to the description in Seller's Documentation and shall be free from defects in material and workmanship. The foregoing warranty shall not apply to any Equipment that is specified or otherwise demanded by Buyer and is not manufactured or selected by Seller, as to which (i) Seller hereby assigns to Buyer, to the extent assignable, any warranties made to Seller and (ii) Seller shall have no other liability to Buyer under warranty, tort or any other legal theory. If Buyer gives Seller prompt written notice of breach of this warranty within 18 months from delivery or 1 year from beneficial use, whichever occurs first (the "Warranty Period"), Seller shall, at its sole option and as Buyer's sole remedy, repair or replace the subject parts or refund the purchase price therefore. If Seller determines that any claimed breach is not, in fact, covered by this warranty, Buyer shall pay Seller its then customary charges for any repair or replacement made by Seller. Seller's warranty is conditioned on Buyer's (a) operating and maintaining the Equipment in accordance with Seller's instructions, (b) not making any unauthorized repairs or alterations, and (c) not being in default of any payment obligation to Seller. Seller's warranty does not cover damage caused by chemical action or abrasive material, misuse or improper installation (unless installed by Seller). THE WARRANTIES SET FORTH IN THIS SECTION ARE SELLER'S SOLE AND EXCLUSIVE WARRANTIES AND ARE SUBJECT TO SECTION 10 BELOW. SELLER MAKES NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR PURPOSE.
- 7. <u>Indemnity.</u> Seller shall indemnify, defend and hold Buyer harmless from any claim, cause of action or liability incurred by Buyer as a result of third party claims for personal injury, death or damage to tangible property, to the extent caused by Seller's negligence. Seller shall have the sole authority to direct the defense of and settle any indemnified claim. Seller's indemnification is conditioned on Buyer (a) promptly, within the Warranty Period, notifying Seller of any claim, and (b) providing reasonable cooperation in the defense of any claim.
- 8. <u>Force Majeure.</u> Neither Seller nor Buyer shall have any liability for any breach (except for breach of payment obligations) caused by extreme weather or other act of God, strike or other labor shortage or disturbance, fire, accident, war or civil disturbance, delay of carriers, failure of normal sources of supply, act of government or any other cause beyond such party's reasonable control.
- 9. <u>Cancellation.</u> If Buyer cancels or suspends its order for any reason other than Seller's breach, Buyer shall promptly pay Seller for work performed prior to cancellation or suspension and any other direct costs incurred by Seller as a result of such cancellation or suspension.
- 10. <u>LIMITATION OF LIABILITY</u>. NOTWITHSTANDING ANYTHING ELSE TO THE CONTRARY, SELLER SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE OR OTHER INDIRECT DAMAGES, AND SELLER'S TOTAL LIABILITY ARISING AT ANY TIME FROM THE SALE OR USE OF THE EQUIPMENT SHALL NOT EXCEED THE PURCHASE PRICE PAID FOR THE EQUIPMENT. THESE LIMITATIONS APPLY WHETHER THE LIABILITY IS BASED ON CONTRACT, TORT, STRICT LIABILITY OR ANY OTHER THEORY.
- 11. <u>Miscellaneous.</u> If these terms are issued in connection with a government contract, they shall be deemed to include those federal acquisition regulations that are required by law to be included. These terms, together with any quotation, purchase order or acknowledgement issued or signed by the Seller, comprise the complete and exclusive statement of the agreement between the parties (the "Agreement") and supersede any terms contained in Buyer's documents, unless separately signed by Seller. No part of the Agreement may be changed or cancelled except by a written document signed by Seller and Buyer. No course of dealing or performance, usage of trade or failure to enforce any term shall be used to modify the Agreement. If any of these terms is unenforceable, such term shall be limited only to the extent necessary to make it enforceable, and all other terms shall remain in full force and effect. Buyer may not assign or permit any other transfer of the Agreement without Seller's prior written consent. The Agreement shall be governed by the laws of the State of North Carolina without regard to its conflict of laws provisions.

Preliminary Operating Cost Estimate 2 x 14.2 ACTIFLO System Meridian, ID 5.5 MGD ADF/ 2 x 14.2 MGD PHF

Mechanical Equipment Summary

Equipment	1 x 14.2 MGD	
Inline Mechanical Mixer	2	HP
Coagulation Tank Mixer	5	HP
Maturation Tank Mixer	7.5	HP
Scraper Motor	0.75	HP
Sand Recirculation Pump ^A	20	HP
Total Power Requirements ^B :	35.25	HP

- A. Each train has 1 duty + 1 standby sand pump each with a 20 HP motor.
- B. Total operating HP to be used in table below assumes power draw of 90% of total nameplate HP and does not include standby equipment. Only includes single train equipment.

Estimated Operating Costs

ACTIFLO [®] System:			5.50 MGD
	Estimated		Estimated Daily
Item	Average Dose ^D	Estimated Unit Cost ^E	Operating Cost
Polymer	0.50 mg/L (dry)	\$ 4500 / ton	\$51.60
Sand Loss	2.0 mg/L	\$ 200 / ton	\$9.17
Coagulant (Aluminum Sulfate)	25 mg/L (dry)	\$ 480 / ton	\$275.22
Power Consumption	See table above.	\$ 0.10 / KWhr	\$56.78
Total Estimated Daily Operating Cost ^F			\$392.78
Total Estimated Annual Operating Cost ^F			\$143,363.00
Operating Cost per 1,000 Gallons			\$0.071

- D. Chemical Dosages are estimates only. Pilot and/or jar testing is required in order to verify all chemical dosages.
- E. Estimated chemical and power costs may vary. It is recommended that the engineer utilize regional contract pricing to afford the end user the most economical operating costs available.
- F. For ADF of 5.5MGD operating 24 hours per day.

Augusta Fiberglass[®]

86 Lake Cynthia Road • Blackville, South Carolina, 29817 • (803) 284-2246 • FX (803) 284-2309 • www.augustafiberglass.com

March 20, 2015

Brown & Caldwell 701 Pike Street, Suite 1200 Seattle, WA 98101 ATTENTION: BEN WATSON

E-MAIL: bswatson@brnwcald.com

Phone: 206-749-2220

Subject: Quotation

AFC REF #79032 (1503-92) HN

AUGUSTA FIBERGLASS® is pleased to furnish this quotation per your request.

DESCRIPTION OF QUOTE:

AFC'S QUOTATION IS CONDITIONED UPON THE ATTACHED AUGUSTA FIBERGLASS COMMERCIAL TERMS AND CONDITIONS.

SCOPE OF WORK:

Two (2) 8,500 Gallon FRP Tanks, 9' I.D. x 18' Straight Shell Height with Flat Bottom, Dome Top.

Fabrication: Hand Lay-up per NBS PS 15-69, Hand Lay-up per ASTM D 4097-01 and Filament Wound per

ASTM D 3299-10

Resin: Isophthalic

Thickness: Suitable for hydrostatic pressures

Nozzles, etc.:

3 - 3" Flanged Nozzles

1 – 24" Side Manway

1 - 6" V-Vent

2 - Carbon Steel Galvanized Lifting Lugs

12 - Carbon Steel Galvanized Hold Down Lugs

Price (Each)......\$14,040.00 x 2 = \$28,080.00

AFC will fabricate items shown above at its Blackville South Carolina facility or its facility in Ocean Springs, Mississippi at Augusta Fiberglass' option.

Estimated Freight to Meridian, ID is \$12,080.00 and subject to change depending on final nozzle orientation and projections.

NOTES:

- 1. Bolting and Gaskets will be by others.
- 2. All fabrication, inspection and tolerances to be upheld to the referenced above industry standard specifications.
- 3. Design Conditions:

Temperature 160°F
Pressure ATM
Seismic Zone 3

Wind Zone 90 MPH Snow Load 20 PSF Specific Gravity 1.35 Contents Alum

TERMS OF PAYMENT: Net 30 days from date of invoice.

- 25% after first submission of shop approval drawing to customer
- Balance invoiced as items become ready for shipment

A finance charge of 1 ½% per month (18% APR) will be assessed on any balance not paid within 30 days of the invoice date. If it is necessary to place the account into collection proceedings, purchaser shall be responsible for all collection costs including witness's and attorney's fees.

ANY MATERIALS OR FABRICATION NOT LISTED ON OUR QUOTE WILL NOT BE FURNISHED AT THIS PRICE.

PRICE IS F.O.B. POINT OF SHIPMENT

NO TAXES ARE INCLUDED

PRICES WILL BE FIRM FOR 30 DAYS

SCHEDULE:

Drawings: 2 – 3 weeks ARO

Fabrication: 10 – 12 weeks after customer's release of full fabrication drawings

Delivery to be confirmed upon receipt of approved drawings and release for fabrication. Please call if delivery is not acceptable. We will store the completed vessels at our facility for no additional charge for a period of two weeks, after which you will be responsible for a charge of 1 ½% of the purchase order value per month for each tank which remains in storage. Stored vessels will be invoiced, and payment is required, in accordance with the terms above.

CONTACT INFORMATION:

For questions please call (800-527-1572) or email

Margie Green at m.green@augustafiberglass.com **Commercial Questions:**

Bid Documents: Matt Swift at m.swift@augustafiberglass.com or James

Lockwood at j.lockwood@augustafiberglass.com

Craig Winningham at c.winningham@augustafiberglass.com **Technical Questions:**

HN/bhp

AUGUSTA FIBERGLASS® TERMS AND CONDITIONS

- 1. The prices quoted are expressly conditioned upon the terms and conditions in this document. The terms hereinafter stated supersede all other terms, understandings and customs inconsistent with this document.
 - A. The prices quoted will be effective for a period of thirty (30) days from the date of this quotation. If Augusta Fiberglass (hereinafter "AFC") receives Purchaser's acceptance after the expiration date, the quoted prices, and such acceptance shall only be binding upon AFC by AFC's written confirmation of such prices.
 - B. Prices for undelivered portions of continuing installment orders are subject to change whenever AFC's costs are affected by Federal or State legislation, changes in costs of raw materials and/or labor rates, together with applicable overhead for such costs.
- 2. AFC warrants that the goods provided shall be free of defects in its design (if provided by AFC), material and workmanship for a period of one year from the date of shipment.

THE WARRANTY SET FORTH ABOVE IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED BY LAW OR TRADE USAGE, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. AFC IS NOT LIABLE FOR DEFECTS OR DAMAGE DUE TO NEGLIGENCE (OTHER THAN THAT OF THE SELLER), ACCIDENT, ABUSE, IMPROPER INSTALLATION (OTHER THAT BY AFC) IMPROPER OPERATION, OR MAINTENANCE, OR ABNORMAL CONDITIONS.

AFC SHALL NOT BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. AFC'S WARRANTY LIABILITY IS LIMITED TO THE REPAIR OR REPLACEMENT OF THE GOODS AT AFC'S DISCRETION. AFC SHALL NOT BE RESPONSIBLE FOR COSTS IN EXCESS OF THE PURCHASE PRICE. THIS WARRANTY SHALL ONLY APPLY TO GOODS LOCATED/USED IN THE CONTINENTAL UNITED STATES.

- 3. AFC shall not be responsible for errors, or defects in the work on account of plans, designs, specifications or drawings furnished by the Purchaser. AFC's quotation is based upon reliance in the accuracy of data supplied by Purchaser.
- AFC will not recognize claims or make allowances for replacement of materials or correction of AFC's error unless AFC is
 given notice in writing of such defect at least 10 days prior to the Purchaser incurring any cost or expense on account
 thereof.
- 5. AFC shall not be considered in default in the performance of its obligations hereunder if such performance of its obligations is prevented or delayed by an Act of God, Outbreak of Hostilities, War, Revolution, Civil Commotion, Riot, Epidemic, Wind, Flood, Earthquake, any Law Order, Proclamation, Regulation, or Ordinance of any Government or subdivision of Government, delay in delivery of materials, delay of subcontractors, or any other cause, whether similar or different from those listed, which are beyond the reasonable control of the party affected.
- 6. All goods shall be subject to normal manufacturing variations of Seller and its raw materials supplies such as are recognized in the reinforced plastics industry.
- 7. In the event of a dispute arising from the manufacture, sale, delivery, or performance of a purchase order and any amendments or additions thereto issued pursuant to the attached bid and any amendments or additions thereto, jurisdiction and venue for such dispute is exclusively vested in the Court of Common Pleas, Barnwell County, South Carolina, and construed exclusively in accordance with the laws of the State of South Carolina.
- 8. Quotations and sales are F.O.B. Point of Shipment unless otherwise expressly stipulated.

Augusta Fiberglass^e

ASME Accredited • Fiberglass Industrial Equipment

86 Lake Cynthia Road • Blackville, South Carolina, 29817 • (803) 284-2246 • FX (803) 284-2309 • www.augustafiberglass.com

Augusta Fiberglass has been a world leader in the design, fabrication, and erection of Fiberglass related products since its inception in 1974. We are an industry leader when it comes to quality, precision craftsmanship, and customer service and are one of only nine distinguished ASME RTP-1 **certified fabricators** in the world. Our product and service offerings include:

- Tanks
- **Process equipment**
- **Scrubber Vessels**
- Stacks. Stack liners
- **Piping and Ductwork**
- FRP field fabrication
- **Field Services**

Our production personnel have the capability to fabricate tanks and other fiberglass vessels of virtually any size or shape to meet your project requirements, either at your plant site or shipped from our facility in Blackville, South Carolina. We also have a sister company, B&D Plastics, that specializes in Dual Laminate Fiberglass equipment like tanks, scrubber vessels, stacks, pipes and ductwork – located in Ocean Springs, MS. To complement our tank portfolio, we offer industrial grade polyethylene day and storage tanks to complete your storage needs.

Augusta Fiberglass is a full service provider with experienced field engineers and trained field technicians ready to support your projects with the following field services:

- **Emergency response service**
- **Field Fabrication or Installations**
- **Scheduled and Unscheduled Shutdowns**
- **Routine Maintenance and General Repairs**
- **Field Modification**

Please visit our web sites at www.augustafiberglass.com and www.bdplastics.com for a complete description of our full line of products and service capabilities. Or contact us directly at 800-527-1572.

Operation and Maintenance Information

A. Chemical Consumption

Assumptions:

- 1) Membrane tank dimensions are GE's standard membrane tank dimensions.
- 2) One (1) Maintenance Clean is performed per membrane train per day. Six (6) times per week a Sodium Hypochlorite Maintenance Clean will be performed using approximately 250 mg/L of NaOCl. One (1) time per week a Citric Acid Maintenance Clean will be performed using approximately 500 mg/L citric acid. It is assumed a mineral acid will also be required to reduce the pH of the cleaning solution to 2.1. For the purpose of this calculation, it is assumed hydrochloric acid will be used at a dose of 250 mg/L. The amount of mineral acid will need to be verified with testing.
- 3) Twelve (12) Chlorine Recovery Cleans will be performed per membrane train per year using 500 mg/L of NaOCl.
- 4) Twelve (12) Citric Acid Recovery Cleans will be performed per membrane train per year using 2 g/L of citric acid. It is assumed a mineral acid will also be required to reduce the pH of the cleaning solution to 2.1. For the purpose of this calculation, it is assumed hydrochloric acid will be used at a dose of 200 mg/L. The amount of mineral acid will need to be verified with testing.
- 5) All chemical cleans (Maintenance Cleans and Recovery Cleans) will be fully de-chlorinated (using sodium bisulphite) and neutralized (using sodium hydroxide) to a pH between 6.0 and 9.0. It is assumed 30% of the cleaning chemical is consumed with each clean.
- 6) There is no reuse of chemical cleaning solutions.

7) Sodium hypochlorite: 12.5% (10.3% wt% as Cl₂), s.g. = 1.168

Citric acid: 50% solution (by weight), s.g. = 1.24

HCl: 33% (by weight), s.g. = 1.15Sodium bisulfite: 38% (by weight), s.g. = 1.29Sodium hydroxide: 50% (by weight), s.g. = 1.52

Chemical	Approximate Annual Consumption
NaOCl	32,300 gal/year
Citric acid	3,800 gal/year
HCI	1,900 gal/year
NaHSO ₃	7,800 gal/year
NaOH	4,000 gal/year

B. Power Consumption

The largest contributor to power consumption from the membrane system are the permeate pumps. The exact system headloss depends on the length and size of the piping run from the discharge of the permeate pumps to the clearwell. It is assumed the permeate pumps are pumping the finished water to an elevation similar to the water level in the membrane tank.

Annual power consumption estimate is calculated at ADF conditions as an average of summer and winter conditions.

The estimated power consumption includes the following pieces of equipment in operation on average:

- One (1) blower (intermittent operation)
- Four (4) permeate pumps
- One (1) backwash pump (intermittent operation)
- One (1) CIP pump (intermittent operation)
- One (1) CIP in-line heater (intermittent operation)
- One (1) air compressor (intermittent operation)

The estimated power consumption does not take into account the power required for the PLC, chemical dosing pumps, and the air drier, as these pieces of equipment contribute very little to the overall power consumption of the plant.

The estimated power consumption is 620,000 kWh/year.

Membrane Replacement

The cost of membrane replacement can be estimated based on the assumption of a membrane life of 10 years and a membrane replacement price of \$1,040.00 USD per module.

Note that the membrane replacement price refers to the replacement of installed membranes under the following two scenarios;

- Replacement of membrane modules under warranty,
- Replacement of membrane modules no longer under warranty per the original terms and conditions of sale.

Under the first scenario, membrane modules replaced under warranty shall assume the remainder of the warranty for the membrane modules being replaced, with such warranty to be not less than a two (2) year full replacement warranty from the date of replacement with a new membrane module.

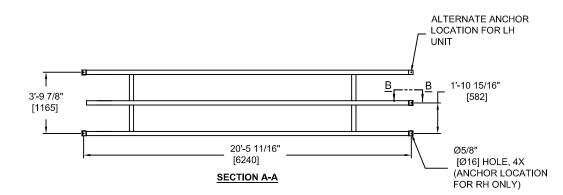
Under the second scenario, membrane modules purchased to replace a membrane module whose warranty has expired shall be provided with a standard two (2) year full replacement warranty.

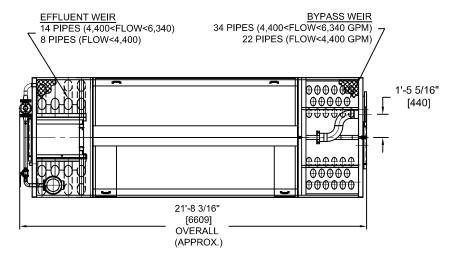
The membrane module replacement price is not applicable for membrane modules purchased for any non-warranty purposes, such as for flux reduction or hydraulic capacity increase. Modules purchased under these scenarios will be purchased at the list price at the time of order.

Membrane module replacement price does not include bagging, boxing, crating, and will be shipped on the basis of INCOTERMS 2010 FCA GE Manufacturing Facility. Membrane module replacement price is quoted without taxes. As this is not an offer of sale, GE reserves the right to the change the membrane replacement price at any time.


Layout

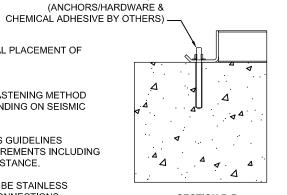
The GA layout drawing can be found in the attachment. The drawing is marked up to reflect the five (5) trains for this system. Each train contains seven (7) cassettes and the length of each train is 19 feet. The overall length of the plant is 144 feet which includes the membrane trains and ancillary equipment.


Regards, Chris


Chris Allen, P.E. | Regional Manager GE Water & Process Technologies 950 W. Bannock Street, Suite 1100, Boise, ID, 83702 USA Tel: 208 319-3512 | Mobile: 503 307-2238 chris.allen@ge.com

GE imagination at work

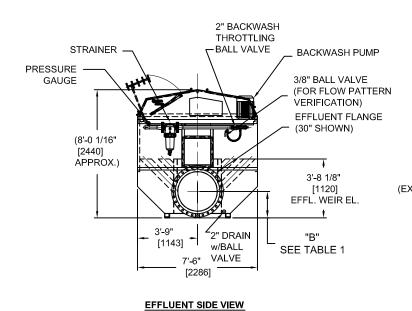
- . QUANTITY OF FILTER DISCS: 18 (504 FILTER PANELS)
- 2. UNIT WEIGHT (DRY): 12,320 LBS. (5,600 KG) APPROX.
- 3. UNIT WEIGHT (OPERATIONAL): 49,940 LBS. (22,700 KG) APPROX.
- 4. BACKWASH PUMP: GRUNDFOS, MTR20-16/6, 15 HP, 480V/3PH/60HZ
- 5. DRIVE MOTOR: 1.5 HP, 480V/3PH/60HZ
- 6. INLET & OUTLET CONNECTIONS: ANSI B16.5 FLANGE (SEE TABLE 1 FOR AVAILABLE SIZES) BYPASS CONNECTION: ANSI 20" 150# B16.5 FLANGE
- LAP JOINT FLANGE: GALVANIZED, LAP JOINT STUB ENDS: AISI 304 OR 316
- BACKWASH CONNECTION: ANSI 6" 150# B16.5 FLANGE
- LAP JOINT FLANGE: GALVANIZED, LAP JOINT STUB ENDS: AISI 304 OR 316
- DRUM, WALLS & FRAME MATERIAL: AISI 304 OR 316
- 9. COVER MATERIAL: FIBERGLASS REINFORCED PLASTIC (FRP) OPTIONAL: ALUMINUM COVERS/AISI 304 FRAME, AISI 304 COVERS/FRAME, AISI 316 COVERS/FRAME
- 10. WEIGHT OF OPTIONAL COVERS (LARGEST) = 19 LBS. (8.6 KG) ALUMINUM 50 LBS. (23 KG) - AISI 304/316
- 11. DIMENSIONS ARE IN INCHES, [] ARE IN MILLIMETERS
- 12. WORK PLATFORM GRATING AND SUPPORT NOT ATTACHED TO FILTERS AND DESIGNED/PROVIDED BY OTHERS. DO NOT SUPPORT PLATFORMS OR OTHER LOAD BEARING MEMBERS FROM THE DISCFILTER.
- 3. RECOMMEND 24" MINIMUM MAINTENANCE ACCESS AROUND ENTIRE PERIMETER OF DISCFILTER
- 14. CONTROL PANEL NOT SHOWN

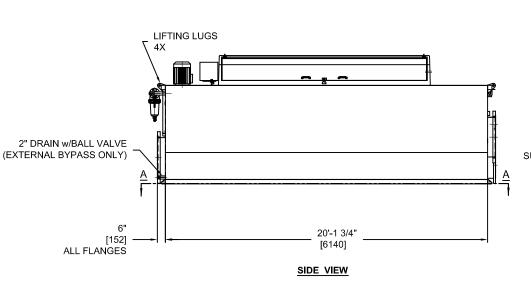


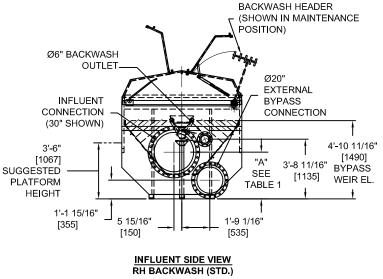
TOP VIEW

1. MATCH DRILL ANCHORS AFTER FINAL PLACEMENT OF UNIT IS DETERMINED

- 2. ANCHOR SIZE, EMBEDMENT, AND FASTENING METHOD MAY REQUIRE MODIFICATION DEPENDING ON SEISMIC REQUIREMENTS.
- 3. FOLLOW ANCHOR MANUFACTURERS GUIDELINES FOR SPECIFIC INSTALLATION REQUIREMENTS INCLUDING ANCHOR EMBEDMENT AND EDGE DISTANCE.
- 4. ALL ANCHORS AND FASTENERS TO BE STAINLESS STEEL. APPLY ANTI-SEIZE TO ALL CONNECTIONS.




1/2" ANCHOR, 4X


SECTION B-B

т	Δ	В	Ĺ	F	,
	_		_	_	

FLANGE SIZE	DIMENSION "A"	DIMENSION "B"
24"	2'-8 32 " (815 MM)	1'-4 <mark>13</mark> " (427 MM)
30"	2'-11 1 " (890 MM)	1'-7 ¹³ ⁄ ₁₆ " (503MM)

BACKWASH HEADER, FLANGES AND DRAIN -ARE "MIRRORED" ABOUT G

INFLUENT SIDE VIEW LH BACKWASH (OPTIONAL)

D	14 PIPES WAS 15	CDP	CSR	10.17.11
С	RELOCATE DRAIN TO OUTLET SIDE OF DISCFILTER	DSD	CDP	07.05.11
В	SEC. A-A ANCHOR LOCATION REVISED	CDP	BDR	02.08.11
A	RELEASED	CDP	MHS	02.01.11
REV	DESCRIPTION	DRAWN	APPR	DATE

ALL INFORMATION CONTAINED ON THIS DOCUMENT IS THE PROPERTY OF KRUGER AND/OR ITS AFFILIATES, THE DESIGN CONCEPTS AND INFORMATION CONTAINED HEREIN ARE PROPRIETARY TO KRUGER AND ARE SUBMITTED IN CONFIDENCE. THEY ARE NOT TRANSFERABLE AND MUST BE USED ONLY FOR THE PURPOSE FOR WHICH THE DOCUMENT IS EXPRESSLY SUBMITTED. THEY MUST NOT BE DISCLOSED, REPRODUCED, LOANED OR USED IN ANY OTHER MANNER WITHOUT THE EXPRESS WRITTEN CONSENT OF KRUGER. KRUGER ASSUMES NO RESPONSIBILITY OR LIABILITY FOR THE USE OF THIS DOCUMENT OR THE DESIGN CONCEPTS AND INFORMATION CONTAINED HEREIN FOR ANOTHER PROJECT OR IN A MANNER THAT DOES NOT RELATE TO THE FITNESS OR PURPOSE OF THIS DOCUMENT. IN NO EVENT SHALL THIS DOCUMENT OR THE DESIGN CONCEPTS AND INFORMATION CONTAINED HEREIN BE USED IN ANY MANNER DETRIMENTAL TO THE INTEREST OF KRUGER. ALL PATENT RIGHTS ARE RESERVED ACCEPTANCE OF THE DELIVERY OF THIS DOCUMENT CONSTITUTES AGREEMENT TO THESE TERMS AND CONDITIONS.

KRÜGER	I. KRUGER, INC. 401 HARRISON OAKS BLVD CARY, NC 27513 (919) 677-8310
--------	---

STANDARD

DISCFILTER 2218-1F HIGH FLOW OPTION

DRAWN CHECKED SCALE CDP MHS 1:72

DRAWING NO SHEET 675M-0014 1 of 1

Appendix C: BioWin Modeling Results from Final Alternatives Evaluation

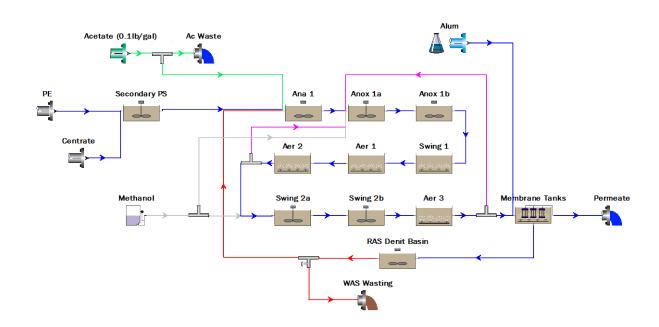
BioWin user and configuration data

Annual average conditions

Project details

Project name: Alternatives Analysis Project ref.: 147571

Plant name: Meridian WWTP User name: Patricia Tam


Created: 6/29/2011 Saved: 5/27/2015

Steady state solution

Target SRT: 8.00 days SRT #0: 8.01 days

Temperature: 18.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.1667	1591.7536	14.000	Un-aerated
Aer 1	0.5000	4774.3058	14.000	1731
Aer 2	0.6667	6366.0594	14.000	2308
Swing 2a	0.2500	2387.1529	14.000	Un-aerated
Aer 3	0.1667	1591.7536	14.000	541
Anox 1a	0.1250	1193.5765	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.1250	1193.5765	14.000	Un-aerated
Swing 1	0.1667	1591.7536	14.000	649
Swing 2b	0.2500	2387.1529	14.000	Un-aerated

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1	2.5
Aer 2	2.0
Swing 2a	0
Aer 3	2.0
Anox 1a	0
Secondary PS	0

RAS Denit Basin	0
Anox 1b	0
Swing 1	2.0
Swing 2b	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1	2.5656	0.0432	0.8200	0.4413	16.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	16.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	18.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Element name	Alpha (surf) OR Alpha F (diff) [-]	Beta [-]	Surface pressure [kPa]	Fractional effective saturation depth (Fed) [-]
Aer 1	0.4000	0.9500	101.3250	0.3250
Aer 2	0.4000	0.9500	101.3250	0.3250
Aer 3	0.4000	0.9500	101.3250	0.3250
Swing 1	0.4000	0.9500	101.3250	0.3250

Element name	Supply gas CO2 content [vol. %]	Supply gas O2 [vol. %]	Off-gas CO2 [vol. %]	Off-gas O2 [vol. %]	Off-gas H2 [vol. %]	Off-gas NH3 [vol. %]	Off-gas CH4 [vol. %]	Surface turbulence factor [-]
Aer 1	0.0350	20.9500	2.0000	18.8000	0	0	0	2.0000
Aer 2	0.0350	20.9500	2.0000	18.8000	0	0	0	2.0000
Aer 3	0.0350	20.9500	2.0000	18.8000	0	0	0	2.0000
Swing 1	0.0350	20.9500	2.0000	18.8000	0	0	0	2.0000

Configuration information for all Membrane bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers	# of cassettes	Displaced volume / cassette [ft3/casse tte]	Membrane area / cassette [ft2/casse tte]	Total displaced volume [Mil. Gal]	Membrane surface area [ft2]
Membrane Tanks	0.2373	3374.723 2	9.400	941	50.00	55.640	16576.00	0.02	828800.0 0

Element name	Average DO Setpoint [mg/L]
Membrane Tanks	6.0

Element name	Split method	Average Split specification
Membrane Tanks	Flow paced	400.00 %

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Membrane Tanks	0.0500	0.3800	1.0500	0.5382	15.0000

Element name	Alpha (surf) OR Alpha F (diff) [-]	Beta [-]	Surface pressure [kPa]	Fractional effective saturation depth (Fed) [-]
Membrane Tanks	0.7000	0.9500	101.3250	0.3000

Element name	Supply gas CO2 content [vol. %]	Supply gas O2 [vol. %]	Off-gas CO2 [vol. %]	Off-gas 02 [vol. %]	Off-gas H2 [vol. %]	Off-gas NH3 [vol. %]	Off-gas CH4 [vol. %]	Surface turbulence factor [-]
Membrane Tanks	0.0350	20.9500	1.2000	19.9000	0	0	0	2.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0

Nitrite oxidizing highage (NOR) mgCOD/I	0
Nitrite oxidizing biomass (NOB) mgCOD/L	
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0

Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

Configuration information for all Effluent units

Configuration information for all COD Influent units

Element name	PE	Centrate	
Time	0	0	
Flow	12.08909091	0.103	
Total COD mgCOD/L	379.27	1801.80	

Total Kjeldahl Nitrogen mgN/L	48.77	959.63
Total P mgP/L	6.57	529.81
Nitrate N mgN/L	0	0
pH	7.88	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.03	185.00
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0642
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5

FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Metal addition units

Element name	Alum
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0

Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	56890.00
Other Cations (strong bases) meq/L	5.00
Other Anions (strong acids) meq/L	6344.83
Total CO2 mmol/L	7.00
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mglSS/L	0
Dissolved oxygen mg/L	0

Flow	0

Configuration information for all Sludge units

Configuration information for all Splitter units

Operating data Average (flow/time weighted as required)

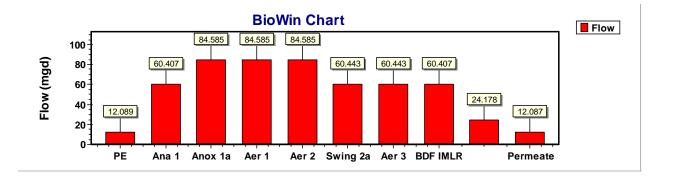
Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.268272155890301
Acetate Splitter	Flow paced	1.05 %
Splitter21	Fraction	0.00
A20 IMLR	Flow paced	0.00 %

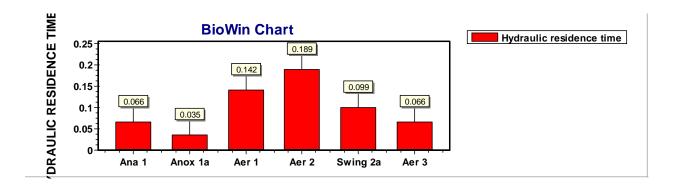
Configuration information for all Stream (SV) Influent units

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0

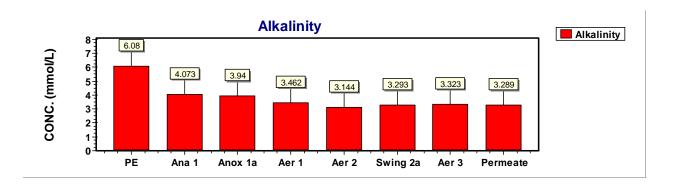
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Acetate mgCOD/L Propionate mgCOD/L	11980.00 0
Propionate mgCOD/L	0
Propionate mgCOD/L Methanol mgCOD/L	0
Propionate mgCOD/L Methanol mgCOD/L Dissolved H2 mgCOD/L	0 0 0
Propionate mgCOD/L Methanol mgCOD/L Dissolved H2 mgCOD/L Dissolved methane mg/L	0 0 0
Propionate mgCOD/L Methanol mgCOD/L Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L	0 0 0 0
Propionate mgCOD/L Methanol mgCOD/L Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L Sol. bio. org. N mgN/L	0 0 0 0 0
Propionate mgCOD/L Methanol mgCOD/L Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L Sol. bio. org. N mgN/L Nitrous Oxide N mgN/L	0 0 0 0 0
Propionate mgCOD/L Methanol mgCOD/L Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L Sol. bio. org. N mgN/L Nitrous Oxide N mgN/L Nitrite N mgN/L	0 0 0 0 0 0
Propionate mgCOD/L Methanol mgCOD/L Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L Sol. bio. org. N mgN/L Nitrous Oxide N mgN/L Nitrite N mgN/L Nitrate N mgN/L	0 0 0 0 0 0
Propionate mgCOD/L Methanol mgCOD/L Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L Sol. bio. org. N mgN/L Nitrous Oxide N mgN/L Nitrite N mgN/L Nitrate N mgN/L Dissolved nitrogen gas mgN/L	0 0 0 0 0 0 0
Propionate mgCOD/L Methanol mgCOD/L Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L Sol. bio. org. N mgN/L Nitrous Oxide N mgN/L Nitrite N mgN/L Nitrate N mgN/L Dissolved nitrogen gas mgN/L PO4-P (Sol. & Me Complexed) mgP/L	

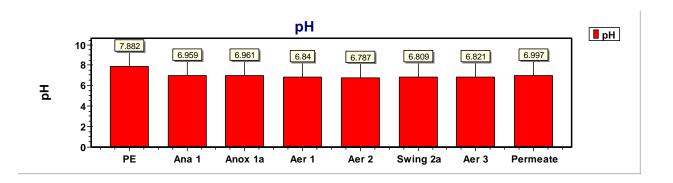
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mglSS/L	0
Dissolved oxygen mg/L	0
Flow	1

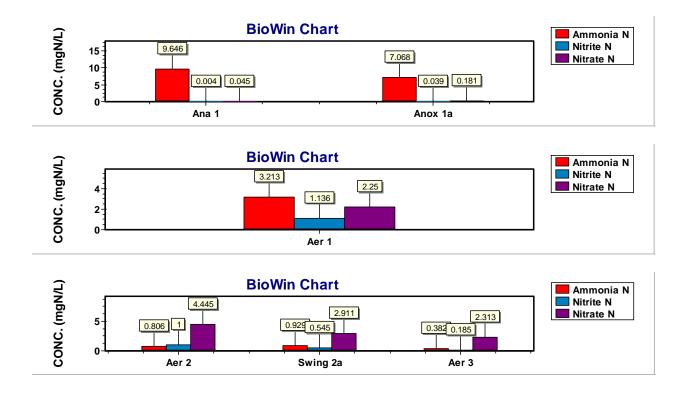

BioWin Album


Album page - Table

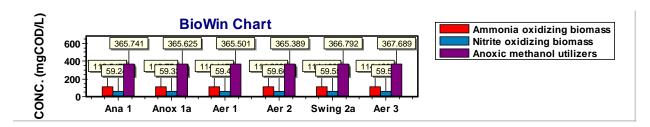
Elements	Total COD [mg/L]	Total Kjeldahl Nitrogen [mgN/L]	Total suspended solids [mgTSS/L]	Volatile suspended solids [mgVSS/L]	Ammonia N [mgN/L]	Nitrite N [mgN /L]	Nitrate N [mgN/L]	Total N [mgN/L]	Total P [mgP/L]	Soluble PO4-P [mgP/L]
PE	379.27	48.77	93.62	82.56	39.50	0	0	48.77	6.57	4.53
Secondary PS	391.29	56.46	97.17	84.63	46.87	0	0	56.46	10.99	8.66
Ana 1	6951.0 1	474.87	6260.76	4704.51	9.65	0.00	0.04	474.92	397.53	9.05
Anox 1a	6935.1 8	472.64	6265.77	4708.71	7.07	0.04	0.18	472.86	397.53	8.85
Anox 1b	6934.6 1	472.64	6263.11	4710.25	7.17	0.00	0.01	472.65	397.53	10.21


Swing 1	6928.3 0	471.73	6266.29	4710.21	6.08	0.41	0.50	472.63	397.53	9.19
Aer 1	6918.8 2	469.20	6276.15	4708.33	3.21	1.14	2.25	472.59	397.53	5.43
Aer 2	6908.4 2	467.07	6286.74	4705.43	0.81	1.00	4.45	472.51	397.53	1.12
Swing 2a	6906.2 4	466.79	6284.14	4702.85	0.93	0.55	2.91	470.25	397.29	0.82
Swing 2b	6902.5 0	466.80	6284.41	4702.39	1.03	0.26	1.78	468.83	397.29	0.58
Aer 3	6898.9 7	466.31	6284.78	4701.12	0.38	0.18	2.31	468.81	397.29	0.08
Membrane Tanks (U)	8608.3 3	582.19	7853.28	5873.38	0.08	0.03	2.63	584.85	496.58	0.01
BDF IMLR	6908.4 2	467.07	6286.74	4705.43	0.81	1.00	4.45	472.51	397.53	1.12
BDF IMLR (U)	6908.4 2	467.07	6286.74	4705.43	0.81	1.00	4.45	472.51	397.53	1.12
Permeate	32.23	1.87	0.79	0.59	0.08	0.03	2.63	4.52	0.06	0.01
RAS Denit Basin	8607.1 6	582.21	7852.92	5873.10	0.21	0.04	2.22	584.46	496.58	0.04
RAS / WAS	8607.1 6	582.21	7852.92	5873.10	0.21	0.04	2.22	584.46	496.58	0.04
RAS / WAS (U)	8607.1 6	582.21	7852.92	5873.10	0.21	0.04	2.22	584.46	496.58	0.04


Album page - SS Flow and HRT



Album page - SS pH-Alkalinity



Album page - SS NH3-NO2-NO3

Album page - SS AOB-NOB

Album page - Page 16

Elements	Air flow rate [ft3/min (20C, 1 atm)]	Flow [mgd]
Acetate Splitter (U)		0.13
Aer 1	8655.21	84.59
Aer 2	7614.04	84.59
Aer 3	2244.96	60.44
Swing 2a	0	60.44
Swing 2b	0	60.44

Album page - Page 17

WAS Wasting			
Parameters	Conc. (mg/L)	Mass rate (lb/d)	Notes
Volatile suspended solids	5873.10	13148.93	
Total suspended solids	7852.92	17581.43	
Particulate COD	8576.41	19201.20	
Filtered COD	30.75	68.85	
Total COD	8607.16	19270.05	
Soluble PO4-P	0.04	0.09	
Total P	496.58	1111.77	
Filtered TKN	1.82	4.08	
Particulate TKN	580.39	1299.39	
Total Kjeldahl Nitrogen	582.21	1303.47	
Filtered Carbonaceous BOD	0.66	1.48	
Total Carbonaceous BOD	3685.88	8252.10	
Nitrite + Nitrate	2.26	5.06	
Total N	584.46	1308.52	
Total inorganic N	2.47	5.53	
Alkalinity	3.33	3.38	mmol/L and kmol/d
рН	7.00		
Volatile fatty acids	0.02	0.05	
ISS precipitate	0	0.00	
ISS cellular	1414.14	3166.04	
ISS Total	1979.82	4432.50	
Ammonia N	0.21	0.47	
Nitrate N	2.22	4.96	

Parameters	Value	Units
рН	7.00	
lonized ammonium	0.01	mmol/L
Unionized ammonia	0.00	mmol/L
Nitrous acid	0.00	mmol/L
Nitrite	0.00	mmol/L
Total dissolved CO2	0.71	mmol/L
Bicarbonate	3.32	mmol/L
Carbonate	0.00	mmol/L
Unionized ortho-P	0.00	mmol/L
H2P04-	0.00	mmol/L
HPO4	0.00	mmol/L
PO4	0.00	mmol/L
Metal phosphate (solid)	0	mmol/L
Metal hydroxide (solid)	0	mmol/L
Metal ion	0	mmol/L
MeH2P04++	0	mmol/L
MeHP04+	0	mmol/L
Acetic acid	0.00	mmol/L
Acetate	0.00	mmol/L
Propionic acid	0.00	mmol/L
Propionate	0.00	mmol/L
Ionic strength	0.02	
Monovalent act. coeff.	0.87	
Divalent act. coeff.	0.57	
Trivalent act. coeff.	0.29	
Flow	0.27	mgd

Meridian Alternative's Analysis version 1

Expansion using selectable 5 stage modified Bardenpho/A2O process

Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

To achieve target effluent concentrations, for Bardenpho process:
Set BDF IMLR at 200% influent, Set A2O IMLR at 0%
Set Swing 1 Aerated, Swing 2a and 2b unaerated.
SRT = 12 days
All methanol to swing 2a

To achieve target effluent concentrations, for A2O process: Set BDF IMLR at 0% influent, Set A2O IMLR at 400% Set Swing 1 unaerated, Swing 2a and 2b aerated.

SRT = 12 days

All methanol to Anoxic 1a

For the MBR alternative, the Bardenpho process is used. Membrane tank sizing based on GE proposal dated 4/17/15 Alum addition rate was adjusted to reduce effluent PO4-P to 0.7 mg/L or lower. For the purpsoe of calculating O&M ocsts, however, the alum demand to reduce P from 0.5 to 0.07 mg/L was calculated separately for chemical precipitation. Acetate flow pace of 1.05% of PE flow rate, 0.1 lb acetate COD per galloon used.

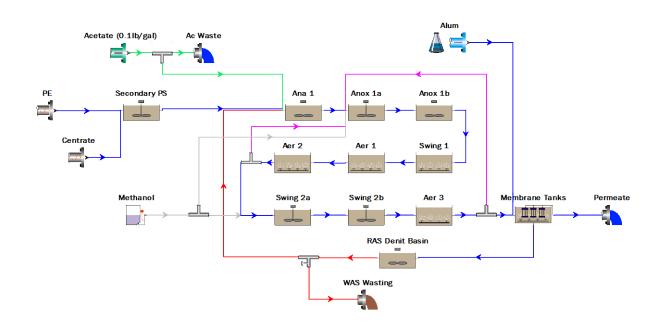
Methanol flow pace at 0.3% of PE flow rate, 1% methanol solution. All methanol to swing 2a.

BioWin user and configuration data

Summer max month conditions

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Patricia Tam

Created: 6/29/2011 Saved: 5/19/2015

Target SRT: 8.00 days SRT: **** days

Temperature: 18.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.2083	1988.9758	14.000	Un-aerated
Aer 1	0.6250	5967.8823	14.000	2164
Aer 2	0.8333	7956.8581	14.000	2885
Swing 2a	0.3125	2983.9411	14.000	Un-aerated
Aer 3	0.2083	1988.9758	14.000	676
Anox 1a	0.1563	1492.4480	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.1563	1492.4480	14.000	Un-aerated
Swing 1	0.2083	1988.9758	14.000	811
Swing 2b	0.3125	2983.9411	14.000	Un-aerated

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1	2.5
Aer 2	2.0
Swing 2a	0
Aer 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0

Anox 1b	0
Swing 1	2.0
Swing 2b	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1	2.5656	0.0432	0.8200	0.4413	16.0000
Aer 2	2.5656	0.0432	0.8200	0.4413	16.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	18.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Element name	Alpha (surf) OR Alpha F (diff) [-]	Beta [-]	Surface pressure [kPa]	Fractional effective saturation depth (Fed) [-]
Aer 1	0.4000	0.9500	101.3250	0.3250
Aer 2	0.4000	0.9500	101.3250	0.3250
Aer 3	0.4000	0.9500	101.3250	0.3250
Swing 1	0.4000	0.9500	101.3250	0.3250

Element name	Supply gas CO2 content [vol. %]	Supply gas O2 [vol. %]	Off-gas CO2 [vol. %]	Off-gas 02 [vol. %]	Off-gas H2 [vol. %]	Off-gas NH3 [vol. %]	Off-gas CH4 [vol. %]	Surface turbulence factor [-]
Aer 1	0.0350	20.9500	2.0000	18.8000	0	0	0	2.0000
Aer 2	0.0350	20.9500	2.0000	18.8000	0	0	0	2.0000
Aer 3	0.0350	20.9500	2.0000	18.8000	0	0	0	2.0000
Swing 1	0.0350	20.9500	2.0000	18.8000	0	0	0	2.0000

Configuration information for all Membrane bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers	# of cassettes	Displaced volume / cassette [ft3/casse tte]	Membrane area / cassette [ft2/casse tte]	Total displaced volume [Mil. Gal]	Membrane surface area [ft2]
Membrane Tanks	0.2848	4050.236 6	9.400	1129	60.00	55.640	16576.00	0.02	994560.0 0

Element name	Average DO Setpoint [mg/L]
Membrane Tanks	6.0

Element name	Split method	Average Split specification
Membrane Tanks	Flow paced	400.00 %

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Membrane Tanks	0.0500	0.3800	1.0500	0.5382	15.0000

Element name	Alpha (surf) OR Alpha F (diff) [-]	Beta [-]	Surface pressure [kPa]	Fractional effective saturation depth (Fed) [-]
Membrane Tanks	0.7000	0.9500	101.3250	0.3000

Element name	Supply gas CO2 content [vol. %]	Supply gas O2 [vol. %]	Off-gas CO2 [vol. %]	Off-gas 02 [vol. %]	Off-gas H2 [vol. %]	Off-gas NH3 [vol. %]	Off-gas CH4 [vol. %]	Surface turbulence factor [-]
Membrane Tanks	0.0350	20.9500	1.2000	19.9000	0	0	0	2.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0

Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	1188000.00
Methanol mgCOD/L Dissolved H2 mgCOD/L	1188000.00 0
Dissolved H2 mgCOD/L	0
Dissolved H2 mgCOD/L Dissolved methane mg/L	0
Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L	0 0 0
Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L Sol. bio. org. N mgN/L	0 0 0
Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L Sol. bio. org. N mgN/L Nitrous Oxide N mgN/L	0 0 0 0
Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L Sol. bio. org. N mgN/L Nitrous Oxide N mgN/L Nitrite N mgN/L	0000000
Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L Sol. bio. org. N mgN/L Nitrous Oxide N mgN/L Nitrite N mgN/L Nitrate N mgN/L	0 0 0 0 0
Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L Sol. bio. org. N mgN/L Nitrous Oxide N mgN/L Nitrite N mgN/L Nitrate N mgN/L Dissolved nitrogen gas mgN/L	0 0 0 0 0 0
Dissolved H2 mgCOD/L Dissolved methane mg/L Ammonia N mgN/L Sol. bio. org. N mgN/L Nitrous Oxide N mgN/L Nitrite N mgN/L Nitrate N mgN/L Dissolved nitrogen gas mgN/L PO4-P (Sol. & Me Complexed) mgP/L	

ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mglSS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	5.00
Other Anions (strong acids) meq/L	5.00
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	2.64172037284185E-5

Configuration information for all Effluent units

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	14.3106974874421	0.100114816828393
Total COD mgCOD/L	387.35	1801.80
Total Kjeldahl Nitrogen mgN/L	47.17	934.39

Total P mgP/L	6.89	529.81
Nitrate N mgN/L	0	0
рН	7.82	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.23	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0642
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5

FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	5.550E-5
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Metal addition units

Element name	Alum
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0

Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	56890.00
Other Cations (strong bases) meq/L	5.00
Other Anions (strong acids) meq/L	6344.83
Total CO2 mmol/L	7.00
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mglSS/L	0
Dissolved oxygen mg/L	0
Flow	0.00012

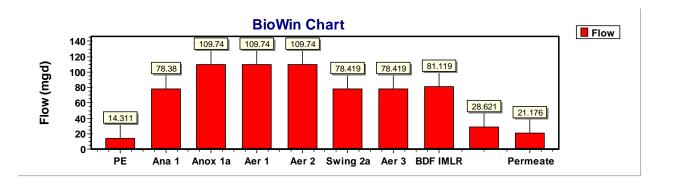
Configuration information for all Sludge units

Configuration information for all Splitter units

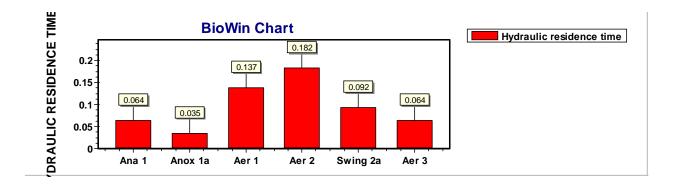
Operating data Average (flow/time weighted as required)

Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.334155926161449
Acetate Splitter	Flow paced	1.00 %
Splitter21	Fraction	0.00
A20 IMLR	Flow paced	0.00 %

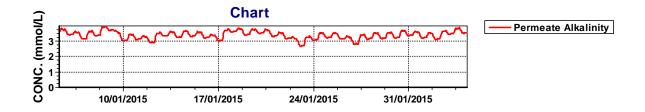
Configuration information for all Stream (SV) Influent units

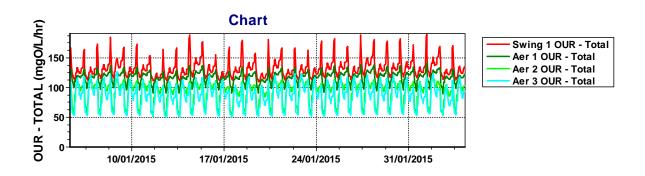

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0

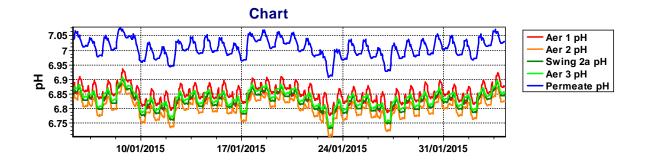
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mglSS/L	0

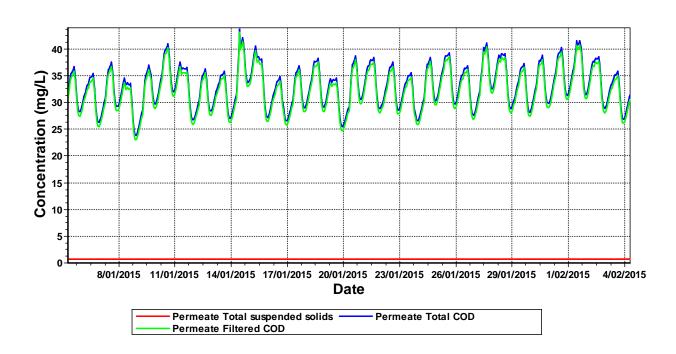

Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mglSS/L	0
Dissolved oxygen mg/L	0
Flow	1

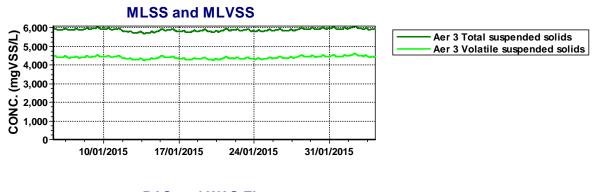
BioWin Album

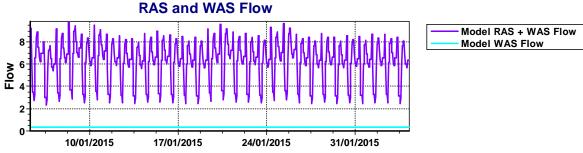

Album page - SS Flow and HRT

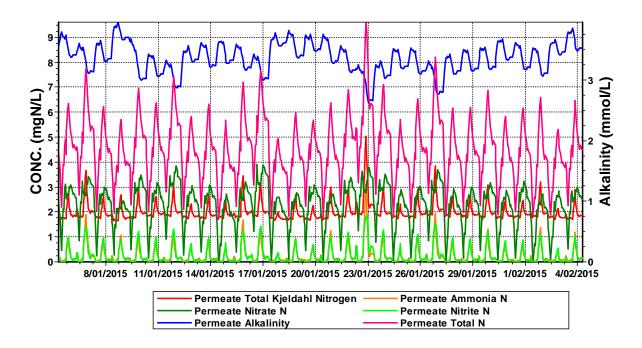

Album page - SS Flow and HRT

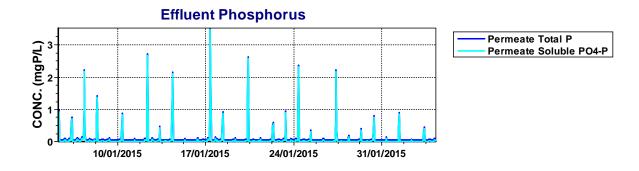

Album page - Permeate Alkalinity

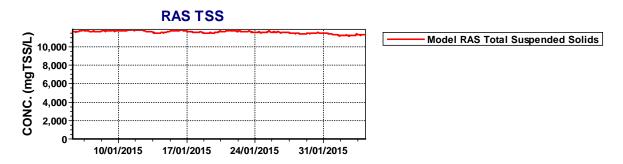

Album page - OURs




Album page - pH


Album page - TSS, COD, BOD

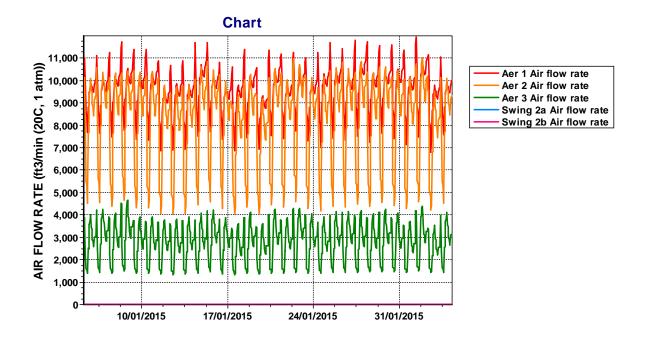




Album page - Nitrogen Sp., Alkalinity



Album page - TP, RAS TSS



Album page - WAS Mass

Album page - Air Flow Rate

Album page - Page 16

Elements	Air flow rate [ft3/min (20C, 1 atm)]	Flow [mgd]
Acetate Splitter (U)		0.14
Aer 1	10009.44	109.74
Aer 2	9325.85	109.74
Aer 3	3110.97	78.42
Swing 2a	0	78.42
Swing 2b	0	78.42

Album page - Page 17

WAS Wasting			
Parameters	Conc. (mg/L)	Mass rate (lb/d)	Notes
Volatile suspended solids	5559.95	15504.84	
Total suspended solids	7431.52	20724.02	
Particulate COD	8110.86	22618.47	
Filtered COD	30.07	83.87	
Total COD	8140.93	22702.34	
Soluble PO4-P	0.04	0.12	
Total P	448.55	1250.86	
Filtered TKN	1.81	5.04	
Particulate TKN	548.78	1530.35	
Total Kjeldahl Nitrogen	550.58	1535.39	
Filtered Carbonaceous BOD	0.69	1.93	
Total Carbonaceous BOD	3490.07	9732.65	
Nitrite + Nitrate	2.28	6.37	
Total N	552.87	1541.76	
Total inorganic N	2.52	7.02	
Alkalinity	-999.00	-1263.65	mmol/L and kmol/d
рН	7.04		
Volatile fatty acids	0.02	0.06	
ISS precipitate	130.07	362.72	
ISS cellular	1193.53	3328.36	
ISS Total	1871.57	5219.18	
Ammonia N	0.23	0.65	
Nitrate N	2.18	6.09	

Parameters	Value	Units
рН	7.04	
Ionized ammonium	0.02	mmol/L
Unionized ammonia	0.00	mmol/L
Nitrous acid	0.00	mmol/L
Nitrite	0.01	mmol/L
Total dissolved CO2	0.71	mmol/L
Bicarbonate	3.56	mmol/L
Carbonate	0.00	mmol/L
Unionized ortho-P	0.00	mmol/L
H2P04-	0.00	mmol/L
HP04	0.00	mmol/L
PO4	0.00	mmol/L
Metal phosphate (solid)	0.91	mmol/L
Metal hydroxide (solid)	0	mmol/L
Metal ion	0.00	mmol/L
MeH2P04++	0.00	mmol/L
MeHP04+	0.00	mmol/L
Acetic acid	0.00	mmol/L
Acetate	0.00	mmol/L
Propionic acid	0.00	mmol/L
Propionate	0.00	mmol/L
Ionic strength	0.02	
Monovalent act. coeff.	0.87	
Divalent act. coeff.	0.57	
Trivalent act. coeff.	0.29	
Flow	0.33	mgd

Meridian Alternative's Analysis version1

Expansion using selectable 5 stage modified Bardenpho/A2O process

Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

To achieve target effluent concentrations, for Bardenpho process:
Set BDF IMLR at 200% influent, Set A2O IMLR at 0%
Set Swing 1 Aerated, Swing 2a and 2b unaerated.
SRT = 12 days
All methanol to swing 2a

 $\frac{\text{To achieve target effluent concentrations, for A2O process:}}{\text{Set BDF IMLR at 0\% influent, Set A2O IMLR at 400\%}}$

Set BDF IMLR at 0% influent, Set A2O IMLR at 400% Set Swing 1 unaerated, Swing 2a and 2b aerated. SRT = 12 days All methanol to Anoxic 1a

For the MBR alternative, the Bardenpho process is used. Membrane tank sizing based on GE proposal dated 4/17/15 Alum addition rate was adjusted to reduce effluent PO4-P to 0.7 mg/L or lower. For the purpose of calculating O&M ocsts, however, the alum demand to reduce P from 0.5 to 0.07 mg/L was calculated separately for chemical precipitation. Acetate flow pace of 1% of PE flow rate, 0.1 lb acetate COD per galloon used.

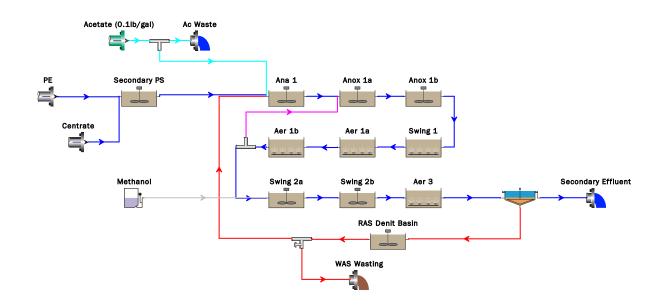
Methanol flow pace at 0.25% of PE flow rate, 1% methanol solution. All methanol to swing 2a.

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571

Plant name: Meridian WWTP User name: Rick Kelly


Created: 6/29/2011 Saved: 5/26/2015

Steady state solution

Target SRT: 8.00 days SRT #0: 7.97 days

Temperature: 18.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.3200	3055.5557	14.000	Un-aerated
Aer 1a	1.1200	1.069E+4	14.000	3635
Aer 1b	1.1200	1.069E+4	14.000	3635
Swing 2a	0.4800	4583.3336	14.000	Un-aerated
Aer 3	0.4000	3819.4447	14.000	1298
Anox 1a	0.2400	2291.6668	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
,				
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.2400	2291.6668	14.000	Un-aerated
Swing 1	0.3200	3055.5557	14.000	692
Swing 2b	0.4800	4583.3336	14.000	Un-aerated

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1a	2.5
Aer 1b	2.0
Swing 2a	0
Aer 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0

Anox 1b	0
Swing 1	2.0
Swing 2b	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 1b	2.5656	0.0432	0.8200	0.4413	15.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0

Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0

Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Operating data Average (flow/time weighted as required)

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	0	0
Flow	12.08909091	0.103000001056688
Total COD mgCOD/L	379.27	1801.80
Total Kjeldahl Nitrogen mgN/L	48.77	795.73
Total P mgP/L	6.57	105.96
Nitrate N mgN/L	0	0
рН	7.88	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.03	185.00
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

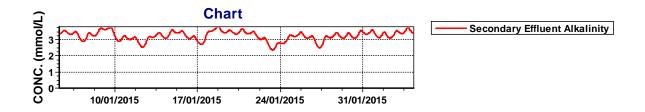
Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0110
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

Configuration information for all Splitter units

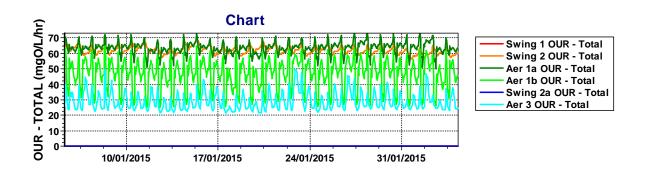
Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.198121786411554
Acetate Splitter	Flow paced	0.15 %

Configuration information for all Stream (SV) Influent units

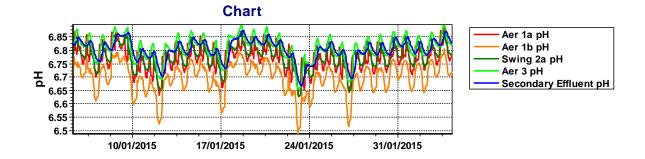

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0

Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mglSS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0

User defined 4 mg/SS/L	0
Dissolved oxygen mg/L	0
Flow	1

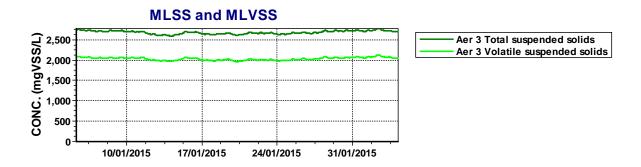

BioWin Album

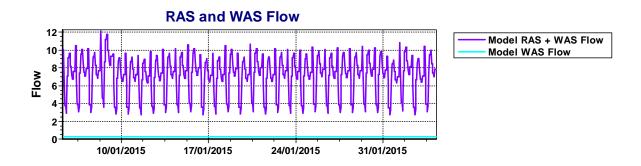
Album page - SS AOB-NOB

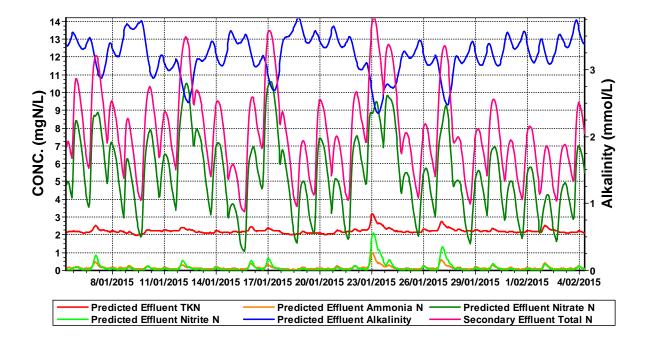


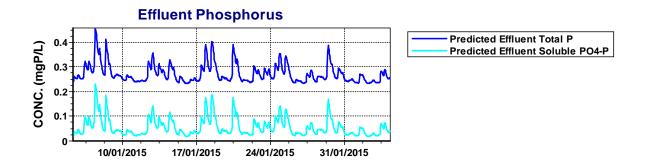
Album page - SS AOB-NOB

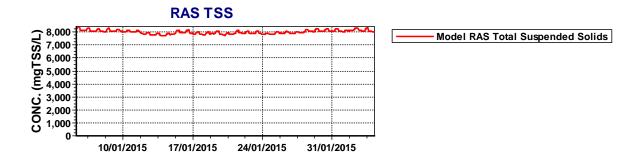

Album page - OURs

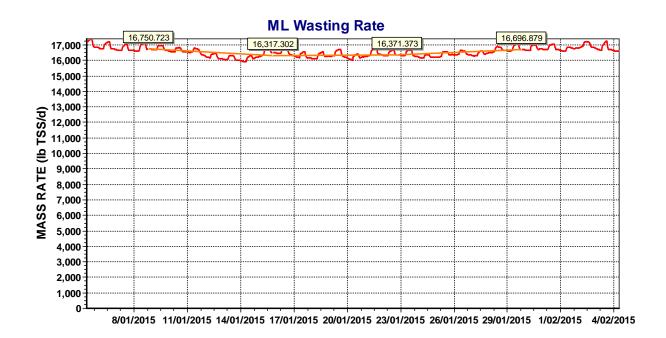

Album page - OURs

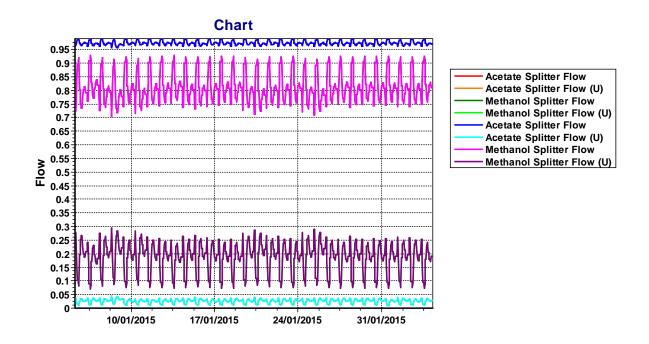

Album page - TSS, COD, BOD

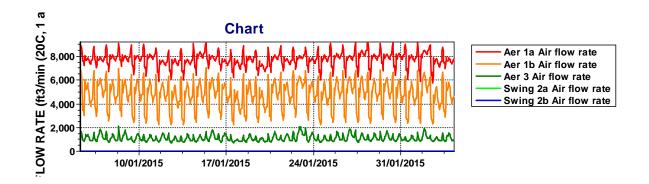

Album page - Mixed Liquor, RAS Flow


Album page - Mixed Liquor, RAS Flow


Album page - Nitrogen Sp., Alkalinity


Album page - TP, RAS TSS


Album page - TP, RAS TSS


Album page - WAS Mass

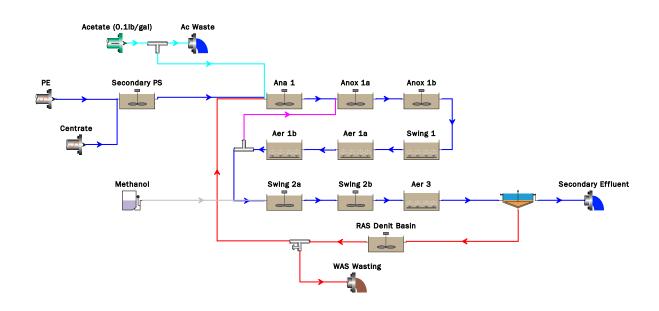
Album page - Acetate and Methanol Flow

Album page - Air Flow Rates

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Rick Kelly

Created: 6/29/2011 Saved: 5/12/2015

Target SRT: 8.00 days SRT: **** days

Temperature: 18.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.4000	3819.4447	14.000	Un-aerated
Aer 1a	1.4000	1.337E+4	14.000	4544
Aer 1b	1.4000	1.337E+4	14.000	4544
Swing 2a	0.6000	5729.1670	14.000	Un-aerated
Aer 3	0.5000	4774.3058	14.000	1623
Anox 1a	0.3000	2864.5835	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.3000	2864.5835	14.000	Un-aerated
Swing 1	0.4000	3819.4447	14.000	865
Swing 2b	0.6000	5729.1670	14.000	Un-aerated

Element name	Average DO Setpoint [mg/L]
Licinchi name	Average Do Setpoint [mg/L]
Ana 1	0
7.1.0 =	
Aer 1a	2.5
Aer 1b	2.0
Swing 2a	0
Aer 3	2.0
Aci 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0
Anox 1b	0
Swing 1	2.0
OMILIE T	2.0

Swing 2b	0	

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 1b	2.5656	0.0432	0.8200	0.4413	15.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0

Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
· · · · - · ·	0
Propionic acctorans mgCOD/L	
Propionic acetogens mgCOD/L Methonogens, gostoclastic mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0

ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	14.310695600311	0.100113815696276
Total COD mgCOD/L	387.35	1801.80
Total Kjeldahl Nitrogen mgN/L	47.17	794.23
Total P mgP/L	6.89	105.96
Nitrate N mgN/L	0	0
рН	7.82	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.23	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

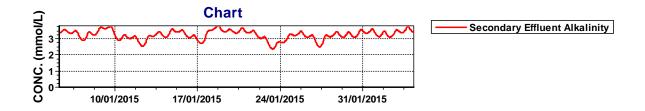
Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0110
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

Configuration information for all Splitter units

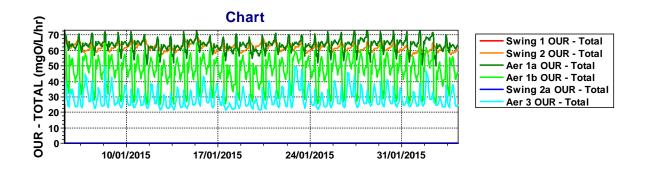
Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.247910155784548
Acetate Splitter	Flow paced	0.18 %

Configuration information for all Stream (SV) Influent units

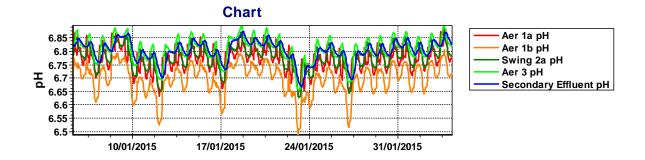

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0

Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0

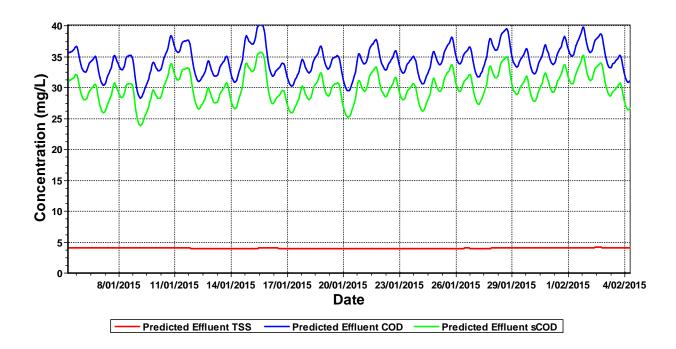
Flow 1

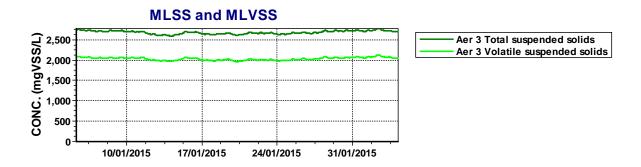

BioWin Album

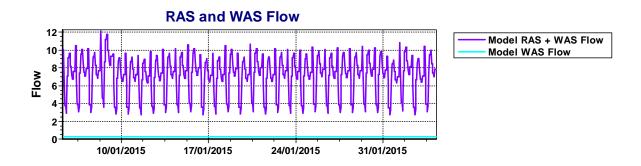
Album page - SS AOB-NOB

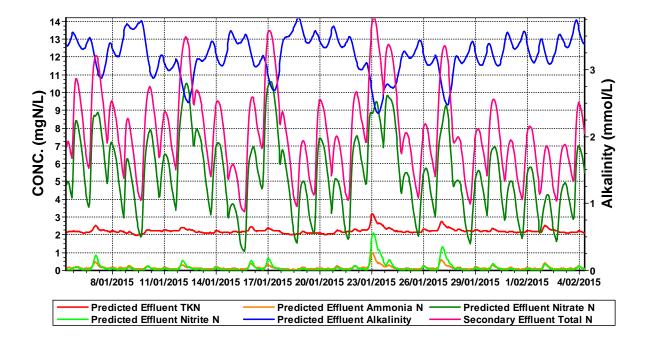


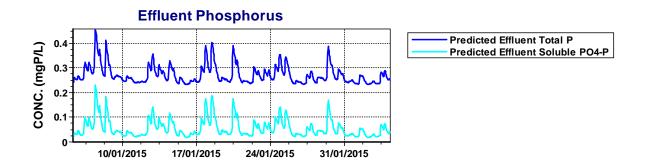
Album page - SS AOB-NOB

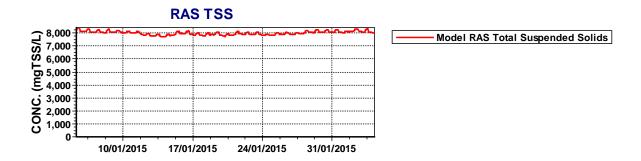

Album page - OURs

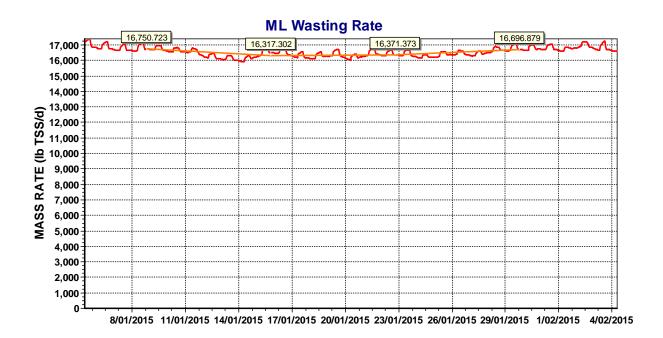

Album page - OURs


Album page - TSS, COD, BOD

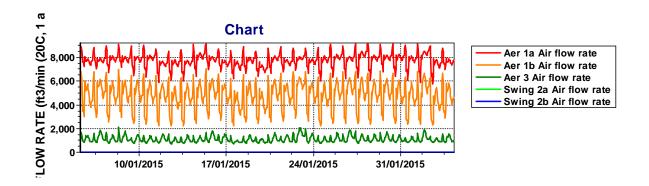

Album page - Mixed Liquor, RAS Flow


Album page - Mixed Liquor, RAS Flow


Album page - Nitrogen Sp., Alkalinity


Album page - TP, RAS TSS

Album page - TP, RAS TSS


Album page - WAS Mass

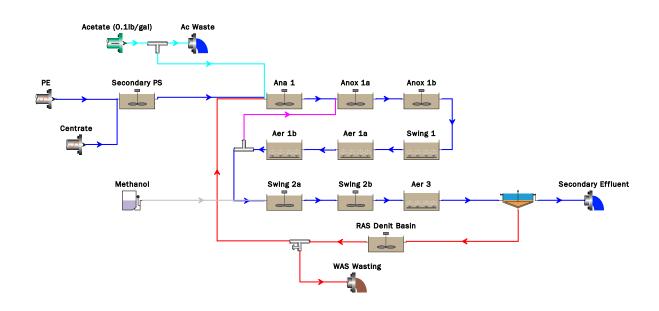
Album page - Acetate and Methanol Flow

Album page - Air Flow Rates

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Rick Kelly

Created: 6/29/2011 Saved: 5/8/2015

Target SRT: 11.00 days SRT: **** days

Temperature: 14.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.4000	3819.4447	14.000	Un-aerated
Aer 1a	1.4000	1.337E+4	14.000	4544
Aer 1b	1.4000	1.337E+4	14.000	4544
Swing 2a	0.6000	5729.1670	14.000	Un-aerated
Aer 3	0.5000	4774.3058	14.000	1623
Anox 1a	0.3000	2864.5835	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.3000	2864.5835	14.000	Un-aerated
Swing 1	0.4000	3819.4447	14.000	865
Swing 2b	0.6000	5729.1670	14.000	Un-aerated

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1a	2.5
Aer 1b	2.0
Swing 2a	0
Aer 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0
Anox 1b	0
Swing 1	2.0

Swing 2b	0	

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 1b	2.5656	0.0432	0.8200	0.4413	15.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0

Angershie emmenie suidinger (AAO) = 2000 //	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0

ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	12.4611703212226	0.100113815696276
Total COD mgCOD/L	416.48	1801.80
Total Kjeldahl Nitrogen mgN/L	54.01	794.23
Total P mgP/L	8.12	105.96
Nitrate N mgN/L	0	0
pH	7.95	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.43	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

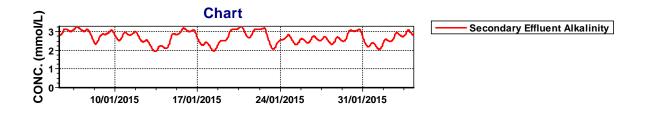
Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0110
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

Configuration information for all Splitter units

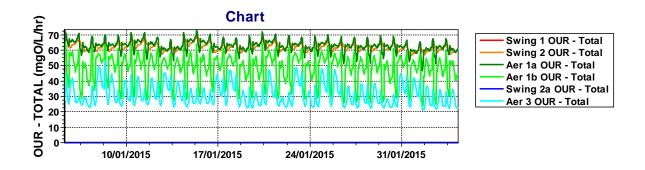
Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.179489419551172
Acetate Splitter	Flow paced	0.25 %

Configuration information for all Stream (SV) Influent units


Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0

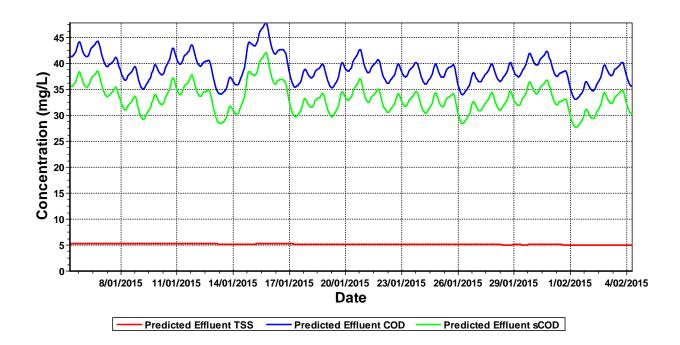
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mgISS/L	0
Hydroxy-dicalcium-phosphate mglSS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mg/SS/L	0
Dissolved oxygen mg/L	0

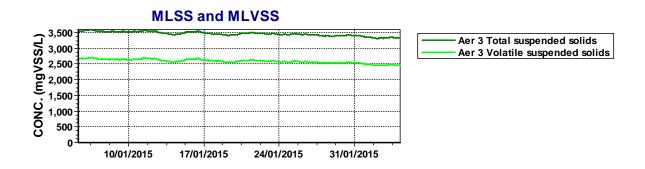
Flow 1

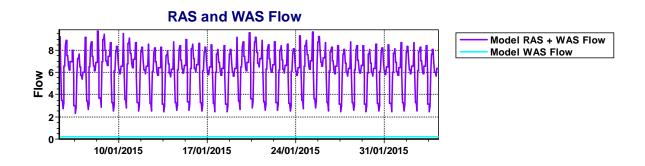

BioWin Album

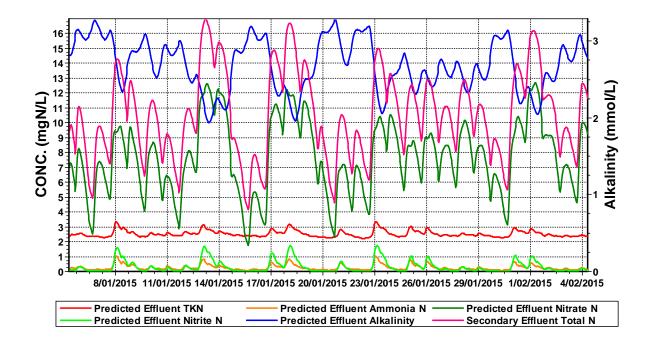
Album page - SS AOB-NOB

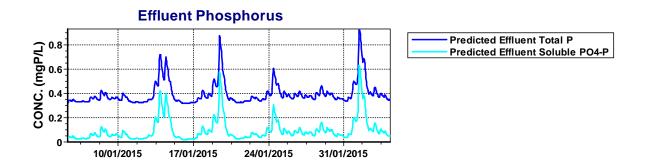
Album page - SS AOB-NOB

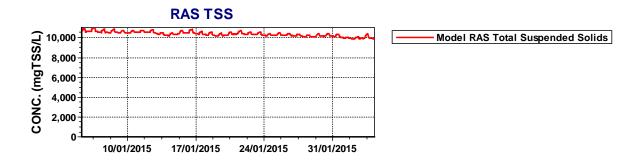

Album page - OURs

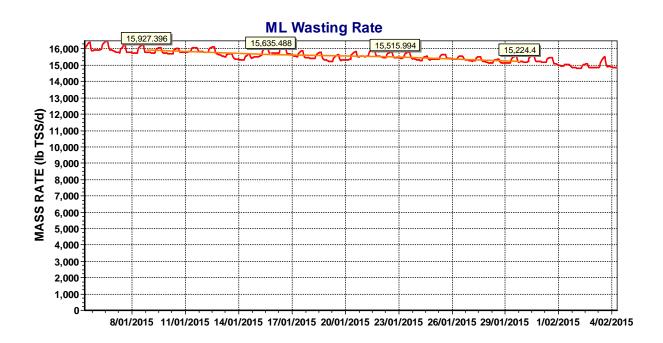

Album page - OURs

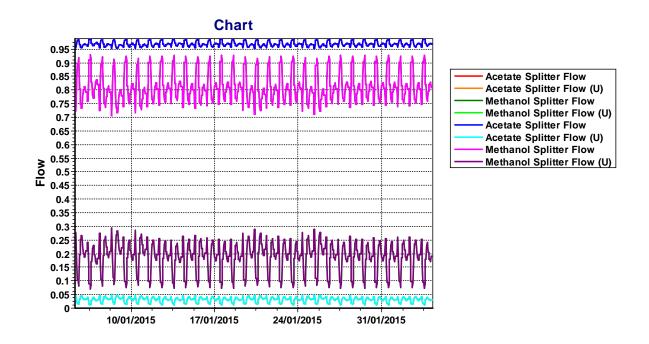

Album page - TSS, COD, BOD

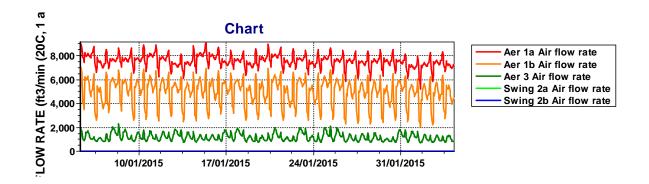

Album page - Mixed Liquor, RAS Flow


Album page - Mixed Liquor, RAS Flow


Album page - Nitrogen Sp., Alkalinity


Album page - TP, RAS TSS


Album page - TP, RAS TSS


Album page - WAS Mass

Album page - Acetate and Methanol Flow

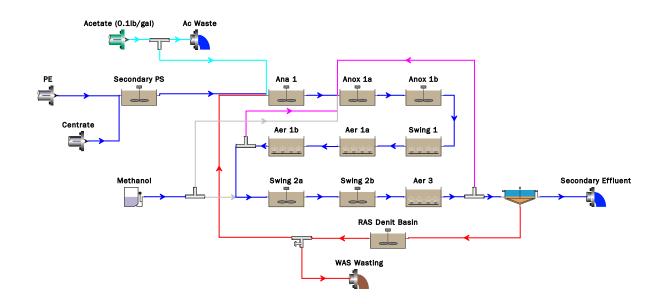
Album page - Air Flow Rates

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571

Plant name: Meridian WWTP User name: Rick Kelly


Created: 6/29/2011 Saved: 5/26/2015

Steady state solution

Target SRT: 8.00 days SRT #0: 7.97 days

Temperature: 18.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.3200	3055.5557	14.000	Un-aerated
Aer 1a	1.1200	1.069E+4	14.000	3635
Aer 1b	1.1200	1.069E+4	14.000	3635
Swing 2a	0.4800	4583.3336	14.000	Un-aerated
Aer 3	0.4000	3819.4447	14.000	1298
Anox 1a	0.2400	2291.6668	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.2400	2291.6668	14.000	Un-aerated
Swing 1	0.3200	3055.5557	14.000	692
Swing 2b	0.4800	4583.3336	14.000	Un-aerated

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1a	2.5
Aer 1b	2.0
Swing 2a	0
Aer 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0

Anox 1b	0
Swing 1	2.0
Swing 2b	0

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 1b	2.5656	0.0432	0.8200	0.4413	15.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0

A	
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0

Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mg/SS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Operating data Average (flow/time weighted as required)

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	0	0
Flow	12.08909091	0.103000001056688
Total COD mgCOD/L	379.27	1801.80
Total Kjeldahl Nitrogen mgN/L	48.77	795.73
Total P mgP/L	6.57	105.96
Nitrate N mgN/L	0	0
рН	7.88	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.03	185.00
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0110
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

Configuration information for all Splitter units

Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.198120216171885
Acetate Splitter	Flow paced	0.15 %
Splitter21	Fraction	0.00
A20 IMLR	Flowrate [Side]	0

Configuration information for all Stream (SV) Influent units

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0

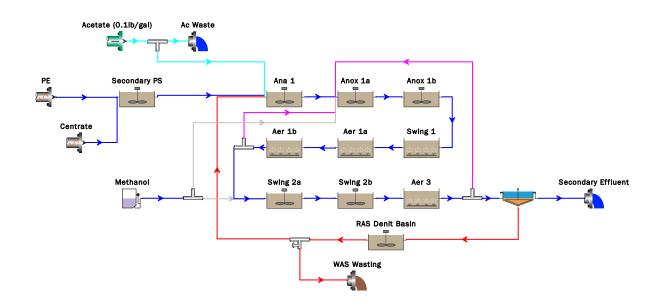
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mglSS/L	0
Hydroxy-dicalcium-phosphate mglSS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0

User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mg/SS/L	0
Dissolved oxygen mg/L	0
Flow	1

BioWin user and configuration data

Project details

Project name: Alternatives Analysis Project ref.: 147571


Plant name: Meridian WWTP User name: Rick Kelly

Created: 6/29/2011 Saved: 5/12/2015

Target SRT: 8.00 days SRT: **** days

Temperature: 18.0°C

Flowsheet

Configuration information for all Bioreactor units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]	# of diffusers
Ana 1	0.4000	3819.4447	14.000	Un-aerated
Aer 1a	1.4000	1.337E+4	14.000	4544
Aer 1b	1.5000	1.432E+4	14.000	4868
Swing 2a	0.6000	5729.1670	14.000	Un-aerated
Aer 3	0.5000	4774.3058	14.000	1623
Anox 1a	0.3000	2864.5835	14.000	Un-aerated
Secondary PS	0.0403	771.8233	6.980	Un-aerated
RAS Denit Basin	0.0743	1387.2159	7.160	Un-aerated
Anox 1b	0.3000	2864.5835	14.000	Un-aerated
Swing 1	0.4000	3819.4447	14.000	865
Swing 2b	0.6000	5729.1670	14.000	Un-aerated

Element name	Average DO Setpoint [mg/L]
Ana 1	0
Aer 1a	2.5
Aer 1b	2.0
Swing 2a	0
Aer 3	2.0
Anox 1a	0
Secondary PS	0
RAS Denit Basin	0
Anox 1b	0
Swing 1	2.0

Swing 2b	0	

Aeration equipment parameters

Element name	k1 in C = k1(PC)^0.25 + k2	k2 in C = k1(PC)^0.25 + k2	Y in Kla = C Usg ^ Y - Usg in [m3/(m2 d)]	Area of one diffuser	% of tank area covered by diffusers [%]
Ana 1	2.5656	0.0432	0.8200	0.4413	10.0000
Aer 1a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 1b	2.5656	0.0432	0.8200	0.4413	15.0000
Swing 2a	2.5656	0.0432	0.8200	0.4413	15.0000
Aer 3	2.5656	0.0432	0.8200	0.4413	15.0000
Anox 1a	2.5656	0.0432	0.8200	0.4413	10.0000
Secondary PS	2.5656	0.0432	0.8200	0.4413	10.0000
RAS Denit Basin	2.5656	0.0432	0.8200	0.4413	10.0000
Anox 1b	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 1	2.5656	0.0432	0.8200	0.4413	10.0000
Swing 2b	2.5656	0.0432	0.8200	0.4413	10.0000

Configuration information for all Methanol addition units

Element name	Methanol
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0

Angershie emmenie suidinger (AAO) = 2000 //	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0
Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	0
Propionate mgCOD/L	0
Methanol mgCOD/L	11880.00
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0

ISS Influent mgISS/L	0
Struvite mglSS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

Configuration information for all Effluent units

Configuration information for all Ideal clarifier units

Physical data

Element name	Volume [Mil. Gal]	Area [ft2]	Depth [ft]
Clarifier	2.8000	2.718E+4	13.770

Element name	Split method	Average Split specification
Clarifier	Flow paced	50.00 %

Element name	Average Temperature	Reactive	Percent removal	Blanket fraction
Clarifier	Uses global setting	Yes	99.90	0.07

Configuration information for all COD Influent units

Element name	PE	Centrate
Time	30.00	30.00
Flow	14.3106974874421	0.100114816828393
Total COD mgCOD/L	387.35	1801.80
Total Kjeldahl Nitrogen mgN/L	47.17	794.23
Total P mgP/L	6.89	105.96
Nitrate N mgN/L	0	0
рН	7.82	7.90
Alkalinity mmol/L	6.08	82.00
ISS Influent mgISS/L	11.23	185.22
Calcium mg/L	160.00	24.80
Magnesium mg/L	30.00	2.72
Dissolved oxygen mg/L	0	0

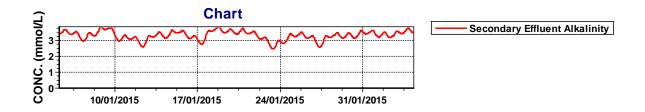
Element name	PE	Centrate
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.3060	0.5950
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.1650	0.0392
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.7600	0.9931
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.0680	0.0039
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.0100	0.3197
Fna - Ammonia [gNH3-N/gTKN]	0.8100	0.9500
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.5500	0.5086
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.0200	0.0050
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.0350	0.0512
Fpo4 - Phosphate [gPO4-P/gTP]	0.6900	0.9300
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.0110	0.0110
FZbh - OHO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbm - Methylotroph COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZaob - AOB COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZnob - NOB COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZaao - AAO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbp - PAO COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbpa - Propionic acetogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbam - Acetoclastic methanogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZbhm - H2-utilizing methanogens COD fraction [gCOD/g of total COD]	1.000E-4	1.000E-4
FZe - Endogenous products COD fraction [gCOD/g of total COD]	0	0

Configuration information for all Sludge units

Configuration information for all Splitter units

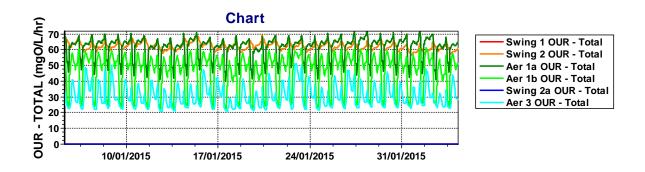
Element name	Split method	Average Split specification
BDF IMLR	Flow paced	200.00 %
RAS / WAS	Flowrate [Side]	0.251935227963428
Acetate Splitter	Flow paced	0.23 %
Splitter21	Fraction	0.00
A20 IMLR	Flowrate [Side]	0

Configuration information for all Stream (SV) Influent units

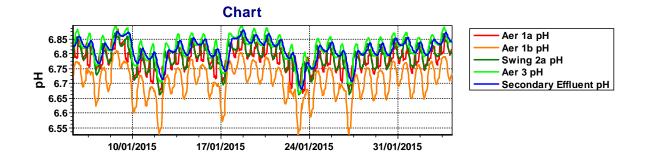

Element name	Acetate (0.1lb/gal)
Ordinary heterotrophic organisms (OHO) mgCOD/L	0
Methylotrophs mgCOD/L	0
Ammonia oxidizing biomass (AOB) mgCOD/L	0
Nitrite oxidizing biomass (NOB) mgCOD/L	0
Anaerobic ammonia oxidizers (AAO) mgCOD/L	0
Polyphosphate accumulating organisms (PAO) mgCOD/L	0
Propionic acetogens mgCOD/L	0
Methanogens - acetoclastic mgCOD/L	0
Methanogens - hydrogenotrophic mgCOD/L	0
Endogenous products mgCOD/L	0
Slowly bio. COD (part.) mgCOD/L	0
Slowly bio. COD (colloid.) mgCOD/L	0
Part. inert. COD mgCOD/L	0
Part. bio. org. N mgN/L	0
Part. bio. org. P mgP/L	0
Part. inert N mgN/L	0
Part. inert P mgP/L	0

Stored PHA mgCOD/L	0
Releasable stored polyP mgP/L	0
Fixed stored polyP mgP/L	0
Readily bio. COD (complex) mgCOD/L	0
Acetate mgCOD/L	11980.00
Propionate mgCOD/L	0
Methanol mgCOD/L	0
Dissolved H2 mgCOD/L	0
Dissolved methane mg/L	0
Ammonia N mgN/L	0
Sol. bio. org. N mgN/L	0
Nitrous Oxide N mgN/L	0
Nitrite N mgN/L	0
Nitrate N mgN/L	0
Dissolved nitrogen gas mgN/L	0
PO4-P (Sol. & Me Complexed) mgP/L	0
Sol. inert COD mgCOD/L	0
Sol. inert TKN mgN/L	0
ISS Influent mgISS/L	0
Struvite mglSS/L	0
Hydroxy-dicalcium-phosphate mgISS/L	0
Hydroxy-apatite mgISS/L	0
Magnesium mg/L	0
Calcium mg/L	0
Metal mg/L	0
Other Cations (strong bases) meq/L	0
Other Anions (strong acids) meq/L	0
Total CO2 mmol/L	0
User defined 1 mg/L	0
User defined 2 mg/L	0
User defined 3 mgVSS/L	0

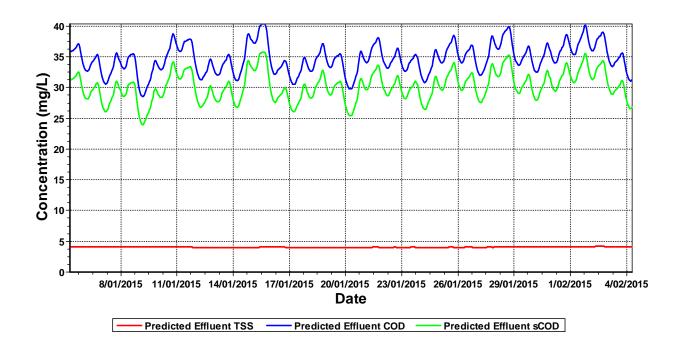
User defined 4 mgISS/L	0
Dissolved oxygen mg/L	0
Flow	1

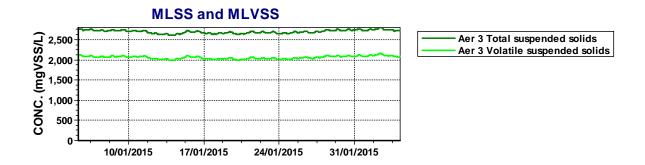

BioWin Album

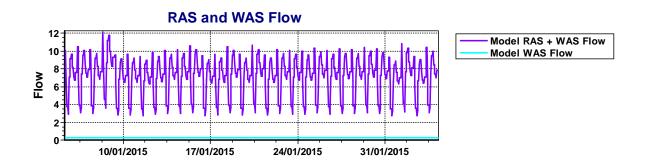
Album page - SS AOB-NOB

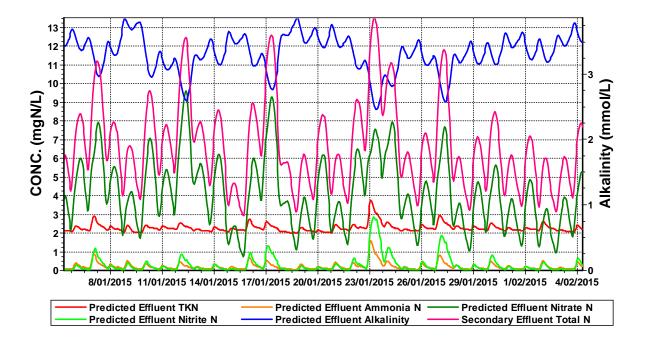


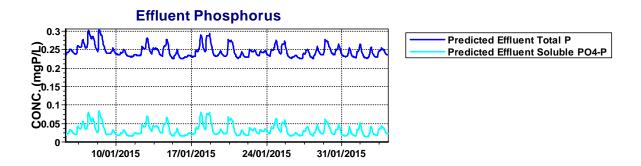
Album page - SS AOB-NOB

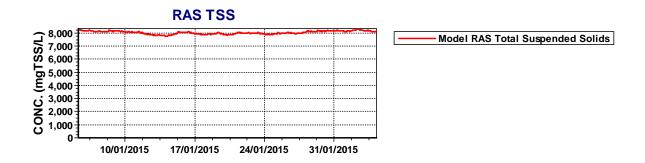

Album page - OURs

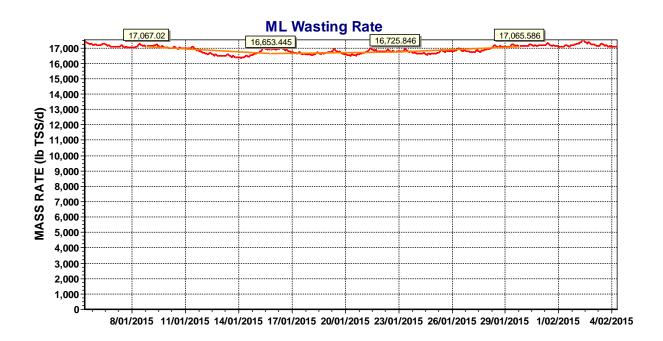

Album page - OURs

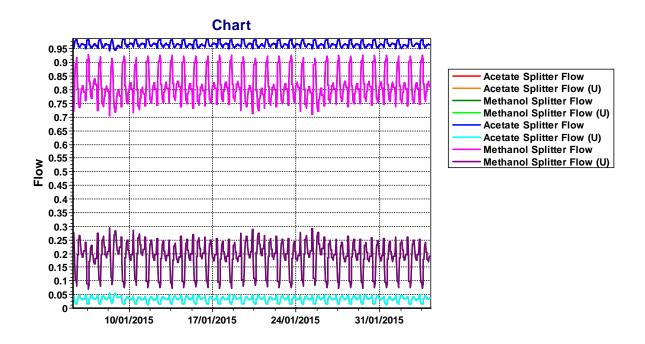

Album page - TSS, COD, BOD


Album page - Mixed Liquor, RAS Flow

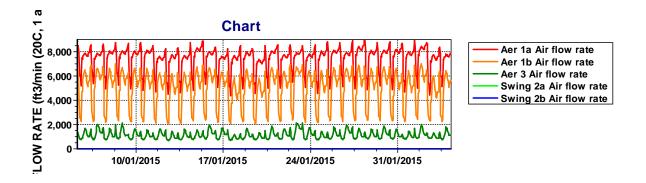

Album page - Mixed Liquor, RAS Flow


Album page - Nitrogen Sp., Alkalinity


Album page - TP, RAS TSS


Album page - TP, RAS TSS

Album page - WAS Mass


Album page - Acetate and Methanol Flow

Album page - Air Flow Rates

Elements	Air flow rate [ft3/min (20C, 1 atm)]
Aer 1a	7915.94
Aer 1b	5630.66
Aer 3	1097.42
Swing 2a	0
Swing 2b	0

Album page - Air Flow Rates

Meridian Alternative's Analysis version 1

Expansion using selectable 5 stage modified Bardenpho/A2O process

Tank sizes optimized based on individual simulations from A2O and 5 stage modified Bardenpho processes

To achieve target effluent concentrations, for Bardenpho process:

Overall process volume = 7.25 MG

Set BDF IMLR at 200% influent, Set A2O IMLR at 0%

Set Swing 1 Aerated, Swing 2a and 2b unaerated.

SRT = 12 days

Acetate flow pace at 0.8% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. All methanol to swing 2a

To achieve target effluent concentrations, for A2O process:

Overall process volume = 7.25 MG

Set BDF IMLR at 0% influent, Set A2O IMLR at 400%

Set Swing 1 unaerated, Swing 2a and 2b aerated.

SRT = 12 days

Acetate flow pace at 0.6% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 1.5% of PE flow rate, 1% methanol solution. all methanol to Anoxic 1a

To achieve target effluent concentrations, for 5SB process with Ostara Centrate treatment:

tank volume for overall process volume of 6.0 MG

Reduce Nitrogen in Centrate by 15%, Reduce phosphorus in Centrate by 80%

Set BDF IMLR at 200% influent, Set A2O IMLR at 0%

Set Swing 1 aerated, Swing 2a and 2b unaerated.

SRT = 12 days

Acetate flow pace at 0.25% of PE flow rate, 0.1lb acetate COD per gallon used.

Methanol flow pace at 0.5% of PE flow rate, 1% methanol solution. all methanol to Swing 2a

Summary of process results:

SRT = 12 days

Steady State Acetate use: 3,690 lb/d Steady State Methanol use: 615 gpd SS Air Demands: 16,725 scfm

SS WAS: 16,020 lb/d

All SS parameters meet follwoing criteria: MLSS<4,000; SP/TP<0.1/0.5; TN/NH3/NOX<15.5, 0.3, 8

Appendix D: Cost Estimates

Memorandum

Date: June 24, 2015
To: Rick Kelly, Seattle

From: Dan Goodburn, Parker

Internal ESG Review By: Don Sowden, West Monroe

Copy to: Butch Matthews, Jacksonville

Project No.: 147571-040

Subject: Meridian COM Alternative Analysis

Conceptual Design Completion

Basis of Estimate of Probable Construction Cost

The Basis of Estimate Report and supporting estimate reports for the subject project are attached. Please call me if you have questions or need additional information.

DG:dg

Enclosures (3):

- 1. Basis of Estimate Report
- 2. Summary Estimate
- 3. Detailed Estimate

Basis of Estimate Report

Meridian COM Alternative Analysis

Introduction

Brown and Caldwell (BC) is pleased to present this opinion of probable construction cost (estimate) prepared for the Meridian COM Alternative Analysis in Meridian, Idaho.

Summary

This Basis of Estimate contains the following information:

- Scope of work
- · Background of this estimate
- Class of estimate
- Estimating methodology
- Direct cost development
- Indirect cost development
- Bidding assumptions
- Estimating assumptions
- Estimating exclusions
- Allowances for known but undefined work
- Contractor and other estimate markups

Scope of Work

This project is a comparative estimate between conceptual alternatives for new treatment plant upgrades to the existing Meridian WWTP. There are three alternatives in the comparison. Alternative 1 is a new treatment train including a secondary influent pumping station, primary clarifiers, sludge pumping station, aeration basins, acetate and methanol chemical addition, secondary clarifiers, retrofits to existing aeration basins and RAS pumping station, ACTIFLO tertiary treatment, Ostara nutrient removal, and centrate equalization tank and pumping. Alternate 2 is identical to Alternate 1 minus the centrate equalization tank and pumping. Alternate 3 reduces the influent pumping station and aeration basin capacity, removes secondary clarifiers, ACTIFLO and Ostara processes and adds an MBR treatment train, fine screening, and demolition of existing secondary clarifier equipment.

Background of this Estimate of Probable Construction Cost

The attached estimate of probable construction cost is based on documents dated May, 2015, received by the ESG. These documents are described as conceptual based on the current project progression, additional or updated scope and/or quantities, and ongoing discussions with the project team. Further information can be found in the detailed estimate reports.

AACEI Estimate Classification

In accordance with the Association for the Advancement of Cost Engineering International (AACE) criteria, this is a Class 5 estimate. A Class 5 estimate is defined as a Conceptual Level or Project Viability Estimate. Typically, engineering is from 0 to 2 percent complete. Class 5 estimates are used to prepare planning level cost scopes or evaluation of alternative schemes, long range capital outlay planning and can also form the base work for the Class 4 Planning Level or Design Technical Feasibility Estimate.

Expected accuracy for Class 5 estimates typically ranges from -50 to +100 percent, depending on the technological complexity of the project, appropriate reference information and the inclusion of an appropriate contingency determination. In unusual circumstances, ranges could exceed those shown.

Estimating Methodology

This estimate was prepared using quantity take-offs, vendor quotes and equipment pricing furnished either by the project team or by the estimator. The estimate includes direct labor costs and anticipated productivity adjustments to labor, and equipment. Where possible, estimates for work anticipated to be performed by specialty subcontractors have been identified.

Construction labor crew and equipment hours were calculated from production rates contained in documents and electronic databases published by R.S. Means, Mechanical Contractors Association (MCA), National Electrical Contractors Association (NECA), and Rental Rate Blue Book for Construction Equipment (Blue Book).

This estimate was prepared using BC's estimating system, which consists of a Windows-based commercial estimating software engine using BC's material and labor database, historical project data, the latest vendor and material cost information, and other costs specific to the project locale.

Direct Cost Development

Costs associated with the General Provisions and the Special Provisions of the construction documents, which are collectively referred to as Contractor General Conditions (CGC), were based on the estimator's interpretation of the contract documents. The estimates for CGCs are divided into two groups: a time-related group (e.g., field personnel), and non-time-related group (e.g., bonds and insurance). Labor burdens such as health and welfare, vacation, union benefits, payroll taxes, and workers compensation insurance are included in the labor rates. No trade discounts were considered.

Indirect Cost Development

A percentage allowance for contractor's home office expense has been included in the overall rate markups. The rate is standard for this type of heavy construction and is based on typical percentages outlined in Means Heavy Construction Cost Data.

The contractor's cost for builder's risk, general liability and vehicle insurance has been included in this estimate. Based on historical data, this is typically two to four percent of the overall construction contract amount. These indirect costs have been included in this estimate as a percentage of the gross cost, and are added after the net markups have been applied to the appropriate items.

Bidding Assumptions

The following bidding assumptions were considered in the development of this estimate.

1. Bidders must hold a valid, current Contractor's credentials, applicable to the type of project.

- Bidders will develop estimates with a competitive approach to material pricing and labor productivity, and will not include allowances for changes, extra work, unforeseen conditions or any other unplanned costs.
- 3. Estimated costs are based on a minimum of four bidders. Actual bid prices may increase for fewer bidders or decrease for a greater number of bidders.
- 4. Bidders will account for General Provisions and Special Provisions of the contract documents and will perform all work except that which will be performed by traditional specialty subcontractors as identified here:
- Electrical and Instrumentation
- Painting and Coatings

Estimating Assumptions

As the design progresses through different completion stages, it is customary for the estimator to make assumptions to account for details that may not be evident from the documents. The following assumptions were used in the development of this estimate.

- 1. Contractor performs the work during normal daylight hours, nominally 7 a.m. to 5 p.m., Monday through Friday, in an 8-hour shift. No allowance has been made for additional shift work or weekend work.
- 2. Contractor has complete access for lay-down areas and mobile equipment.
- 3. Equipment rental rates are based on verifiable pricing from the local project area rental yards, Blue Book rates and/or rates contained in the estimating database.
- 4. Contractor markup is based on conventionally accepted values that have been adjusted for project-area economic factors.
- 5. Major equipment costs are based on both vendor supplied price quotes obtained by the project design team and/or estimators, and on historical pricing of like equipment.
- 6. Process equipment vendor training using vendors' standard Operations and Maintenance (0&M) material, is included in the purchase price of major equipment items where so stated in that quotation.
- 7. Bulk material quantities are based on manual quantity take-offs.
- 8. There is sufficient electrical power to feed the specified equipment. The local power company will supply power and transformers suitable for this facility.
- 9. Soils are of adequate nature to support the structures. No piles have been included in this estimate.
- 10. Influent pump station is based on wet well addition with submersible pumps.
- 11. Blowers for new aeration tanks are high speed turbo type.
- 12. Submerged anoxic mixers are propellar type mounted on guiderails.
- 13. Modifications to existing aeration tanks are to in basin piping only and will re-use existing air header piping and blowers.
- 14. RAS pump station has existing cans for installation of new pumps.
- 15. Centrate pumps are installed in existing building and are horizontal base mounted centrifugal pumps. Discharge ties into existing centrate line and will feed to Ostara process.
- 16. ACTIFLO tanks are buried tanks gravity fed from secondary clarifiers.
- 17. Disk filters are above grade on slab and piped influent and effluent.
- 18. Alum tanks and pumps are outdoor exposed on grade, heat traced and insulated.

19. Methanol and acetate chemical pumps are in same building. Methanol tank is above grade double wall steel/concrete tank type.

Estimating Exclusions

The following estimating exclusions were assumed in the development of this estimate.

- 1. Hazardous materials remediation and/or disposal.
- 2. O&M costs for the project with the exception of the vendor supplied O&M manuals.
- 3. Utility agency costs for incoming power modifications.
- 4. Permits beyond those normally needed for the type of project and project conditions.
- 5. RAS pump station addition.

Allowances for Known but Undefined Work

The following allowances were made in the development of this estimate.

- 1. Tie-in to influent pipe and/or structure for new influent pumping station
- 2. Coating systems
- 3. Process piping
- 4. Tie-in to RAS pumping station
- 5. Electrical and Instrumentation
- 6. Civil, sitework and misc small diameter yard piping

Contractor and Other Estimate Markups

Contractor markup is based on conventionally accepted values which have been adjusted for project-area economic factors. Estimate markups are shown in Table 1.

Table 2. Estimate Markups		
Item	Rate (%)	
Net Cost Markups		
Labor (employer payroll burden)	10	
Materials and process equipment	8	
Equipment (construction-related)	8	
Subcontractor	5	
Sales Tax (State and local for materials, process equipment and construction equipment rentals, etc.)	6	
Material Shipping and Handling	2	
Gross Cost Markups		
Contractors General Conditions	10	
Start-up, Training and O&M	2	
Undesigned/Undeveloped Detail Construction Contingency	30	
Builders Risk, Liability and Auto Insurance	2	
Performance and Payment Bonds	1.5	

Labor Markup

The labor rates used in the estimate were derived chiefly from the latest published State Prevailing Wage Rates. These include base rate paid to the laborer plus fringes. A labor burden factor is applied to these such that the final rates include all employer paid taxes. These taxes are FICA (which covers social security plus Medicare), Workers Comp (which varies based on state, employer experience and history) and unemployment insurance. The result is fully loaded labor rates. In addition to the fully loaded labor rate, an overhead and profit markup is applied at the back end of the estimate. This covers payroll and accounting, estimator's wages, home office rent, advertising and owner profit.

Materials and Process Equipment Markup

This markup consists of the additional cost to the contractor beyond the raw dollar amount for material and process equipment. This includes shop drawing preparation, submittal and/or re-submittal cost, purchasing and scheduling materials and equipment, accounting charges including invoicing and payment, inspection of received goods, receiving, storage, overhead and profit.

Equipment (Construction) Markup

This markup consists of the costs associated with operating the construction equipment used in the project. Most GCs will rent rather than own the equipment and then charge each project for its equipment cost. The equipment rental cost does not include fuel, delivery and pick-up charges, additional insurance requirements on rental equipment, accounting costs related to home office receiving invoices and payment.

However, the crew rates used in the estimate do account for the equipment rental cost. Occasionally, larger contractors will have some or all of the equipment needed for the job, but in order to recoup their initial purchasing cost they will charge the project an internal rate for equipment use which is similar to the rental cost of equipment. The GC will apply an overhead and profit percentage to each individual piece of equipment whether rented or owned.

Subcontractor Markup

This markup consists of the GC's costs for subcontractors who perform work on the site. This includes costs associated with shop drawings, review of subcontractor's submittals, scheduling of subcontractor work, inspections, processing of payment requests, home office accounting, and overhead and profit on subcontracts.

Sales Tax (Materials, Process Equipment and Construction Equipment)

This is the tax that the contractor must pay according to state and local tax laws. The percentage is applied to both the material and equipment the GC purchases as well as the cost for rental equipment. The percentage is based on the local rates in place at the time the estimate was prepared.

Contractor Startup, Training, and O&M Manuals

This cost markup is often confused with either vendor startup or owner startup. It is the cost the GC incurs on the project beyond the vendor startup and owner startup costs. The GC generally will have project personnel assigned to facilitate the installation, testing, startup and 0&M Manual preparation for equipment that is put into operation by either the vendor or owner. These project personnel often include an electrician, pipe fitter or millwright, and/or I&E technician. These personnel are not included in the basic crew makeup to install the equipment but are there to assist and trouble shoot the startup and proper running of the equipment. The GC also incurs a cost for startup for such things as consumables (oil, fuel, filters, etc.), startup drawings and schedules, startup meetings and coordination with the plant personnel in other areas of the plant operation.

Builders Risk, Liability, and Vehicle Insurance

This percentage comprises all three items. There are many factors which make up this percentage, including the contractor's track record for claims in each of the categories. Another factor affecting insurance rates has been a dramatic price increase across the country over the past several years due to domestic and foreign influences. Consequently, in the construction industry we have observed a range of 0.5 to 1 percent for Builders Risk Insurance, 1 to 1.25 percent for General Liability Insurance, and 0.85 to 1 percent for Vehicle Insurance. Many factors affect each area of insurance, including project complexity and contractor's requirements and history. Instead of using numbers from a select few contractors, we believe it is more prudent to use a combined 2 percent to better reflect the general costs across the country. Consequently, the actual cost could be higher or lower based on the bidder, region, insurance climate, and on the contractor's insurability at the time the project is bid.

Material Shipping and Handling

This can range from 2 to 6 percent, and is based on the type of project, material makeup of the project, and the region and location of the project. Material shipping and handling covers delivery costs from vendors, unloading costs (and in some instances loading and shipment back to vendors for rebuilt equipment), site paper work, and inspection of materials prior to unloading at the project site. BC typically adjusts this percentage by the amount of materials and whether vendors have included shipping costs in the quotes that

were used to prepare the estimate. This cost also includes the GC's cost to obtain local supplies; e.g., oil, gaskets and bolts that may be missing from the equipment or materials shipped.

Undesigned/Undeveloped Detail Construction Contingency

The contingency factor covers unforeseen conditions, area economic factors, and general project complexity. This contingency is used to account for those factors that cannot be addressed in each of the labor and/or material installation costs. Based on industry standards, completeness of the project documents, project complexity, the current design stage and area factors, construction contingency can range from 10 to 50 percent. Contingency is applied at the estimators discretion based on the amount of Undesigned/undeveloped detail for the particular project

Performance and Payment Bonds

Based on historical and industry data, this can range from 0.75 to 3 percent of the project total. There are several contributing factors including such items as size of the project, regional costs, and contractor's historical record on similar projects, complexity and current bonding limits. BC uses 1.5 percent for bonds, which we have determined to be reasonable for most heavy construction projects.

Estimate Summary Report

6/24/2015 9:16 AM

Project Number: 147571-040 Estimate Issue Number: 2

Bid Date: 6/24/2015

Estimator: DG-NDG-FB-IK

COM ALTERNATIVES ANALYSIS - ALT 1

CITY OF MERIDIAN COM ALTERNATIVES ANALYSIS - ALT 1 PRE-BODR - FACILITY PLANNING

Estimator DG-NDG-FB-IK

BC Project Manager Richard Kelly

BC Office Seattle

Estimate Issue No. 2

QA/QC Reviewer Don Snowden
QA/QC Review Date 5/26/2015
BC Estimate Number 147571-040

Notes PROCESS LOCATION/AREA INDEX

01 Primary Clarifiers

02 Aeration Tanks

03 Secondary Clarifiers

04 Existing Aeration Tanks/RAS Tanks Retrofit

05 Tertiary Treatment Process

06 Centrate EQ and Treatment

08 Influent Pump Station

09 Acetate/Methanol

10 Sidestream P Removal

Estimate Summary Report

6/24/2015 9:16 AM

Project Number: 147571-040 Estimate Issue Number: 2

Bid Date: 6/24/2015

Estimator: DG-NDG-FB-IK

COM ALTERNATIVES ANALYSIS - ALT 1

Estimate Breakdown	Gross Total Cost w/Markups
01 TOTAL AMOUNT	
01 Primary Clarifiers	5,648,272
02 Aeration Tanks	18,065,049
03 Seconday Clarifiers	6,455,871
04 Existing aeration Tanks/RAS Tank Retrofit	5,191,784
05 Tertiary Treatment Processes	12,327,209
06 Centrate EQ	724,071
08 Influent Pump Station	4,958,850
09 Acetate/Methanol	675,590
10 Sidestream P Removal	4,657,723
01 TOTAL AMOUNT	58,704,420

Estimate Summary Report

6/24/2015 9:18 AM

Project Number: 147571-040

Estimate Issue Number:

Bid Date: 6/24/2015

Estimator: DG-NDG-FB-IK

COM ALTERNATIVES ANALYSIS - ALT 2

CITY OF MERIDIAN COM ALTERNATIVES ANALYSIS - ALT 2 PRE-BODR - FACILITY PLANNING

Estimator DG-NDG-FB-IK

BC Project Manager Richard Kelly

BC Office Seattle

Estimate Issue No. 2

QA/QC Reviewer Don Snowden
QA/QC Review Date 5/26/2015
BC Estimate Number 147571-040

Notes PROCESS LOCATION/AREA INDEX

01 Primary Clarifiers

02 Aeration Tanks

03 Secondary Clarifiers

04 Existing Aeration Tanks/RAS Tanks Retrofit

05 Tertiary Treatment Process

07 MBR Treatment

08 Influent Pump Station

09 Acetate/Methanol

10 Sidestream P Removal

Estimate Summary Report

6/24/2015 9:18 AM

Project Number: 147571-040 Estimate Issue Number: 2

Bid Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Estimate Breakdown	Gross Total Cost w/Markups
01 TOTAL AMOUNT	
01 Primary Clarifiers	5,649,530
02 Aeration Tanks	18,069,011
03 Seconday Clarifiers	6,457,335
04 Existing aeration Tanks/RAS Tank Retrofit	5,192,945
05 Tertiary Treatment Processes	12,280,905
08 Influent Pump Station	4,959,908
09 Acetate/Methanol	675,737
10 Sidestream P Removal	4,672,206
01 TOTAL AMOUNT	57,957,577

Estimate Summary Report

5/28/2015 2:00 PM

Project Number: 147571-040

Estimate Issue Date: 5/26/2015

Estimate Issue Number:

Estimator: DG-NDG-FB-IK

COM ALTERNATIVES ANALYSIS - ALT 3

CITY OF MERIDIAN COM ALTERNATIVES ANALYSIS - ALT 3 PRE-BODR - FACILITY PLANNING

Estimator DG-NDG-FB-IK

BC Project Manager Richard Kelly

BC Office Seattle

Estimate Issue No. 1

QA/QC Reviewer Don Snowden
QA/QC Review Date 5/26/2015
BC Estimate Number 147571-040

Notes PROCESS LOCATION/AREA INDEX

01 Primary Clarifiers

02 Aeration Tanks

03 Secondary Clarifiers

04 Existing Aeration Tanks/RAS Tanks Retrofit

05 Tertiary Treatment Process

07 MBR Treatment

08 Influent Pump Station

09 Acetate/Methanol

Estimate Summary Report

5/28/2015 2:00 PM

147571-040

Project Number:
Estimate Issue Number:

Estimate Issue Date: 5/26/2015

Estimator: DG-NDG-FB-IK

Estimate Breakdown	Gross Total Cost w/Markups
01 TOTAL AMOUNT	
01 Primary Clarifiers	5,649,962
02 Aeration Tanks	5,932,901
04 Existing aeration Tanks/RAS Tank Retrofit	5,578,250
05 Tertiary Treatment Processes	234,486
07 MBR Treatment	22,659,145
08 Influent Pump Station	3,228,258
09 Acetate/Methanol	680,594
01 TOTAL AMOUNT	43,963,595

Estimate Detail Report

6/24/2015 9:11 AM

Project Number: 147571-040

Estimate Issue: 2

Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

COM ALTERNATIVES ANALYSIS - ALT 1

CITY OF MERIDIAN COM ALTERNATIVES ANALYSIS - ALT 1 PRE-BODR - FACILITY PLANNING

Estimator DG-NDG-FB-IK

BC Project Manager Richard Kelly

BC Office Seattle Estimate Issue No. 2

QA/QC Reviewer Don Snowden QA/QC Review Date 5/26/2015

Notes PROCESS LOCATION/AREA INDEX

01 Primary Clarifiers

02 Aeration Tanks

03 Secondary Clarifiers

04 Existing Aeration Tanks/RAS Tanks Retrofit

05 Tertiary Treatment Process

06 Centrate EQ and Treatment

08 Influent Pump Station

09 Acetate/Methanol

10 Sidestream P Removal

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
01 Primary Clarifi	ers									
03 CONCRETE										
03330 Slabs Pri	=									
03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	210.1 cy	-	33.69	-	-	-	33.69 /cy	7,078
03-11-13.85	C.I.P. concrete forms, wall, job built, plywood, to 8' high, 2 use, includes erecting, bracing, stripping and cleaning	2050	360.0 sfca	6.39	1.76	-	-	-	8.16 /sfca	2,937
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	252.0 If	3.61	4.42	-	-	-	8.03 /lf	2,022
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	21.0 ea	9.39	47.88	-	-	-	57.27 /ea	1,203
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	31.5 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	63,905
03-21-10.60	Reinforcing in place, A615 Gr 60, walls, #8 to #18	0760	1,800.0 lb	0.30	0.48	-	-	-	0.77 /lb	1,393
	Reinforcing in place, unloading & sorting, add to above - slabs	2005	32.4 ton	39.87	-	-	7.51	-	47.38 /ton	1,536
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	32.4 ton	43.34	-	-	8.17	-	51.51 /ton	1,669
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	455.2 cy	-	98.01	-	-	-	98.01 /cy	44,611
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	441.2 cy	9.69	-	-	2.00	-	11.68 /cy	5,154
03-31-05.70	Structural concrete, placing, walls, pumped, 8" thick, includes vibrating, excludes material	4950	14.0 cy	38.75	-	-	7.98	-	46.73 /cy	654
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	5,672.0 sf	0.88	-	-	0.03	-	0.91 /sf	5,167
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	5,672.0 sf	0.70	0.29	-	-	-	0.99 /sf	5,640
03-39-13.50	Curing, sprayed membrane curing compound Slabs Primary Clarifiers	0300 _	56.7 csf 22.2 cy	9.68 2,413.50	10.12 3,996.12		75.13		19.80 /csf 6,484.75 /cy	1,123 144,091
	•		•						•	
03330 Slabs Pu 03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y.,	1050	14.8 cy	-	33.69	-	-	-	33.69 /cy	499
03-11-13.65	includes material only C.I.P. concrete forms, slab on grade, curb, wood, 6"	2050	21.3 sfca	7.24	1.36	-	-	-	8.60 /sfca	184
	to 12" high, 2 use, includes erecting, bracing, stripping and cleaning									
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	80.0 If	3.61	4.42	-	-	-	8.03 /lf	642
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	7.0 ea	9.38	47.88	-	-	-	57.26 /ea	401
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	2.2 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	4,506
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	31.6 lb	0.52	0.48	-	-	-	0.99 /lb	31
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	2.2 ton	39.87	-	-	7.51	-	47.38 /ton	106
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	2.2 ton	43.34	-	-	8.17	-	51.51 /ton	115
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	31.9 cy	-	98.01	-	-	-	98.01 /cy	3,131

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Pt	ump Station									
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	31.9 cy	9.69	-	-	2.00	-	11.68 /cy	373
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	400.0 sf	0.38	-	-	-	-	0.38 /sf	151
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	400.0 sf	0.70	0.29	-	-	-	0.99 /sf	398
03-39-13.50	Curing, sprayed membrane curing compound Slabs Pump Station	0300 _	4.0 csf 400.0 cy	9.68	10.12 16.81	-	0.25		19.80 /csf 26.54 /cy	79 10,616
03330 Slabs S	plitter Box									
-	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	5.3 cy	-	33.69	-	-	-	33.69 /cy	180
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	48.0 If	3.61	4.42	-	-	-	8.03 /lf	385
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	4.0 ea	9.39	47.88	-	-	-	57.27 /ea	229
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.8 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	1,622
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.8 ton	39.88	-	-	7.51	-	47.39 /ton	38
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.8 ton	43.34	-	-	8.16	-	51.50 /ton	41
	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	11.2 cy	-	98.01	-	-	-	98.01 /cy	1,098
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	11.2 cy	9.69	-	-	2.00	-	11.68 /cy	131
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	144.0 sf	0.38	-	-	-	-	0.38 /sf	54
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	144.0 sf	0.70	0.29	-	-	-	0.99 /sf	143
03-39-13.50	Curing, sprayed membrane curing compound Slabs Splitter Box	0300 _	1.4 csf 11.2 cy	9.68 123.57	10.13 226.00	-	3.12		19.81 /csf 352.69 /cy	29 3,950
03330 Slabs So	cum Bump									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	1.3 cy	-	33.69	-	-	-	33.69 /cy	45
03-11-13.65	to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	5.3 sfca	7.24	1.36	-	-	-	8.60 /sfca	46
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	24.0 If	3.61	4.42	-	-	-	8.03 /lf	193
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	2.0 ea	9.39	47.88	-	-	-	57.27 /ea	115
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.2 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	406
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	4.0 lb	0.52	0.48	-	-	-	1.00 /lb	4
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.2 ton	39.85	-	-	7.50	-	47.40 /ton	10
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.2 ton	43.30	-	-	8.17	-	51.50 /ton	10

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Sc	cum Pump									
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.9 cy	-	98.01	-	-	-	98.01 /cy	285
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	2.9 cy	9.69	-	-	1.99	-	11.68 /cy	34
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and hand trowel finish	0200	36.0 sf	1.20	-	-	-	-	1.20 /sf	43
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	36.0 sf	0.70	0.29	-	-	-	0.99 /sf	36
03-39-13.50	Curing, sprayed membrane curing compound Slabs Scum Pump	0300 _	0.4 csf 2.9 cy	9.67 162.05	10.10 259.65	-	3.09		19.78 /csf 424.79 /cy	
03330 Slabs Pr	imary Clarifiers									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	210.1 cy	-	33.69	-	-	-	33.69 /cy	7,078
03-11-13.85	C.I.P. concrete forms, wall, job built, plywood, to 8' high, 2 use, includes erecting, bracing, stripping and cleaning	2050	360.0 sfca	6.39	1.76	-	-	-	8.16 /sfca	2,937
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	252.0 If	3.61	4.42	-	-	-	8.03 /lf	2,022
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	21.0 ea	9.39	47.88	-	-	-	57.27 /ea	1,203
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	31.5 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	63,905
03-21-10.60	Reinforcing in place, A615 Gr 60, walls, #8 to #18	0760	1,800.0 lb	0.30	0.48	-	-	-	0.77 /lb	1,393
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	32.4 ton	39.87	-	-	7.51	-	47.38 /ton	1,536
	Reinforcing in place, crane cost for handling, add to above, slabs	2215	32.4 ton	43.34	-	-	8.17	-	51.51 /ton	1,669
	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	455.2 cy	-	98.01	-	-	-	98.01 /cy	44,611
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	441.2 cy	9.69	-	-	2.00	-	11.68 /cy	5,154
03-31-05.70	Structural concrete, placing, walls, pumped, 8" thick, includes vibrating, excludes material	4950	14.0 cy	38.75	-	-	7.98	-	46.73 /cy	654
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	5,672.0 sf	0.88	-	-	0.03	-	0.91 /sf	5,167
	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	5,672.0 sf	0.70	0.29	-	-	-	0.99 /sf	5,640
03-39-13.50	Curing, sprayed membrane curing compound Slabs Primary Clarifiers	0300 _	56.7 csf 455.2 cy	9.68 117.82	10.12 195.08	-	3.67		19.80 /csf 316.57 /cy	1,123 144,091
03330 Slabs So	cum Pumn									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	1.3 cy	-	33.69	-	-	-	33.69 /cy	45
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	5.3 sfca	7.24	1.36	-	-	-	8.60 /sfca	46
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	24.0 If	3.61	4.42	-	-	-	8.03 /lf	193
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	2.0 ea	9.39	47.88	-	-	-	57.27 /ea	115

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs So	cum Pump									
	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.2 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	406
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	4.0 lb	0.52	0.48	-	-	-	1.00 /lb	4
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.2 ton	39.85	-	-	7.50	-	47.40 /ton	10
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.2 ton	43.30	-	-	8.17	-	51.50 /ton	10
	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.9 cy	-	98.01	-	-	-	98.01 /cy	285
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	2.9 cy	9.69	-	-	1.99	-	11.68 /cy	34
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and hand trowel finish	0200	36.0 sf	1.20	-	-	-	-	1.20 /sf	43
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	36.0 sf	0.70	0.29	-	-	-	0.99 /sf	36
03-39-13.50	Curing, sprayed membrane curing compound Slabs Scum Pump	0300 _	0.4 csf 2.9 cy	9.67 162.05	10.10 259.65	-	3.09		19.78 /csf 424.79 /cy	
02222 Brimary	sludge pump equipment Pads									
	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing,	2050	60.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	516
	stripping and cleaning									
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.1 ton	39.80	-	-	7.50	-	47.30 /ton	2
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.1 ton	43.30	-	-	8.00	-	51.30 /ton	3
	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.6 cy	-	98.01	-	-	-	98.01 /cy	254
	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	2.6 cy	27.68	-	-	5.70	-	33.38 /cy	87
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460 -	2.6 cy	46.13	-	-	13.04	-	59.16 /cy	153
	Primary sludge pump equipment Pads		2.6 cy	243.02	129.51		19.05		391.58 /cy	1,015
03345 Concrete	e Walls Primary Carifiers									
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and	9260	7,056.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	48,881
03-15-05.95	cleaning Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	18.8 gal	-	20.66	-	-	-	20.66 /gal	389
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for	0700	9.8 ton	794.28	992.00	-	-	-	1,786.28 /ton	17,506
03-21-10.60	accessories Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	9.8 ton	39.87	-	-	7.51	-	47.38 /ton	464
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	9.8 ton	43.34	-	-	8.17	-	51.51 /ton	505
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	137.2 cy	-	98.01	-	-	-	98.01 /cy	13,447
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	137.2 cy	32.29	-	-	6.65	-	38.94 /cy	5,343

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	e Walls Primary Carifiers									
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Primary Carifiers	0700 _	7,056.0 sf 137.2 cy	1.89 509.91	0.42 231.72	-	0.22 19.02		2.53 /sf 760.65 /cy	17,826 104,361
03345 Concrete	e Walls Pump Station									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	20.0 lf	10.50	2.14	-	-	-	12.63 /lf	253
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	3,200.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	24,640
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	8.5 gal	-	20.66	-	-	-	20.66 /gal	176
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	4.4 ton	794.28	992.00	-	-	-	1,786.28 /ton	7,938
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	4.4 ton	39.87	-	-	7.51	-	47.38 /ton	211
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	4.4 ton	43.34	-	-	8.17	-	51.50 /ton	229
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	62.2 cy	-	98.01	-	-	-	98.01 /cy	6,099
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	62.2 cy	32.29	-	-	6.65	-	38.94 /cy	2,423
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Pump Station	0700 _	3,200.0 sf 62.2 cy	1.89 553.02	0.42 232.41	-	0.22 19.02		2.53 /sf 804.45 /cy	8,084 50,053
00045.0	- Wells Only on Dec									
	e Walls Splitter Box C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing,	0500	20.0 lf	10.50	2.14	-	-	-	12.63 /lf	253
03-11-13.85	stripping and cleaning Cip concret forms, walls, steel framed plywd, over 16'20'h,based 50 us purchsd forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9460	1,920.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	14,784
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	5.1 gal	-	20.66	-	-	-	20.66 /gal	106
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	4.7 ton	794.28	992.00	-	-	-	1,786.27 /ton	8,337
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	4.7 ton	39.87	-	-	7.51	-	47.38 /ton	221
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	4.7 ton	43.34	-	-	8.17	-	51.51 /ton	240
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	56.0 cy	-	98.01	-	-	-	98.01 /cy	5,489
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	56.0 cy	32.29	-	-	6.65	-	38.94 /cy	2,181
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Splitter Box	0700 _	1,920.0 sf 56.0 cy	1.89 412.28	0.42 223.35	-	0.22 15.46		2.53 /sf 651.08 /cy	4,851 36,461
0224F Cana	a Walle seum numn									
	e Walls scum pump C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	20.0 lf	10.50	2.14	-	-	-	12.63 /lf	253

Project Number: 147571-040
Estimate Issue: 2
Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Report

Brown AND Caldwell

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	Walls scum pump									
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	960.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	7,392
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	2.6 gal	-	20.66	-	-	-	20.66 /gal	53
03-15-13.50	Waterstop, rubber, center bulb, split, $3/8$ " thick x 6" wide	3500	20.0 lf	3.24	14.92	-	-	-	18.15 /lf	363
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	2.0 ea	9.39	35.79	-	-	-	45.17 /ea	90
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	2.0 ton	794.28	992.00	-	-	-	1,786.28 /ton	3,573
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	2.0 ton	39.87	-	-	7.52	-	47.39 /ton	95
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	2.0 ton	43.34	-	-	8.17	-	51.51 /ton	103
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	28.0 cy	-	98.01	-	-	-	98.01 /cy	2,744
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	28.0 cy	32.29	-	-	6.65	-	38.94 /cy	1,090
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	960.0 sf	1.89	0.42		0.22		2.53 /sf	2,425
	Concrete Walls scum pump		28.0 cy	408.56	225.51		15.27		649.34 /cy	18,181
03345 Concrete	Walls Primary Carifiers									
	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	7,056.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	48,881
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	18.8 gal	-	20.66	-	-	-	20.66 /gal	389
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	9.8 ton	794.28	992.00	-	-	-	1,786.28 /ton	17,506
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	9.8 ton	39.87	-	-	7.51	-	47.38 /ton	464
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	9.8 ton	43.34	-	-	8.17	-	51.51 /ton	505
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	137.2 cy	-	98.01	-	-	-	98.01 /cy	13,447
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	137.2 cy	32.29	-	-	6.65	-	38.94 /cy	5,343
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	7,056.0 sf	1.89	0.42		0.22		2.53 /sf	17,826
	Concrete Walls Primary Carifiers		137.2 cy	509.91	231.72		19.02		760.65 /cy	104,361
03345 Concrete	Walls scum pump									
	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	20.0 If	10.50	2.14	-	-	-	12.63 /lf	253
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	960.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	7,392
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	2.6 gal	-	20.66	-	-	-	20.66 /gal	53

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls scum pump									
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	20.0 If	3.24	14.92	-	-	-	18.15 /lf	363
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	2.0 ea	9.39	35.79	-	-	-	45.17 /ea	90
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	2.0 ton	794.28	992.00	-	-	-	1,786.28 /ton	3,573
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	2.0 ton	39.87	-	-	7.52	-	47.39 /ton	95
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	2.0 ton	43.34	-	-	8.17	-	51.51 /ton	103
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	28.0 cy	-	98.01	-	-	-	98.01 /cy	2,744
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	28.0 cy	32.29	-	-	6.65	-	38.94 /cy	1,090
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls scum pump	0700 _	960.0 sf 28.0 cy	1.89 408.56	0.42 225.51	-	<u>0.22</u> 15.27		2.53 /sf 649.34 /cy	2,425 18,181
	I Slab Pump station C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, continued by the plant of the p	1150	400.0 sf	4.97	1.27	-	-	-	6.24 /sf	2,495
03-11-13.35	erecting, bracing, stripping and cleaning Cip concrete forms, elevated slab, box-out for shallow slab openings, over 10 sf (use perimeter), includes	5550	24.0 lf	4.64	1.62	-	-	-	6.26 /lf	150
03-11-13.35	shoring,erecting,bracing,stripping and cleaning C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	80.0 If	3.62	0.21	-	-	-	3.83 /lf	307
03-11-13.35	C.I.P. concrete forms, elevated slab, perimeter deck and rail, straight, includes shoring, erecting, bracing, stripping and cleaning	8000	80.0 If	20.11	12.55	-	-	-	32.66 /lf	2,613
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.0 ton	822.00	992.00	-	-	-	1,814.00 /ton	29
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	8.00	-	48.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	114.00	-	-	21.00	-	135.00 /ton	1
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	15.6 cy	-	98.01	-	-	-	98.01 /cy	1,525
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	15.6 cy	21.53	-	-	4.43	-	25.96 /cy	404
03-35-29.30	Concrete finishing, floors, monolithic, screed finish	0020	400.0 sf	0.32	-	-	-	-	0.32 /sf	126
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	400.0 sf	0.62	0.19	-	-	-	0.81 /sf	324
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	4.0 csf	9.68	10.12	-		-	19.80 /csf	79
	Elevated Slab Pump station		15.6 cy	305.79	207.31		4.45		517.55 /cy	8,053
03350 Flevated	I Slab Splitter Box									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	144.0 sf	4.97	1.27	-	-	-	6.24 /sf	898
03-11-13.35	Cip concrete forms, elevated slab,box-out for shallow slab openings,over 10 sf (use perimeter),includes shoring,erecting,bracing,stripping and cleaning	5550	24.0 If	4.64	1.62	-	-	-	6.26 /lf	150

Estimate Detail Report COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03350 Elevated	Slab Splitter Box									
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	48.0 If	3.62	0.21	-	-	-	3.83 /lf	184
03-11-13.35	C.I.P. concrete forms, elevated slab, perimeter deck and rail, straight, includes shoring, erecting, bracing, stripping and cleaning	8000	48.0 If	20.11	12.55	-	-	-	32.66 /lf	1,568
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.4 ton	821.66	992.00	-	-	-	1,813.66 /ton	635
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	7.00	-	46.67 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	113.00	-	-	20.00	-	133.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	5.6 cy	-	98.01	-	-	-	98.01 /cy	549
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	5.6 cy	21.53	-	-	4.43	-	25.96 /cy	145
03-35-29.30	Concrete finishing, floors, monolithic, screed finish	0020	144.0 sf	0.32	-	-	-	-	0.32 /sf	45
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	144.0 sf	0.62	0.19	-	-	-	0.81 /sf	117
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	1.4 csf	9.68	10.13	-	-	-	19.81 /csf	29
	Elevated Slab Splitter Box		5.6 cy	450.48	316.56		4.45		771.49 /cy	4,320
03350 Flevated	Slab Scum pump									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	36.0 sf	4.97	1.27	-	-	-	6.24 /sf	225
03-11-13.35	Cip concrete forms, elevated slab, box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	24.0 If	4.64	1.62	-	-	-	6.26 /lf	150
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	36.0 If	3.62	0.21	-	-	-	3.83 /lf	138
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.1 ton	821.70	992.00	-	-	-	1,813.71 /ton	127
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	10.00	-	50.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	110.00	-	-	20.00	-	130.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	1.4 cy	-	98.01	-	-	-	98.01 /cy	137
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	1.4 cy	21.53	-	-	4.44	-	25.96 /cy	36
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	36.0 sf	0.88	-	-	0.03	-	0.91 /sf	33
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	36.0 sf	0.62	0.19	-	-	-	0.81 /sf	29
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	0.4 csf	9.67	10.10	-	-	-	19.78 /csf	7
	Elevated Slab Scum pump	_	1.4 cy	404.06	221.08		5.22	_	630.36 /cy	883

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03350 Elevated	Slab Scum pump									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring,	1150	36.0 sf	4.97	1.27	-	-	-	6.24 /sf	225
03-11-13.35	erecting, bracing, stripping and cleaning Cip concrete forms,elevated slab,box-out for shallow slab openings, over 10 sf (use perimeter),includes	5550	24.0 lf	4.64	1.62	-	-	-	6.26 /lf	150
03-11-13.35	shoring,erecting,bracing,stripping and cleaning C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing,	7000	36.0 If	3.62	0.21	-	-	-	3.83 /lf	138
03-21-10.60	stripping and cleaning Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.1 ton	821.70	992.00	-	-	-	1,813.71 /ton	127
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	10.00	-	50.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	110.00	-	-	20.00	-	130.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	1.4 cy	-	98.01	-	-	-	98.01 /cy	137
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	1.4 cy	21.53	-	-	4.44	-	25.96 /cy	36
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	36.0 sf	0.88	-	-	0.03	-	0.91 /sf	33
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	36.0 sf	0.62	0.19	-	-	-	0.81 /sf	29
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	0.4 csf	9.67	10.10	-		-	19.78 /csf	7
	Elevated Slab Scum pump 03 CONCRETE		1.4 cy	404.06	221.08		5.22		630.36 /cy	883 651,964
05 METALS										
11999 Primary	Clarifier									
-	Metal cleaning, steel surface treatment, 5.6 lb sand per S.F., near white blast, loose scale, fine powder rust (SSPC-SP10)	6255	3,200.0 sf	4.22	0.88	-	0.54	-	5.63 /sf	18,030
05-01-10.51	Metal cleaning, steel surface treatment, 5.6 lb sand per S.F., near white blast, loose scale, fine powder rust (SSPC-SP10)	6255	3,200.0 sf	4.22	0.88	-	0.54	-	5.63 /sf	18,030
09-91-06.41	Coatings & paints, B & C coating system E-2 (Epoxy, metal tanks, structures)	BC-0021	6,400.0 sqft	0.28	1.40	-	-	-	1.69 /sqft	10,797
	Primary Clarifier	_	1.0 LS	28,823.45	14,611.20		3,421.32	_	46,855.97 /LS	46,856
_	Pumps and Piping Pump mounting base plate, complete w/ anchor	BC-0001	2.0 ea	622.68	795.79	-	-	-	1,418.47 /ea	2,837
	bolts, 4 sf Sludge Pumps and Piping 05 METALS	_	1.0 LS	1,245.35	1,591.58			-	2,836.93 /LS	2,837 49,693
07 THERMAL PI										
	ructural Steel Work Manhole cover	1100	10.00	240.60	1 504 55				1 02/145 /00	4 004
01-12-33.10	Misc. Structural Steel Work 07 THERMAL PROTECTION	1100 _	1.0 ea 1.0 LS	249.60 249.60	1,584.55 1,584.55	-	-	- -	1,834.15 /ea 1,834.15 /LS	1,834 1,834 1,834

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11999 Primary		PC 0021	6 400 0 ooft	0.20	1.40				1.60 /patt	10.707
09-91-06.41	Coatings & paints, B & C coating system E-2 (Epoxy, metal tanks, structures)	BC-0021	6,400.0 sqft	0.28	1.40	-	-	-	1.69 /sqft	10,797
	Primary Clarifier		1.0 LS	1,811.25	8,985.60				10,796.85 /LS	10,797
_	Pumps and Piping Coatings allowance	MISC	1.0 LS	_	_	20,000.00	_	_	20,000.00 /LS	20,000
	Sludge Pumps and Piping 09 FINISHES	_	1.0 LS		-	20,000.00			20,000.00 /LS	20,000 30,797
11 EQUIPMENT										
11999 Primary	Clarifier									
11-00-01.00	Mechanical, clarifier mechanism, primary, 80' dia., 14' sidewall, w/ bridge, cage, launders, FRP weirs, & baffles	BC-1036	1.0 ea	30,631.78	215,000.00	-	8,710.92	-	254,342.70 /ea	254,343
11-00-01.00	Mechanical, clarifier mechanism, primary, 80' dia., 14' sidewall, w/ bridge, cage, launders, FRP weirs, & baffles	BC-1036	1.0 ea	30,631.78	215,000.00	-	8,710.92	-	254,342.70 /ea	254,343
11-00-11.05	Wastewater, submersible, 3-inch, 6.5 hp,,guide rails, base elbow, scum pump	BC-0071	1.0 ea	1,194.45	7,510.00	-	-	-	8,704.45 /ea	8,704
11-00-11.05	Wastewater, submersible, 3-inch, 6.5 hp,,guide rails, base elbow, scum pump	BC-0071	1.0 ea	1,194.45	7,510.00	-	-	-	8,704.45 /ea	8,704
	Primary Clarifier		1.0 LS	63,652.46	445,020.00		17,421.84		526,094.30 /LS	526,094
11999 Sludge F	Pumps and Piping									
_	Pump, double disc diaphragm, sludge pump	BC-0176	2.0 ea	2,789.95	31,000.00		333.44	-	34,123.39 /ea	68,247
	Sludge Pumps and Piping 11 EQUIPMENT		1.0 LS	5,579.90	62,000.00		666.88		68,246.78 /LS	68,247 594,341
22 PLUMBING										
11999 Primary		50 0404		0.455.44					= = 0.4.00 /	===.
11-00-04.00	Hydraulic structures, slide gate, stainless stl, ab & grout,36" x 36"	BC-0101	1.0 ea	2,455.44	4,774.77	-	554.07	-	7,784.28 /ea	7,784
11-00-04.00	Hydraulic structures, slide gate, stainless stl, ab & grout,36" x 36"	BC-0101	1.0 ea	2,455.44	4,774.77	-	554.07	-	7,784.28 /ea	7,784
22-05-23.70	Valves, semi-steel, lubricated plug valve, flanged, 200 psi, 12"	7070	1.0 ea	907.31	4,700.00	-	-	-	5,607.31 /ea	5,607
22-05-23.70	Valves, semi-steel, lubricated plug valve, flanged, 200 psi, 12"	7070	1.0 ea	907.31	4,700.00	-	-	-	5,607.31 /ea	5,607
22-11-13.44	Pipe, steel, black, welded, 36" diameter, schedule 40, Spec. A-53, includes two rod, roll hanger & saddle, sized for covering, 10' OC	2220	75.0 If	280.75	275.00	-	9.20	-	564.94 /lf	42,371
22-11-13.44	Pipe, steel, black, welded, 36" diameter, schedule 40, Spec. A-53, includes two rod, roll hanger & saddle, sized for covering, 10' OC	2220	75.0 lf	280.75	275.00	-	9.20	-	564.94 /lf	42,371
22-11-13.47	Elbow, 90 Deg., steel, carbon steel, black, long radius, butt weld, standard weight, 36" pipe size, includes 1 weld per joint and weld machine	3194	1.0 ea	1,554.30	3,450.00	-	57.70	-	5,062.00 /ea	5,062
22-11-13.47	Elbow, 90 Deg., steel, carbon steel, black, long radius, butt weld, standard weight, 36" pipe size, includes 1 weld per joint and weld machine	3194	1.0 ea	1,554.30	3,450.00	-	57.70	-	5,062.00 /ea	5,062
22-20-00.30	Piping, water dist, DI, cement lined, 18' L, restrained it, 12" dia	BC-0001	45.0 Inft	6.58	25.25	-		-	31.83 /Inft	1,432
22-20-00.30	Piping, water dist, DI, cement lined, 18' L, restrained jt, 12" dia	BC-0001	45.0 Inft	6.58	25.25	-		-	31.83 /Inft	1,432
22-20-00.31	Piping, water dist, DI, 90< bend or elbow, 12" dia	BC-0026	1.0 ea	212.17	228.00	-	45.86	-	486.03 /ea	486

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11999 Primary	Clarifier									
22-20-00.31	Piping, water dist, DI, 90< bend or elbow, 12" dia	BC-0026	1.0 ea	212.17	228.00	-	45.86	-	486.03 /ea	486
22-20-01.95	Pipe, steel ftngs, sch 40, tee 54" X 36" welded	BC-2866	1.0 ea	1,843.18	13,429.84	-	995.92	-	16,268.94 /ea	16,269
22-20-01.95	Pipe, steel ftngs, sch 40, tee 54" X 36" welded	BC-2866	1.0 ea	1,843.18	13,429.84	-	995.92	-	16,268.94 /ea	16,269
	Primary Clarifier	_	1.0 LS	56,648.84	96,687.72	-	4,686.54	-	158,023.10 /LS	158,023
11999 Sludge P	umps and Piping									
_	Sludge piping allowance	MISC	1.0 LS	25,130.00	35,000.00		-	_	60,130.00 /LS	60,130
	Scum piping allowance	MISC	1.0 LS	7,180.00	10,000.00		-	_	17,180.00 /LS	17,180
	Sludge Pumps and Piping	_	1.0 LS	32,310.00	45,000.00			-	77,310.00 /LS	77,310
33500 PC Yard	Piping									
	Excavating, trench or continuous footing, common	1000	699.1 bcy	2.07	_	_	1.95	_	4.02 /bcy	2,808
0. 20 .0	earth, 1-1/2 C.Y. excavator, 10' to 14' deep, excludes sheeting or dewatering	.000	20011 209	2.0.						2,000
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with sheepsfoot roller	2300	427.1 ecy	1.32	-	-	2.85	-	4.16 /ecy	1,779
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	213.8 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	5,122
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	213.8 ecy	5.57	-	-	0.41	-	5.98 /ecy	1,278
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	272.0 lcy	6.23	-	-	5.24	-	11.48 /lcy	3,121
33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	1.0 clf	3.34	5.56	-	-	-	8.90 /clf	9
	PC Yard Piping	_	125.0 LF	57.32	18.67	-	36.94	-	112.93 /LF	14,117
33500 Sludge P	lining									
	Piping, DI, glass lined, CL 50, 10" dia	BC-0326	1,325.0 Inft	19.55	100.00	_	4.23	_	123.77 /Inft	164,001
22 20 00.00	Sludge Piping		1,325.0 LF	19.55	100.00	=	4.23	=	123.77 /LF	164,001
	22 PLUMBING		1,020.0 21	10.00	100.00		4.20		120.77 /21	413,450
26 ELECTRICAL										
01999 ADDITIO	NAL COST: Service to New Primary Clarifiers									
01-99-99.99	Additional Cost associated with Primary Clarifiers - Electrical Service in Ductbank	MISC	450.0 LF	-	-	250.00	-	-	250.00 /LF	112,500
	ADDITIONAL COST: Service to New Primary Clarifiers	_	450.0 LF		_	250.00		-	250.00 /LF	112,500
26001 Primary (Clarifiers - E&I (#1,2,3)									
-	Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	491,472.24	-	-	491,472.24 /LS	491,472
	Primary Clarifiers - E&I (#1,2,3) 26 ELECTRICAL	_	1.0 LS		-	491,472.24		-	491,472.24 /LS	491,472 603,972
27 COMMUNICA	ATIONS									
	Clarifiers - E&I (#1,2,3)									
-	Instrumentation (This is based on a percentage of	FACTOR	1.0 LS	-	-	122,868.07	-	-	122,868.07 /LS	122,868
	the Total Project Costs) Primary Clarifiers - E&I (#1,2,3)	ED _	1.0 LS		-	122,868.07		-	122,868.07 /LS	122,868
	27 COMMUNICATIONS									122,868
31 EARTHWORI	K									
01999 Dewateri										
	Rent wellpoint header pipe, 6" diameter, 400 gpm	0500	1,760.0 day	-	-	-	0.40	-	0.40 /day	704
	<u>.</u>		•						-	

Project Number: 147571-040
Estimate Issue: 2
Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Brown AND Caldwell

1998 1998	Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
State Stat	01999 Dewater	ing									
1949-93 Wells, for descenting, with sized crasking, 10 to 20 250.0 with processing		Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction	1100	176.0 day	857.51	-	-	377.70	-	1,235.21 /day	217,397
Company Comp	31-23-19.30	Wells, for dewatering, with steel casing, 10' to 20'	0020	250.0 vlf	76.64	184.52	-	17.92	-	279.08 /vlf	69,770
31-22-16.10 Five granting, five grante for slab on grade, machine 1100 602 9y 1.07 1.243 7.42 13.86 key 4.146 31.241 18.26 key 1.243 1.243 18.26 key 1.243 18.26 key 1.243 18.26 key 1.243		• •	_	1.0 LS	170,081.77	46,130.81		71,658.65	-	287,871.23 /LS	287,871
31-22-16.10 Five granting, five grante for slab on grade, machine 1100 602 9y 1.07 1.243 7.42 13.86 key 4.146 31.241 18.26 key 1.243 1.243 18.26 key 1.243 18.26 key 1.243 18.26 key 1.243	03330 Slahe Di	rimary Clarifiers									
12-12-16-16 Stitt excent for mirror strits, hard measurul, regread and and todrings, elevely plan, and small building finting, 34 of y bucker, machine excent plan, and small building finting, 34 of y bucker, machine excent plan, and small building finting, 34 of y bucker, machine excent plan, and small building finting, 34 of y bucker, machine excent plan, and small building finting, 34 of y bucker, machine excent plan, and small building finting, 34 of y bucker, machine excent plan, and small building finting, 34 of y bucker, machine excent plan, and small building finting, 34 of y bucker, machine excent plan, and small building finting, 34 of y butley and and and today and and so and and today and and so and and today and and so and and today and and and today and and small building finting, 34 of y butley and and man today and and small building finting, 34 of y butley and and man today and which excent plan, and small building finting, 34 of y butley and machine split and machine excent plan, 34 of y butley and machine split plan, 34 of y butley and machine plan, 34 of y butley and machine excent plan, 34 of y butley and and man today split, 34 of y butley and machine excent plan, 34 of y butley and and man today split, 34 of y butley and and man today split, 34 of y butley and and man today split, 34 of y butley and and man today split, 34 of y butley and and man today split, 34 of y butley and and man today split, 34 of y butley and and man today split, 34 of y butley and and man today split, 34 of y butley which were the excent plan, 34 of y butley machine excent plan, 34 of y butley which plan and and sold plan for going and machine plan and sold		· ·	1100	630.2 sv	1 07	_	_	0.72	_	1 79 /sv	1 126
State Primary Clariffers 222 cy 45.41 31.81 77.22 kg 1,716		Strt excvtn for minor strtrs,bank measur,for spread and mat footngs,elevatr pits,and small buildng		-		-	-		-	-	
3330 Slabs Pump Station 100 44.4 sy 1.07 0.72 1.79 /sy 79 79 79 79 79 79 79 7	31-23-23.18	yards, 1 mile round trip, 2.2 loads/hour, 12 C.Y.	0400	22.2 lcy	2.77	-	-	3.92	-	6.69 /lcy	149
11/2-16-16 Fine gradeing, fine grade for slab on grade, machine 1100 44.4 sy 1.07 0.08 0.08 0.20 ky 79 79 79 79 79 79 79 7		Slabs Primary Clarifiers	_	22.2 cy	45.41			31.81	_	77.22 /cy	1,716
Slabs Pump Station 400.0 cy 0.12 0.08 0.20 ky 79	03330 Slabs Pt	ump Station									
103 103 105 105 105 107	31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	44.4 sy	1.07	-	-	0.72		1.79 /sy	79
1-22-16.10 Fine grading, fine grade for slab on grade, machine 1100 11.2 cy 1.52 1.52 1.03 2.55 fey 29		Slabs Pump Station		400.0 cy	0.12			0.08		0.20 /cy	79
Slabs Splitter Box 11.2 cy 1.52 1.03 2.55 key 29	03330 Slabs Si	olitter Box									
3339 Slabs Scum Pump 31-22-16.10 Fine grading, fine grade for slab on grade, machine 1100 4.0 sy 1.07 1.00 2.47 ky 7 7 7 7 7 7 7 7 7	31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	16.0 sy	1.07	-	-	0.72		1.79 /sy	29
1-22-16.10 Fine grading, fine grade for slab on grade, machine 1100 4.0 sy 1.07 1.00 2.47 kg 7 7 7 7 7 7 7 7 7		Slabs Splitter Box		11.2 cy	1.52			1.03		2.55 /cy	29
Stabs Scum Pump 2.9 cy 1.47 1.00 2.47 /cy 7	03330 Slabs So	cum Pump									
3330 Slabs Primary Clariflers 31-22-16.10 Fine grading, fine grade for slab on grade, machine and mat footneys, elevater pits, and small building frontins, 3/4 cy bucket, machine excarts, hydric backhoe and mat footneys, elevater pits, and small building frontins, 3/4 cy bucket, machine excarts, hydric backhoe and mat footneys, elevated or borrow material, loose cubic variety. I falluling, excavated or borrow material, loose cubic variety and the standard or standard footneys and small building frontins, 3/4 cy bucket, machine excarts, hydric backhoe and material posse cubic variety. I falluling, excavated or borrow material, loose cubic variety and standard possess. I falluling excavated or borrow material, loose cubic variety and standard possess. I falluling excavated or borrow material, loose cubic variety. In the condition of the standard possess of the standard possess of the standard possess. I fall the standard possess of the standard possess of the standard possess. I fall the standard possess of the standard pos	31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	4.0 sy	1.07	-	-	0.72		1.79 /sy	7
31-22-16.10 Fine grading, fine grade for slab on grade, machine and mat footngs, elevatr pits, and small building frothers, 3/4 cy bucket, machine excavur, hydric backhoe land mat footngs, elevatr pits, and small building frothers, 3/4 cy bucket, machine excavur, hydric backhoe land mat footngs, elevatr pits, and small building frothers, 3/4 cy bucket, machine excavur, hydric backhoe land mat footngs, elevatr pits, and small building frothers, 3/4 cy bucket, machine excavur, hydric backhoe land grade, machine land land land land land land land land		Slabs Scum Pump		2.9 cy	1.47			1.00		2.47 /cy	7
31-23-16.16 Strt excvtn for minor strtrs, bank measur, for spread 6035 22.2 bcy 12.43 - 7.42 - 19.86 /bcy 441 and mat fortongs, elevatr pits, and small building findins, 3/4 cy bucket, machine excavn, hydric backhoe findins, 3/4 cy bucket, machine excavn, hydric backhoe scavn, hydric backhoe findins, 3/4 cy bucket, machine excavn, hydric backhoe scavn, hydric backhoe scav	03330 Slabs Pr	rimary Clarifiers									
and mat footngs, elevatr pils, and small building findins, 3/4 cy bucket, machine excavth, hydric backhoe findins, 3/4 cy bucket, machine excavth, hydric backhoe yards, 1 mile round trip, 2.2 loads/hour, 12 C.Y. truck, highway haulers, excludes loading Slabs Primary Clariflers & 455.2 cy 2.22 1.55 3.77 ley 1,716 0330 Slabs Scum Pump 31-22-16.10 Fine grading, fine grade for slab on grade, machine Slabs Scum Pump 31-25-16.41 Fine grading, fine grade for slab on grade, machine Slabs Scum Pump 31-25-16.42 Excavation and Backfill prim Clarifler 31-23-16.42 Excavation, bulk bank measure, in sheeting or 4400 1,177.0 bcy 6.99 - 7.64 14.63 /bcy 17.20 conferdam, with all other equipment, minimum Excavation and Backfill sprim Clarifler 31-23-23.20 Cycl hin, (load, trv), unid dump&rtr) time per cycl, excv borrw, loose cubic yards, 25 min Id/w/, 16 cy 8 wheel truck, cycle 20 miles, 45 mph, exceld long eighnet Excavation and Backfill sprim Clarifler 31-315 Excavation and Backfill sprim Clarifler 4400 3,497.8 bcy 6.99 - 7.64 - 14.63 /bcy 51.173 /bcy 6.99 - 7.64 - 14.63 /bcy 51.173 /bcy 51.173 /bcy 51.173 /bcy 6.99 - 7.64 - 14.63 /bcy 51.173 /bcy 51.173 /bcy 6.99 - 7.64 - 14.63 /bcy 51.173 /bcy 51.173 /bcy 6.99 - 7.64 - 14.63 /bcy 51.173 /bcy 6.99 - 7.64 /bcy 6.90 /bcy 6.99 - 7.64 /bcy 6.90 /bcy 6.99 /bcy	31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	630.2 sy	1.07	-	-	0.72	-	1.79 /sy	1,126
Salas Primary Clariflers Salas Scum Pump Salas Scum	31-23-16.16	and mat footngs, elevatr pits, and small building	6035	22.2 bcy	12.43	-	-	7.42	-	19.86 /bcy	441
Slabs Primary Clariflers 455.2 cy 2.22 1.55 3.77 /cy 1,716	31-23-23.18	yards, 1 mile round trip, 2.2 loads/hour, 12 C.Y.	0400	22.2 lcy	2.77	-	-	3.92	-	6.69 /lcy	149
31-22-16.10 Fine grading, fine grade for slab on grade, machine Slabs Scum Pump 1100 4.0 sy 1.47 - 0.072 - 0.72 - 1.79 /sy 7 31315 Excavation and Backfill prim Clarifier 31-23-16.42 Excavating, bulk bank measure, in sheeting or 4400 1,177.0 bcy 6.99 7.64 - 14.63 /bcy 17,220 cofferdam, with all other equipment, minimum 31-23-23.13 Backfill, bulk, air tamped compaction, add 1400 495.0 ecy 5.30 1.50 - 6.80 /ecy 3,364 31-23-23.20 Cycl hln(,load, trn/,unld dump&rtr) time per cycl, excv 9498 682.0 lcy 3.08 5.47 - 8.55 /lcy 5,830 borrw, loose cubic yards, 25 min ld/w/,18 cy 8 wheel truck, cycle 20 miles, 45 mph, excld ldng eqprint Excavation and Backfill splitter Box 31-23-16.42 Excavation, bulk bank measure, in sheeting or 4400 3,497.8 bcy 6.99 7.64 - 14.63 /bcy 51,173 cofferdam, with all other equipment, minimum			_	455.2 cy	2.22			1.55	-	3.77 /cy	1,716
31-22-16.10 Fine grading, fine grade for slab on grade, machine Slabs Scum Pump 1100 4.0 sy 1.47 - 0.072 - 0.72 - 1.79 /sy 7 31315 Excavation and Backfill prim Clarifier 31-23-16.42 Excavating, bulk bank measure, in sheeting or 4400 1,177.0 bcy 6.99 7.64 - 14.63 /bcy 17,220 cofferdam, with all other equipment, minimum 31-23-23.13 Backfill, bulk, air tamped compaction, add 1400 495.0 ecy 5.30 1.50 - 6.80 /ecy 3,364 31-23-23.20 Cycl hln(,load, trn/,unld dump&rtr) time per cycl, excv 9498 682.0 lcy 3.08 5.47 - 8.55 /lcy 5,830 borrw, loose cubic yards, 25 min ld/w/,18 cy 8 wheel truck, cycle 20 miles, 45 mph, excld ldng eqprint Excavation and Backfill splitter Box 31-23-16.42 Excavation, bulk bank measure, in sheeting or 4400 3,497.8 bcy 6.99 7.64 - 14.63 /bcy 51,173 cofferdam, with all other equipment, minimum	02220 Slaba S	num Dumm									
Slabs Scum Pump 2.9 cy 1.47 1.00 2.47 /cy 7		-	1100	4.0 sv	1 07	_	_	0.72	_	1 79 /sv	7
31-23-16.42 Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum 31-23-23.13 Backfill, bulk, air tamped compaction, add 1400 495.0 ecy 5.30 1.50 - 6.80 /ecy 3,364 31-23-23.20 Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv 9498 682.0 lcy 3.08 - 5.47 - 8.55 /lcy 5,830 borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck, cycle 20 miles,45 mph, excld ldng eqpmnt Excavation and Backfill prim Clarifier 1,177.0 cy 11.01 11.44 22.44 /cy 26,414 311-23-16.42 Excavation, with all other equipment, minimum	0. 22 .00								-		
31-23-16.42 Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum 31-23-23.13 Backfill, bulk, air tamped compaction, add 1400 495.0 ecy 5.30 1.50 - 6.80 /ecy 3,364 31-23-23.20 Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv 9498 682.0 lcy 3.08 - 5.47 - 8.55 /lcy 5,830 borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck, cycle 20 miles,45 mph, excld ldng eqpmnt Excavation and Backfill prim Clarifier 1,177.0 cy 11.01 11.44 22.44 /cy 26,414 311-23-16.42 Excavation, with all other equipment, minimum	31315 Excavat	ion and Backfill prim Clarifier									
31-23-23.20 Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv 9498 682.0 lcy 3.08 5.47 - 8.55 /lcy 5,830 borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt Excavation and Backfill prim Clarifier 1,177.0 cy 11.01 11.44 22.44 /cy 26,414 31315 Excavation and Backfill splitter Box 31-23-16.42 Excavating, bulk bank measure, in sheeting or 4400 3,497.8 bcy 6.99 7.64 - 14.63 /bcy 51,173 cofferdam, with all other equipment, minimum		Excavating, bulk bank measure, in sheeting or	4400	1,177.0 bcy	6.99	-	-	7.64	-	14.63 /bcy	17,220
borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt Excavation and Backfill prim Clarifier 1,177.0 cy 11.01 11.44 22.44 /cy 26,414 31315 Excavation and Backfill splitter Box 31-23-16.42 Excavating, bulk bank measure, in sheeting or 440 3,497.8 bcy 6.99 - 7.64 - 14.63 /bcy 51,173 cofferdam, with all other equipment, minimum				-		-	-		-	6.80 /ecy	
31315 Excavation and Backfill splitter Box 31-23-16.42 Excavating, bulk bank measure, in sheeting or 4400 3,497.8 bcy 6.99 - 7.64 - 14.63 /bcy 51,173 cofferdam, with all other equipment, minimum	31-23-23.20	borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel	9498	682.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	5,830
31-23-16.42 Excavating, bulk bank measure, in sheeting or 4400 3,497.8 bcy 6.99 7.64 - 14.63 /bcy 51,173 cofferdam, with all other equipment, minimum		Excavation and Backfill prim Clarifier	_	1,177.0 cy	11.01			11.44	-	22.44 /cy	26,414
cofferdam, with all other equipment, minimum	31315 Excavat	ion and Backfill splitter Box									
31-23-23.13 Backfill, bulk, air tamped compaction, add 1400 2,088.9 ecy 5.30 1.50 - 6.80 /ecy 14,197		Excavating, bulk bank measure, in sheeting or	4400	3,497.8 bcy	6.99	-	-	7.64	-	14.63 /bcy	51,173
	31-23-23.13	Backfill, bulk, air tamped compaction, add	1400	2,088.9 ecy	5.30	-	-	1.50	-	6.80 /ecy	14,197

COM ALTERNATIVES ANALYSIS - ALT 1

Diverse	Estimate Paralisham		Otita-	Labor	Material	Sub	Equip	Other	Total Ocal/Mair	Total Net
Phase	Estimate Breakdown	ltem	Quantity	Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit	Total Cost/Unit	Amount
	tion and Backfill splitter Box									
31-23-23.20	O Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/wl,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt	9498	106.7 lcy	3.08	-	-	5.47	-	8.55 /lcy	912
	Excavation and Backfill splitter Box	-	2,195.6 cy	16.33			13.86		30.19 /cy	66,282
31315 Excavat	tion and Backfill Pump station									
31-23-16.42	2 Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	3,629.6 bcy	6.99	-	-	7.64	-	14.63 /bcy	53,102
	B Backfill, bulk, air tamped compaction, add	1400	3,333.3 ecy	13.60	-	-	3.85	-	17.44 /ecy	58,141
31-23-23.20	O Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt	9498	296.3 lcy	3.08	-	-	5.47	-	8.55 /lcy	2,533
	Excavation and Backfill Pump station		3,629.6 cy	19.73			11.61		31.35 /cy	113,776
31315 Excavat	tion and Backfill prim Clarifier									
31-23-16.42	2 Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	1,177.0 bcy	6.99	-	-	7.64	-	14.63 /bcy	17,220
31-23-23.13	B Backfill, bulk, air tamped compaction, add	1400	495.0 ecy	5.30	-	-	1.50	-	6.80 /ecy	3,364
31-23-23.20	O Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel	9498	682.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	5,830
	truck,cycle 20 miles,45 mph,excld ldng eqpmnt Excavation and Backfill prim Clarifier	-	1,177.0 cy	11.01			11.44		22.44 /cy	26,414
33500 Sludge	Piping									
31-23-16.13	B Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	0110	613.4 bcy	3.73	-	-	2.23	-	5.96 /bcy	3,654
31-23-23.13	B Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	327.2 ecy	1.23	-	-	2.60	-	3.82 /ecy	1,251
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	259.5 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	6,217
	6 Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	259.5 ecy	5.57	-	-	0.41	-	5.98 /ecy	1,551
31-23-23.18	B Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	286.3 lcy	6.23	-	-	5.24	-	11.48 /lcy	3,285
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	13,250.0 sf	-	-	0.08	-	-	0.08 /sf	1,060
	Sludge Piping		1,325.0 LF	6.54	2.13	0.80	3.37		12.84 /LF	17,017
33500 Primary	Effluent Piping									
•	B Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes	0510	1,115.3 bcy	2.80	-	-	2.07	-	4.87 /bcy	5,431
31-23-23.13	sheeting or dewatering Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	390.3 ecy	1.23	-	-	2.60	-	3.82 /ecy	1,492
31-23-23.16	6 Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	477.9 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	11,449
	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	477.9 ecy	5.57	-	-	0.41	-	5.98 /ecy	2,856
31-23-23.18	B Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	725.0 lcy	6.23	-	-	5.24	-	11.48 /lcy	8,320
24 44 42 40		2000	0.050.0 - (0.00			0.00 /-1	000

0.08

2000 8,350.0 sf

31-41-13.10 Trench box and jacks, cost per sfca trench wall,

monthly rental

668

0.08 /sf

Project Number: 147571-040
Estimate Issue: 2
Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Primary Effluent Piping 31 EARTHWORK	-	1,225.0 LF	12.93	4.25	0.55	6.94		24.67 /LF	30,216 571,544
33 UTILITIES										
33500 Sludge P i 33-05-26.10	iping Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	13.0 clf	3.34	5.56	-	-	-	8.90 /clf	116
	Sludge Piping	_	1,325.0 LF	0.03	0.06				0.09 /LF	116
33500 Primary E	Effluent Pining									
•	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	6.0 clf	3.34	5.56	-	-	-	8.90 /clf	53
	Primary Effluent Piping 33 UTILITIES	_	1,225.0 LF	0.02	0.03				0.04 /LF	53 169
40										
33500 PC Yard I										
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 54 Inch (1350mm)	A541002 0000EA	125.0 lf	-	333.54	-	-	-	333.54 /lf	41,692
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	125.0 If	32.59	-	-	6.43	-	39.02 /lf	4,877
40-05-24.10	Field Other Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)	L545502 000000	3.0 ea	3,900.77	78.79	-	312.41	-	4,291.97 /ea	12,876
40-05-24.10	Misc process/utility piping allowance		1.0 ls	7,860.00	10,010.00	-	-	-	17,870.00 /ls	17,870
40-05-24.10	Misc process/utility piping allowance		1.0 ls	7,860.00	10,010.00			-	17,870.00 /ls	17,870
	PC Yard Piping		125.0 LF	251.97	495.59		13.93		761.49 /LF	95,186
33500 Primary E	Effluent Piping									
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	100.0 If	-	168.69	-	-	-	168.69 /lf	16,869
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	2.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	14,247
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 54 Inch (1350mm)	A541002 0000EA	375.0 If	-	333.54	-	-	-	333.54 /lf	125,077
40-05-24.10	Fitting Butt Weld-CS A53/A106-Tee-Non-Specific 54 Inch (1350mm)	A542114 000000	1.0 ea	-	11,667.66	-	-	-	11,667.66 /ea	11,668
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	375.0 If	32.59	-	-	6.43	-	39.02 /lf	14,632
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)	L545102 000000	10.0 ea	1,950.39	39.40	-	156.21	-	2,145.99 /ea	21,460
	Primary Effluent Piping	_	1,225.0 LF	33.63	132.37	-	4.56		170.55 /LF	208,924
	01 Primary Clarifiers		1.0 LS	968,910.86	1,386,162.29	748,568.31	241,100.14		3,344,741.60 /LS	304,109 3,344,742

	Brown AND Caldwell
--	-----------------------

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
02 Aeration Tanks	5									
03 CONCRETE 03330 Slabs Ae	ration Basins									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	853.3 cy	-	33.69	-	-	-	33.69 /cy	28,752
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	1,696.0 If	3.61	4.42	-	-	-	8.03 /lf	13,610
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	140.0 ea	9.39	47.88	-	-	-	57.27 /ea	8,017
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	128.0 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	259,585
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	128.0 ton	39.87	-	-	7.51	-	47.38 /ton	6,065
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	128.0 ton	43.34	-	-	8.17	-	51.51 /ton	6,593
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	1,792.0 cy	-	98.01	-	-	-	98.01 /cy	175,638
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	1,792.0 cy	9.69	-	-	2.00	-	11.68 /cy	20,936
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	23,040.0 sf	0.88	-	-	0.03	-	0.91 /sf	20,987
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	23,040.0 sf	0.70	0.29	-	-	-	0.99 /sf	22,910
03-39-13.50	Curing, sprayed membrane curing compound Slabs Aeration Basins	0300 _	230.4 csf 1,792.0 cy	9.68 115.37	10.12 197.90		3.50		19.80 /csf 316.77 /cy	4,562 567,654
03330 Slabs Pig	pe Utilidor									
03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	138.9 cy	-	33.69	-	-	-	33.69 /cy	4,680
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	32.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	275
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	350.0 If	3.61	4.42	-	-	-	8.03 /lf	2,809
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	29.0 ea	9.38	47.88	-	-	-	57.26 /ea	1,661
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	8.3 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	16,899
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	47.4 lb	0.52	0.48	-	-	-	0.99 /lb	47
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	8.4 ton	39.87	-	-	7.51	-	47.38 /ton	396
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	8.4 ton	43.34	-	-	8.17	-	51.50 /ton	430
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	292.9 cy	-	98.01	-	-	-	98.01 /cy	28,709
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	292.9 cy	9.69	-	-	2.00	-	11.68 /cy	3,422
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	3,750.0 sf	0.38	-	-	-	-	0.38 /sf	1,417

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Pi	pe Utilidor									
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	3,750.0 sf	0.70	0.29	-	-	-	0.99 /sf	3,729
03-39-13.50	Curing, sprayed membrane curing compound Slabs Pipe Utilidor	0300 _	37.5 csf 3,750.0 cy	9.68 4.90	10.12 12.30	-	0.19		19.80 /csf 17.39 /cy	743 65,216
03330 Slabs A		4050	400 =						00.00 /	44.070
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	426.7 cy	-	33.69	-	-	-	33.69 /cy	14,376
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	848.0 If	3.61	4.42	-	-	-	8.03 /lf	6,805
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	70.0 ea	9.39	47.88	-	-	-	57.27 /ea	4,009
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	64.0 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	129,793
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	64.0 ton	39.87	-	-	7.51	-	47.38 /ton	3,033
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	64.0 ton	43.34	-	-	8.17	-	51.51 /ton	3,296
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	896.0 cy	-	98.01	-	-	-	98.01 /cy	87,819
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	896.0 cy	9.69	-	-	2.00	-	11.68 /cy	10,468
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	11,520.0 sf	0.88	-	-	0.03	-	0.91 /sf	10,493
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	11,520.0 sf	0.70	0.29	-	-	-	0.99 /sf	11,455
03-39-13.50	Curing, sprayed membrane curing compound	0300	115.2 csf	9.68	10.12	-			19.80 /csf	2,281
	Slabs Aeration Basins		896.0 CY	115.37	197.90		3.50		316.77 /CY	283,827
02222 Blower I	Equipment Pads									
	to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	120.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	1,032
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.1 ton	39.87	-	-	7.50	-	47.37 /ton	7
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.1 ton	43.30	-	-	8.20	-	51.50 /ton	8
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	7.4 cy	-	98.01	-	-	-	98.01 /cy	726
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	7.4 cy	27.68	-	-	5.70	-	33.38 /cy	247
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	7.4 cy	46.13	-	-	13.04	-	59.17 /cy	438
	Blower Equipment Pads	-	7.4 cy	192.78	120.06		19.05	_	331.89 /cy	2,458
03345 Concrete	e Walls Aeration Basin									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	56.0 If	10.50	2.14	-	-	-	12.63 /lf	707
03-11-13.85	Cip concret forms, walls, steel framed plywd, over 8'16'hg, based 50 us purched forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9260	47,488.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	328,975

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls Aeration Basin									
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	126.6 gal	-	20.66	-	-	-	20.66 /gal	2,617
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	56.0 If	3.24	14.92	-	-	-	18.15 /lf	1,017
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	4.0 ea	9.39	35.79	-	-	-	45.17 /ea	181
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	82.4 ton	794.28	992.00	-	-	-	1,786.28 /ton	147,268
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	82.4 ton	39.87	-	-	7.51	-	47.38 /ton	3,907
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	82.4 ton	43.34	-	-	8.17	-	51.51 /ton	4,246
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	1,385.1 cy	-	98.01	-	-	-	98.01 /cy	135,753
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	1,385.1 cy	32.29	-	-	6.65	-	38.94 /cy	53,938
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700	47,488.0 sf	1.89	0.42	-	0.22		2.53 /sf	119,974
	Concrete Walls Aeration Basin		1,385.1 cy	361.73	199.75		15.08		576.57 /cy	798,582
03345 Concrete	e Walls Baffle walls									
	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	672.0 lf	10.50	2.14	-	-	-	12.63 /lf	8,490
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	21,504.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	148,970
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	57.3 gal	-	20.66	-	-	-	20.66 /gal	1,185
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	672.0 If	3.24	14.92	-	-	-	18.15 /lf	12,199
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	48.0 ea	9.39	35.78	-	-	-	45.17 /ea	2,168
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	82.1 ton	794.28	992.00	-	-	-	1,786.28 /ton	146,712
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	82.1 ton	39.87	-	-	7.51	-	47.38 /ton	3,892
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	82.1 ton	43.34	-	-	8.17	-	51.51 /ton	4,230
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	627.2 cy	-	98.01	-	-	-	98.01 /cy	61,473
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	627.2 cy	32.29	-	-	6.65	-	38.94 /cy	24,425
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Baffle walls	0700 _	21,504.0 sf 627.2 cy	1.89 439.26	0.42 290.83		0.22 16.20		2.53 /sf 746.29 /cy	54,328 468,072
00045.0	- Walla Black Hellida									
	e Walls Pipe Utilidor Cip concret forms, walls, steel framed plywd, over	9460	14,000.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	107,800
	16'20'h basad 50 us purabad forms 4 us brasing		•							•

20.66

16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and

3050

37.3 gal

03-15-05.95 Form oil, up to 800 S.F. per gallon, coverage,

includes material only

cleaning

771

20.66 /gal

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls Pipe Utilidor									
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	19.4 ton	794.28	992.00	-	-	-	1,786.28 /ton	34,732
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	19.4 ton	39.87	-	-	7.51	-	47.38 /ton	921
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	19.4 ton	43.34	-	-	8.17	-	51.51 /ton	1,001
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	272.2 cy	-	98.01	-	-	-	98.01 /cy	26,681
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	272.2 cy	32.29	-	-	6.65	-	38.94 /cy	10,601
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Pipe Utilidor	0700 _	14,000.0 sf 272.2 cy	1.89 549.64	0.42 231.72	-	0.22 19.02		2.53 /sf 800.38 /cy	35,370 217,879
02245 Camanat	Wells Assetion Regin									
	e Walls Aeration Basin C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing,	0500	28.0 lf	10.50	2.14	-	-	-	12.63 /lf	354
03-11-13.85	stripping and cleaning Cip concret forms, walls, steel framed plywd, over 8'16'hg, based 50 us purched forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9260	19,264.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	133,452
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	63.3 gal	-	20.66	-	-	-	20.66 /gal	1,308
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	28.0 If	3.24	14.92	-	-	-	18.15 /lf	508
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	2.0 ea	9.39	35.79	-	-	-	45.17 /ea	90
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	41.2 ton	794.28	992.00	-	-	-	1,786.28 /ton	73,634
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	41.2 ton	39.87	-	-	7.51	-	47.38 /ton	1,953
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	41.2 ton	43.34	-	-	8.17	-	51.51 /ton	2,123
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	692.5 cy	-	98.01	-	-	-	98.01 /cy	67,877
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	692.5 cy	32.29	-	-	6.65	-	38.94 /cy	26,969
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	23,744.0 sf	1.89	0.42	-	0.22		2.53 /sf	59,987
	Concrete Walls Aeration Basin		692.5 cy	321.74	194.93		15.08		531.75 /cy	368,256
03345 Concrete	e Walls Baffle walls									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	504.0 If	10.50	2.14	-	-	-	12.63 /lf	6,367
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	10,752.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	74,485
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage,	3050	28.7 gal	-	20.66	-	-	-	20.66 /gal	592

3.24

9.39

14.92

35.78

includes material only

03-15-13.50 Waterstop, rubber, center bulb, split, 3/8" thick x 6"

03-15-13.50 Waterstop, rubber, field union, 3/8" x 6" wide, walls

3500

5205

504.0 If

12.0 ea

9,150

542

18.15 /lf

45.17 /ea

Brown AND Caldwell COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Walls Baffle walls Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for	0700	63.5 ton	794.28	992.00	-	-	-	1,786.28 /ton	113,364
03-21-10.60	accessories Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	63.5 ton	39.87	-	-	7.51	-	47.38 /ton	3,007
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	63.5 ton	43.34	-	-	8.17	-	51.51 /ton	3,269
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	313.6 cy	-	98.01	-	-	-	98.01 /cy	30,737
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	313.6 cy	32.29	-	-	6.65	-	38.94 /cy	12,212
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Baffle walls	0700 _	10,752.0 sf 313.6 cy	1.89 508.93	0.42 369.45	-	0.22 17.32		2.53 /sf 895.69 /cy	27,164 280,889
03350 Elevated	Slabs Pipe Utilidor									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	3,750.0 sf	4.97	1.27	-	-	-	6.24 /sf	23,388
03-11-13.35	Cip concrete forms, shipping and deaning Cip concrete forms, elevated slab, box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	32.0 If	4.64	1.62	-	-	-	6.26 /lf	200
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	350.0 If	3.62	0.21	-	-	-	3.83 /lf	1,341
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	9.1 ton	821.66	992.00	-	-	-	1,813.66 /ton	16,532
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.1 ton	39.90	-	-	7.50	-	47.40 /ton	3
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.1 ton	114.00	-	-	21.50	-	135.50 /ton	10
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	145.8 cy	-	98.01	-	-	-	98.01 /cy	14,293
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	145.8 cy	21.53	-	-	4.43	-	25.96 /cy	3,786
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	3,750.0 sf	0.88	-	-	0.03	-	0.91 /sf	3,416
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	3,750.0 sf	0.62	0.19	-	-	-	0.81 /sf	3,039
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	37.5 csf	9.68	10.12	-	-	-	19.80 /csf	743
	Elevated Slabs Pipe Utilidor 03 CONCRETE		145.8 cy	251.44	201.08		5.22		457.74 /cy	66,752 3,119,585
5 METALS	uctural Steel Work									
	Railing, pipe, aluminum, clear finish, 3 rails, 3'-6" high, posts @ 5' O.C., 1-1/2" dia, shop fabricated	0210	2,640.0 If	18.34	74.00	-	1.09	-	93.43 /lf	246,655
05-53-21.50	Floor grating, steel, expanded mesh, 7.0# per S.F., field fabricated from panels	2900	2,880.0 sf	3.59	19.65	-	0.21	-	23.45 /sf	67,543
	Misc. Structural Steel Work	-	1.0 LS	58,767.13	251,952.00		3,478.72	-	314,197.85 /LS	314,198
	uctural Steel Work Railing, pipe, aluminum, clear finish, 3 rails, 3'-6"	0210	1,320.0 lf	18.34	74.00	-	1.09	_	93.43 /lf	123,328

Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Estimate Detail Report Project Number: 147571-040 Estimate Issue: 2

23.45 /sf 33,771 099.05 /LS 157,099		Cost/Unit	Cost/Unit	Sub Cost/Unit	Material Cost/Unit	Labor Cost/Unit	Quantity	Item	ase Estimate Breakdown	Phase
	23.45 /sf	_	0.21	_	19.65	3.59	1,440.0 sf	2900	isc. Structural Steel Work 21.50 Floor grating, steel, expanded mesh, 7.0# per S.F.,	
099.05 /LS 157,099		_		_					field fabricated from panels	00 00 200
471,297	157,099.05 /LS		1,739.36		125,976.00	29,383.69	1.0 LS		Misc. Structural Steel Work 05 METALS	
									MENT	11 EQUIPMENT
									eration Equipment	11999 Aeration
48.11 /ea 501,883	48.11 /ea	-	-	-	35.00	13.11	10,432.0 ea	s BC-0031	01.00 Aeration diffusers, fine bubble, complete with headers	11-00-01.00
48.11 /ea 250,933	48.11 /ea	-	-	-	35.00	13.11	5,216.0 ea	s BC-0031	01.00 Aeration diffusers, fine bubble, complete with headers	11-00-01.00
654.22 /ea 822,617	205,654.22 /ea	-	-	-	200,000.00	5,654.22	4.0 ea	BC-0336	01.00 Aeration Blower, high speed turbo, (5,000 scfm at 10 psig)	11-00-01.00
641.69 /ea 783,401	32,641.69 /ea	-	380.00	-	30,000.00	2,261.69	24.0 ea	BC-0621	01.00 Mixer, submerged propellar type, 10 hp, Flygt, with guiderail	11-00-01.00
	32,641.69 /ea	-	380.00	-	30,000.00	2,261.69	12.0 ea	BC-0621	01.00 Mixer, submerged propellar type, 10 hp, Flygt, with guiderail	11-00-01.00
886.26 /ea 107,545	26,886.26 /ea	-	190.00	-	25,000.00	1,696.27	4.0 ea	BC-0316	09.00 Pump, submerged axial flow. 18" Dia., wall pump, 3-hp, 2.5 mgd, IMLR pump	11-00-09.00
	26,886.26 /ea	-	190.00	-	25,000.00	1,696.27	2.0 ea	BC-0316	09.00 Pump, submerged axial flow. 18" Dia., wall pump, 3-hp, 2.5 mgd, IMLR pump	11-00-09.00
850.54 /LS 2,911,851 2,911,851	2,911,850.54 /LS		14,820.00		2,577,680.00	319,350.54	1.0 LS		Aeration Equipment 11 EQUIPMENT	
									BING	22 PLUMBING
									eration Piping	22999 Aeration
950.00 /LS 371,800	92,950.00 /LS	-	-		75,000.00	17,950.00	4.0 LS	MISC	99.99 Aeration piping allowance	22-99-99.99
950.00 /LS 185,900	92,950.00 /LS		-		75,000.00	17,950.00	2.0 LS	MISC	99.99 Aeration piping allowance	22-99-99.99
,700.00 /LS 557,700 557,700	557,700.00 /LS				450,000.00	107,700.00	1.0 LS		Aeration Piping 22 PLUMBING	
										26 ELECTRICAL
050.00 # 5	050.00 // 5			050.00			750 0 1 5	14100		
	250.00 /LF	-	-		-	-		MISC -	Electrical Service in Ductbank	01-99-99.99
250.00 /LF 187,500	250.00 /LF			250.00			/50.0 LF			
975.06 /LS 1,719,975	1,719,975.06 /LS	-	-	1,719,975.06	-	-	1.0 LS	FACTOR FD	00.02 Electrical (This is based on a percentage of the	
975.06 /LS 1,719,975 1,907,475	1,719,975.06 /LS	_		1,719,975.06	_		1.0 LS	-	Aeration Tanks - E&I (#4, #5, #6) 26 ELECTRICAL	
										27 COMMUNICA
993.77 /LS 429,994	429,993.77 /LS	-	-	429,993.77	-	-	1.0 LS	FACTOR FD	00.01 Instrumentation (This is based on a percentage of	
993.77 /LS 429,994 429,994	429,993.77 /LS	_		429,993.77	_		1.0 LS	_	Aeration Tanks - E&I (#4, #5, #6) 27 COMMUNICATIONS	
										31 EARTHWOR
0.40 /day 1,040 235.21 /day 321,154	0.40 /day 1,235.21 /day	-	0.40 377.70	-	-	- 857.51	2,600.0 day 260.0 day	0500 1100	133.70 Rent wellpoint header pipe, 6" diameter, 400 gpm 19.20 Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction hose and 100 LF of discharge hose	01-54-33.70
	92; 557, 1,719,8 1,719,4 429,6			1,719,975.06 429,993.77	75,000.00		2.0 LS 1.0 LS 750.0 LF 750.0 LF 1.0 LS 1.0 LS 1.0 LS 2,600.0 day	MISC FACTOR ED FACTOR ED 0500	Paration Piping 99.99 Aeration piping allowance 99.99 Aeration piping allowance Aeration Piping 22 PLUMBING PRICAL DDITIONAL COST: Service to New Aeration Basis 99.99 Additional Cost associated with Aeration Basin - Electrical Service in Ductbank ADDITIONAL COST: Service to New Aeration Basis Paration Tanks - E&I (#4, #5, #6) 100.02 Electrical (This is based on a percentage of the Total Project Costs) Aeration Tanks - E&I (#4, #5, #6) 26 ELECTRICAL UNICATIONS Paration Tanks - E&I (#4, #5, #6) 100.01 Instrumentation (This is based on a percentage of the Total Project Costs) Aeration Tanks - E&I (#4, #5, #6) 27 COMMUNICATIONS ARWORK Pawatering 33.70 Rent wellpoint header pipe, 6" diameter, 400 gpm 19.20 Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction	22999 Aeration 22-99-99.99 22-99-99.99 26 ELECTRICAL 01999 ADDITIO 01-99-99.99 26001 Aeration 26-00-00.02 27 COMMUNICA 26001 Aeration 27-20-00.01 31 EARTHWOR 01999 Dewateri 01-54-33.70

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
01999 Dewater	ing Wells, for dewatering, with steel casing, 10' to 20'	0020	175.0 vlf	76.64	184.52		17.92		279.08 /vlf	48,839
31-23-19.30	deep, 2' diameter, minimum	0020	175.0 VII	70.04	104.32	_	17.92	_	279.00 //11	40,039
	Dewatering		1.0 LS	236,365.01	32,291.57		102,377.06		371,033.64 /LS	371,034
03330 Slabs Ae	eration Basins									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	2,560.0 sy	1.07	-	-	0.72	-	1.79 /sy	4,574
	Slabs Aeration Basins		1,792.0 cy	1.52			1.03		2.55 /cy	4,574
03330 Slabs Pi	pe Utilidor									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	416.7 sy	1.07	-	-	0.72		1.79 /sy	745
	Slabs Pipe Utilidor		3,750.0 cy	0.12			0.08		0.20 /cy	745
03330 Slabs Ae	eration Basins									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	1,280.0 sy	1.07	-		0.72		1.79 /sy	2,287
	Slabs Aeration Basins		896.0 CY	1.52			1.03		2.55 /CY	2,287
31315 Excavati	ion and Backfill Aeration Basin									
31-23-16.42	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	18,848.2 bcy	6.99	-	-	7.64	-	14.63 /bcy	275,750
	Backfill, bulk, air tamped compaction, add	1400	4,611.1 ecy	5.30	-	-	1.50	-	6.80 /ecy	31,339
31-23-23.20	borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel	9498	14,237.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	121,712
	truck,cycle 20 miles,45 mph,excld ldng eqpmnt Excavation and Backfill Aeration Basin	-	18,848.2 cy	10.62		-	12.14	-	22.75 /cy	428,801
	Excavation and Dackin Aeration Dasin		10,040.2 Cy	10.62			12.14		22.75 /Cy	420,001
	ion and Backfill Aeration Basin	4400					= 0.4		44.00 #	0.45.04.4
31-23-16.42	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	23,644.0 bcy	6.99	-	-	7.64	-	14.63 /bcy	345,914
31-23-23.13	Backfill, bulk, air tamped compaction, add	1400	2,022.0 ecy	5.30	-	-	1.50	-	6.80 /ecy	13,742
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng egpmnt	9498	21,622.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	184,846
	Excavation and Backfill Aeration Basin	-	23,644.0 cy	10.26			12.77	-	23.03 /cy	544,502
	31 EARTHWORK									1,351,943
	02 Aeration Tanks		1.0 LS	2,873,941.91	4,819,214.20	2,337,468.83	719,219.14		10,749,844.08 /LS	10,749,844

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03 Seconday Clar	ifiers									
03 CONCRETE	and day Olarina									
	condary Clarifier Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	205.1 cy	-	33.69	-	-	-	33.69 /cy	6,912
03-11-13.65	C.I.P. concrete forms, slab on grade, slab blockouts, wood, to 24" high, 1 use, includes erecting, bracing, stripping and cleaning	4050	32.0 If	15.09	1.02	-	-	-	16.10 /lf	515
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	264.0 If	3.61	4.42	-	-	-	8.03 /lf	2,118
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	22.0 ea	9.39	47.88	-	-	-	57.27 /ea	1,260
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	30.8 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	62,406
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	30.8 ton	39.87	-	-	7.51	-	47.38 /ton	1,458
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	30.8 ton	43.34	-	-	8.17	-	51.51 /ton	1,585
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	430.8 cy	-	98.01	-	-	-	98.01 /cy	42,225
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	430.8 cy	9.69	-	-	2.00	-	11.68 /cy	5,033
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	5,539.0 sf	0.88	-	-	0.03	-	0.91 /sf	5,045
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	5,539.0 sf	0.70	0.29	-	-	-	0.99 /sf	5,508
03-39-13.50	Curing, sprayed membrane curing compound Slabs Secondary Clarifier	0300 _	55.4 csf 615.4 SY	9.68 80.52	10.12 136.65		2.45		19.80 /csf 219.62 /SY	1,097 135,162
03330 Slabs Sp	litter Box									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	14.8 cy	-	33.69	-	-	-	33.69 /cy	499
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	80.0 If	3.61	4.42	-	-	-	8.03 /lf	642
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	7.0 ea	9.38	47.88	-	-	-	57.26 /ea	401
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	2.2 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	4,506
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	2.2 ton	39.87	-	-	7.51	-	47.38 /ton	105
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	2.2 ton	43.34	-	-	8.17	-	51.51 /ton	114
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	31.1 cy	-	98.01	-	-	-	98.01 /cy	3,049
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	31.1 cy	9.69	-	-	2.00	-	11.68 /cy	363
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	400.0 sf	0.38	-	-	-	-	0.38 /sf	151
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	400.0 sf	0.70	0.29	-	-	-	0.99 /sf	398
03-39-13.50	Curing, sprayed membrane curing compound	0300	4.0 csf	9.68	10.12	-	-	-	19.80 /csf	79

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Slabs Splitter Box	_	31.1 cy	116.18	212.18		3.12	-	331.47 /cy	10,309
03330 Slabs So	cum Pump									
03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	1.3 cy	-	33.69	-	-	-	33.69 /cy	45
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	36.0 If	3.61	4.42	-	-	-	8.02 /lf	289
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	3.0 ea	9.38	47.88	-	-	-	57.26 /ea	172
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.2 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	406
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.2 ton	39.85	-	-	7.50	-	47.35 /ton	9
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.2 ton	43.35	-	-	8.15	-	51.50 /ton	10
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.8 cy	-	98.01	-	-	-	98.01 /cy	274
03-31-05.70		2950	2.8 cy	9.69	-	-	2.00	-	11.69 /cy	33
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and hand trowel finish	0200	36.0 sf	1.20	-	-	-	-	1.20 /sf	43
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	36.0 sf	0.70	0.29	-	-	-	0.99 /sf	36
03-39-13.50	Curing, sprayed membrane curing compound Slabs Scum Pump	0300 _	0.4 csf 4.0 sy	9.67 120.20	10.10 208.63		2.18		19.78 /csf 331.01 /sy	<u>7</u>
03330 Slahe Se	econdary Clarifier									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	205.1 cy	-	33.69	-	-	-	33.69 /cy	6,912
03-11-13.65	C.I.P. concrete forms, slab on grade, slab blockouts, wood, to 24" high, 1 use, includes erecting, bracing, stripping and cleaning	4050	32.0 lf	15.09	1.02	-	-	-	16.10 /lf	515
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	264.0 If	3.61	4.42	-	-	-	8.03 /lf	2,118
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	22.0 ea	9.39	47.88	-	-	-	57.27 /ea	1,260
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	30.8 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	62,406
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	30.8 ton	39.87	-	-	7.51	-	47.38 /ton	1,458
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	30.8 ton	43.34	-	-	8.17	-	51.51 /ton	1,585
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	430.8 cy	-	98.01	-	-	-	98.01 /cy	42,225
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	430.8 cy	9.69	-	-	2.00	-	11.68 /cy	5,033
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	5,539.0 sf	0.88	-	-	0.03	-	0.91 /sf	5,045
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	5,539.0 sf	0.70	0.29	-	-	-	0.99 /sf	5,508
03-39-13.50	Curing, sprayed membrane curing compound	0300	55.4 csf	9.68	10.12	-	-	-	19.80 /csf	1,097

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Slabs Secondary Clarifier	_	430.8 CY	115.03	195.21		3.50	_	313.74 /CY	135,162
03330 Slabs So	cum Pump									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	1.3 cy	-	33.69	-	-	-	33.69 /cy	45
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	36.0 If	3.61	4.42	-	-	-	8.02 /lf	289
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	3.0 ea	9.38	47.88	-	-	-	57.26 /ea	172
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.2 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	406
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.2 ton	39.85	-	-	7.50	-	47.35 /ton	9
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.2 ton	43.35	-	-	8.15	-	51.50 /ton	10
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.8 cy	-	98.01	-	-	-	98.01 /cy	274
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	2.8 cy	9.69	-	-	2.00	-	11.69 /cy	33
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and hand trowel finish	0200	36.0 sf	1.20	-	-	-	-	1.20 /sf	43
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	36.0 sf	0.70	0.29	-	-	-	0.99 /sf	36
03-39-13.50	Curing, sprayed membrane curing compound Slabs Scum Pump	0300 _	0.4 csf 2.8 cy	9.67 171.71	10.10 298.04		3.11		19.78 /csf 472.87 /cy	<u>7</u>
03345 Concrete	e Walls Secondary Clarifiers									
	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and	9460	11,304.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	87,041
03-15-05.95	cleaning Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	30.1 gal	-	20.66	-	-	-	20.66 /gal	623
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	15.7 ton	794.28	992.00	-	-	-	1,786.28 /ton	28,045
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	15.7 ton	39.87	-	-	7.51	-	47.38 /ton	744
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	15.7 ton	43.34	-	-	8.17	-	51.50 /ton	809
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	219.8 cy	-	98.01	-	-	-	98.01 /cy	21,543
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	219.8 cy	32.29	-	-	6.65	-	38.94 /cy	8,560
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Secondary Clarifiers	0700 _	11,304.0 sf 219.8 cy	1.89 549.63	0.42 231.72		0.22 19.02		2.53 /sf 800.37 /cy	28,558 175,922
03345 Concrete	e Walls scum pump									
	Cip concret forms, walls, steel framed plywd, over 16'20'h, based 50 us purchsd forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9460	864.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	6,653
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	2.3 gal	-	20.66	-	-	-	20.66 /gal	48

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls scum pump									
	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	1.2 ton	794.28	992.00	-	-	-	1,786.28 /ton	2,144
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	1.2 ton	39.87	-	-	7.52	-	47.38 /ton	57
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	1.2 ton	43.34	-	-	8.17	-	51.51 /ton	62
	Concrete, ready mix, regular weight, walls/cols/beams, 5000 psi	0407	16.8 cy	-	103.51	-	-	-	103.51 /cy	1,739
	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	16.8 cy	32.29	-	-	6.65	-	38.94 /cy	654
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls scum pump	0700 _	864.0 sf 16.8 cy	1.89 549.63	0.42 237.22	-	0.22 19.02		2.53 /sf 805.87 /cy	2,183 13,539
0224E Conorot	e Walls Secondary Clarifiers									
	Cip concret forms, walls, steel framed plywd, over 16'20'h, based 50 us purchsd forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9460	11,304.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	87,041
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	30.1 gal	-	20.66	-	-	-	20.66 /gal	623
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	15.7 ton	794.28	992.00	-	-	-	1,786.28 /ton	28,045
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	15.7 ton	39.87	-	-	7.51	-	47.38 /ton	744
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	15.7 ton	43.34	-	-	8.17	-	51.50 /ton	809
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	219.8 cy	-	98.01	-	-	-	98.01 /cy	21,543
	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	219.8 cy	32.29	-	-	6.65	-	38.94 /cy	8,560
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	11,304.0 sf	1.89	0.42	-	0.22		2.53 /sf	28,558
	Concrete Walls Secondary Clarifiers		219.8 cy	549.63	231.72		19.02		800.37 /cy	175,922
0224E Conorot	e Walls scum pump									
	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	864.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	6,653
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	2.3 gal	-	20.66	-	-	-	20.66 /gal	48
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	1.2 ton	794.28	992.00	-	-	-	1,786.28 /ton	2,144
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	1.2 ton	39.87	-	-	7.52	-	47.38 /ton	57
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	1.2 ton	43.34	-	-	8.17	-	51.51 /ton	62
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 5000 psi	0407	16.8 cy	-	103.51	-	-	-	103.51 /cy	1,739
	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	16.8 cy	32.29	-	-	6.65	-	38.94 /cy	654
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700	864.0 sf	1.89	0.42	-	0.22	-	2.53 /sf	2,183

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Concrete Walls scum pump	_	16.8 cy	549.63	237.22		19.02	_	805.87 /cy	13,539
03345 Concrete	e Walls Splitter Box									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	20.0 If	10.50	2.14	-	-	-	12.63 /lf	253
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	3,200.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	24,640
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	8.5 gal	-	20.66	-	-	-	20.66 /gal	176
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	7.8 ton	794.28	992.00	-	-	-	1,786.28 /ton	13,894
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	7.8 ton	39.87	-	-	7.51	-	47.38 /ton	369
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	7.8 ton	43.34	-	-	8.17	-	51.50 /ton	401
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	93.3 cy	-	98.01	-	-	-	98.01 /cy	9,148
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	93.3 cy	32.29	-	-	6.65	-	38.94 /cy	3,635
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Splitter Box	0700 _	3,200.0 sf 93.3 cy	1.89 410.92	0.42 223.12	-	0.22 15.46		2.53 /sf 649.50 /cy	8,084 60,599
03350 Elovated	Slab Splitter Box									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	400.0 sf	4.97	1.27	-	-	-	6.24 /sf	2,495
03-11-13.35	Cip concrete forms, elevated slab,box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	24.0 lf	4.64	1.62	-	-	-	6.26 /lf	150
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	80.0 If	3.62	0.21	-	-	-	3.83 /lf	307
03-11-13.35	C.I.P. concrete forms, elevated slab, perimeter deck and rail, straight, includes shoring, erecting, bracing, stripping and cleaning	8000	80.0 If	20.11	12.55	-	-	-	32.66 /lf	2,613
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.0 ton	822.00	992.00	-	-	-	1,814.00 /ton	29
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	8.00	-	48.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	114.00	-	-	21.00	-	135.00 /ton	1
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	15.6 cy	-	98.01	-	-	-	98.01 /cy	1,525
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	15.6 cy	21.53	-	-	4.43	-	25.96 /cy	404
	Concrete finishing, floors, monolithic, screed finish	0020	400.0 sf	0.32	-	-	-	-	0.32 /sf	126
	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	400.0 sf	0.62	0.19	-	-	-	0.81 /sf	324
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	4.0 csf	9.68	10.12	-	-	-	19.80 /csf	79

Estimate Detail Report

Project Number: 147571-040 Estimate Issue: 2 Due Date: 6/24/2015 Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Elevated Slab Splitter Box	_	15.6 cy	305.79	207.31		4.45	•	517.55 /cy	8,053
03350 Elevated	I Slabs Scum Pump									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	72.0 sf	4.97	1.27	-	-	-	6.24 /sf	449
03-11-13.35	Cip concrete forms, elevated slab, box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	64.0 If	4.64	1.62	-	-	-	6.26 /lf	401
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	700.0 If	3.62	0.21	-	-	-	3.83 /lf	2,683
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.2 ton	821.67	992.00	-	-	-	1,813.67 /ton	381
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	10.00	-	50.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	110.00	-	-	20.00	-	130.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	2.8 cy	-	98.01	-	-	-	98.01 /cy	274
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	2.8 cy	21.53	-	-	4.43	-	25.96 /cy	73
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	72.0 sf	0.88	-	-	0.03	-	0.91 /sf	66
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	72.0 sf	0.62	0.19	-	-	-	0.81 /sf	58
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	0.7 csf	9.68	10.13	-	-	-	19.80 /csf	14
	Elevated Slabs Scum Pump	_	2.8 cy	1,263.06	302.70		5.21		1,570.98 /cy	4,399
03350 Elevated	I Slabs Scum Pump									
03-11-13.35	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	72.0 sf	4.97	1.27	-	-	-	6.24 /sf	449
03-11-13.35	Cip concrete forms, elevated slab, box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	64.0 If	4.64	1.62	-	-	-	6.26 /lf	401
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	700.0 If	3.62	0.21	-	-	-	3.83 /lf	2,683
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.2 ton	821.67	992.00	-	-	-	1,813.67 /ton	381
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	10.00	-	50.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	110.00	-	-	20.00	-	130.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	2.8 cy	-	98.01	-	-	-	98.01 /cy	274
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	2.8 cy	21.53	-	-	4.43	-	25.96 /cy	73
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	72.0 sf	0.88	-	-	0.03	-	0.91 /sf	66
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	72.0 sf	0.62	0.19	-	-	-	0.81 /sf	58

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03350 Elevated	d Slabs Scum Pump									
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	0.7 csf	9.68	10.13	-	-	-	19.80 /csf	14
	Elevated Slabs Scum Pump 03 CONCRETE		72.0 cy	49.12	11.77		0.20	-	61.09 /cy	4,399 739,652
05 METALS	Obstitus									
11999 Seconda		6255	6,400.0 sf	4.22	0.88		0.54		5.63 /sf	36,059
05-01-10.51	Metal cleaning, steel surface treatment, 5.6 lb sand per S.F., near white blast, loose scale, fine powder rust (SSPC-SP10)	6255	6,400.0 Si	4.22	0.88	-	0.54	-	5.63 /SI	36,059
05-01-10.51	Metal cleaning, steel surface treatment, 5.6 lb sand per S.F., near white blast, loose scale, fine powder rust (SSPC-SP10)	6255	6,400.0 sf	4.22	0.88	-	0.54	-	5.63 /sf	36,059
09-91-06.41	Coatings & paints, B & C coating system E-2 (Epoxy, metal tanks, structures)	BC-0021	12,800.0 sqft	0.28	1.40	-	-	-	1.69 /sqft	21,594
	Secondary Clarifier 05 METALS	-	1.0 LS	57,646.89	29,222.40		6,842.62	-	93,711.91 /LS	93,712 93,712
09 FINISHES										
11999 Seconda	ary Clarifier									
09-91-06.41	Coatings & paints, B & C coating system E-2 (Epoxy, metal tanks, structures)	BC-0021	12,800.0 sqft	0.28	1.40	-	-	-	1.69 /sqft	21,594
	Secondary Clarifier 09 FINISHES		1.0 LS	3,622.49	17,971.20				21,593.69 /LS	21,594 21,594
11 EQUIPMENT	г									
11999 Seconda	•									
11-00-01.00	Mechanical, clarifier mechanism, secondary, 100' dia., 18' sidewall, w/ bridge, cage, FRP weirs, & baffles	BC-1036	1.0 ea	34,035.31	270,000.00	-	9,678.80	-	313,714.11 /ea	313,714
11-00-01.00	Mechanical, clarifier mechanism, secondary, 100' dia., 18' sidewall, w/ bridge, cage, FRP weirs, & baffles	BC-1036	1.0 ea	34,035.31	270,000.00	-	9,678.80	-	313,714.11 /ea	313,714
11-00-11.05	Wastewater, submersible, 3-inch, 6.5 hp,,guide rails, base elbow, scum pump	BC-0071	1.0 ea	1,194.45	7,510.00	-	-	-	8,704.45 /ea	8,704
11-00-11.05	Wastewater, submersible, 3-inch, 6.5 hp,,guide rails, base elbow, scum pump	BC-0071	1.0 ea	1,194.45	7,510.00	-	-	-	8,704.45 /ea	8,704
	Secondary Clarifier 11 EQUIPMENT		1.0 LS	70,459.52	555,020.00		19,357.60		644,837.12 /LS	644,837 644,837
22 PLUMBING										
11999 Seconda	=									
	Hydraulic structures, slide gate, stainless stl, ab & grout,36" x 36"	BC-0101	1.0 ea	2,455.44	4,774.77	-	554.07	-	7,784.28 /ea	7,784
	Hydraulic structures, slide gate, stainless stl, ab & grout,36" x 36"	BC-0101	1.0 ea	2,455.44	4,774.77	-	554.07	-	7,784.28 /ea	7,784
	Valves, semi-steel, lubricated plug valve, flanged, 200 psi, 12"	7070	1.0 ea	907.31	4,700.00	-	-	-	5,607.31 /ea	5,607
	Valves, semi-steel, lubricated plug valve, flanged, 200 psi, 12"	7070	1.0 ea	907.31	4,700.00	-	-	-	5,607.31 /ea	5,607
22-11-13.44	Pipe, steel, black, welded, 36" diameter, schedule 40, Spec. A-53, includes two rod, roll hanger & saddle, sized for covering, 10' OC	2220	75.0 If	280.75	275.00	-	9.20	-	564.94 /lf	42,371

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11999 Seconda	ry Clarifier									
22-11-13.44	Pipe, steel, black, welded, 36" diameter, schedule 40, Spec. A-53, includes two rod, roll hanger & saddle, sized for covering, 10' OC	2220	75.0 If	280.75	275.00	-	9.20	-	564.94 /lf	42,371
22-11-13.47	Elbow, 90 Deg., steel, carbon steel, black, long radius, butt weld, standard weight, 36" pipe size, includes 1 weld per joint and weld machine	3194	1.0 ea	1,554.30	3,450.00	-	57.70	-	5,062.00 /ea	5,062
22-11-13.47	Elbow, 90 Deg., steel, carbon steel, black, long radius, butt weld, standard weight, 36" pipe size, includes 1 weld per joint and weld machine	3194	1.0 ea	1,554.30	3,450.00	-	57.70	-	5,062.00 /ea	5,062
22-20-00.30	Piping, water dist, DI, cement lined, 18' L, restrained jt, 12" dia	BC-0001	55.0 Inft	6.58	25.25	-		-	31.83 /Inft	1,751
22-20-00.30	Piping, water dist, DI, cement lined, 18' L, restrained jt, 12" dia $$	BC-0001	55.0 Inft	6.58	25.25	-		-	31.83 /Inft	1,751
22-20-00.31	Piping, water dist, DI, 90< bend or elbow, 12" dia	BC-0026	1.0 ea	212.17	228.00	-	45.86	-	486.03 /ea	486
22-20-00.31	Piping, water dist, DI, 90< bend or elbow, 12" dia	BC-0026	1.0 ea	212.17	228.00	-	45.86	-	486.03 /ea	486
22-20-01.95	Pipe, steel ftngs, sch 40, tee 54" X 36" welded	BC-2866	1.0 ea	1,843.18	13,429.84	-	995.92	-	16,268.94 /ea	16,269
	Pipe, steel ftngs, sch 40, tee 54" X 36" welded	BC-2866	1.0 ea	1,843.18	13,429.84	-	995.92	_	16,268.94 /ea	16,269
	Secondary Clarifier 22 PLUMBING		1.0 LS	56,780.46	97,192.72	-	4,686.54	_	158,659.72 /LS	158,660 158,660
26 ELECTRICAL	_									
26001 Secondar	ry Clarifiers - E&I (#7, #8, #9)									
	Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	475,884.95	-	-	475,884.95 /LS	475,885
	Secondary Clarifiers - E&I (#7, #8, #9) 26 ELECTRICAL	_	1.0 LS		-	475,884.95		_	475,884.95 /LS	475,885 475,885
07 COMMUNICA	TIONS									
27 COMMUNICA										
	ry Clarifiers - E&I (#7, #8, #9) Instrumentation (This is based on a percentage of	FACTOR	1.0 LS	-	-	133,842.65	-	-	133,842.65 /LS	133,843
	the Total Project Costs) Secondary Clarifiers - E&I (#7, #8, #9)	ED _	1.0 LS		-	133,842.65		-	133,842.65 /LS	133,843
	27 COMMUNICATIONS									133,843
31 EARTHWORI 01999 Dewateri										
	Rent wellpoint header pipe, 6" diameter, 400 gpm	0500	1,760.0 day	_	_	_	0.40	_	0.40 /day	704
	Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction	1100	176.0 day	857.51	-	-	377.70	-	1,235.21 /day	217,397
31-23-19.30	hose and 100 LF of discharge hose Wells, for dewatering, with steel casing, 10' to 20' deep, 2' diameter, minimum	0020	250.0 vlf	9.63	23.18	-	2.25	-	35.06 /vlf	8,765
	Dewatering	_	1.0 LS	153,329.11	5,795.00	=	67,741.30	_	226,865.41 /LS	226,865
03330 Slabs Se	condary Clarifier									
	Fine grading, fine grade for slab on grade, machine	1100	615.4 sy	1.07	_	_	0.72	_	1.79 /sy	1,100
	Slabs Secondary Clarifier		615.4 SY	1.07		-	0.72	_	1.79 /SY	1,100
03330 Slabs Sp	litter Box									
•	Fine grading, fine grade for slab on grade, machine	1100	44.4 sv	1.07	_	_	0.72	_	1.79 /sy	79
31 22 10.10	Slabs Splitter Box	1100 _	31.1 cy	1.52		-	1.03	_	2.55 /cy	79
03330 Slabs Sc	um Pumn									
	Fine grading, fine grade for slab on grade, machine	1100	4.0 sy	1.07	-	-	0.72	-	1.79 /sy	7

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Slabs Scum Pump	_	4.0 sy	1.07			0.72		1.79 /sy	7
03330 Slabs Se	econdary Clarifier									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	615.4 sy	1.07	-		0.72	-	1.79 /sy	1,100
	Slabs Secondary Clarifier		430.8 CY	1.52			1.03		2.55 /CY	1,100
03330 Slabs Sc	cum Pump									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	4.0 sy	1.07	-	-	0.72	-	1.79 /sy	7
	Slabs Scum Pump		2.8 cy	1.52			1.03		2.55 /cy	7
31315 Excavati	ion and Backfill secondary Clarifier									
31-23-16.42	Excavating, bulk bank measure, in sheeting or	4400	8,744.0 bcy	6.99	-		7.64	-	14.63 /bcy	127,926
	cofferdam, with all other equipment, minimum									
	Backfill, bulk, air tamped compaction, add	1400	4,900.0 ecy	5.30	-	•	- 1.50	-	6.80 /ecy	33,302
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel	9498	4,289.0 lcy	3.08	-	•	5.47	-	8.55 /lcy	36,667
	truck,cycle 20 miles,45 mph,excld ldng egpmnt									
	Excavation and Backfill secondary Clarifier	_	19,218.4 cy	5.22			5.08		10.30 /cy	197,894
31315 Excavati	ion and Backfill splitter Box									
	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	3,888.9 bcy	6.99	-		7.64	-	14.63 /bcy	56,895
31-23-23.13	Backfill, bulk, air tamped compaction, add	1400	2,444.4 ecy	5.30	-		- 1.50	-	6.80 /ecy	16,613
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel	9498	296.3 lcy	3.08	-		5.47	-	8.55 /lcy	2,533
	truck,cycle 20 miles,45 mph,excld ldng eqpmnt Excavation and Backfill splitter Box	-	3,889.0 cy	10.56			8.99		19.55 /cy	76,041
31315 Excavati	ion and Backfill secondary Clarifier									
	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	8,744.0 bcy	6.99	-		7.64	-	14.63 /bcy	127,926
	Backfill, bulk, air tamped compaction, add	1400	4,900.0 ecy	5.30	-		- 1.50	-	6.80 /ecy	33,302
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel	9498	4,289.0 lcy	3.08	-		- 5.47	-	8.55 /lcy	36,667
	truck,cycle 20 miles,45 mph,excld ldng eqpmnt Excavation and Backfill secondary Clarifier	_	19,218.4 cy	5.22			5.08		10.30 /cy	197,894
22E00 Cocondo	new PAS Bining									
33500 Seconda 31-23-16.13	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes	0510	1,333.3 bcy	2.80	-		2.07	-	4.87 /bcy	6,493
	sheeting or dewatering									
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	627.8 ecy	1.23	-		- 2.60	-	3.82 /ecy	2,400
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	538.3 lcy	10.59	10.89		2.48	-	23.96 /lcy	12,895
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	538.3 ecy	5.57	-		- 0.41	-	5.98 /ecy	3,216
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	705.6 lcy	6.23	-		5.24	-	11.48 /lcy	8,097
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	12,000.0 sf	-	-	0.08	-	-	0.08 /sf	960
	monuny total									

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Seconda	ry Clarifier ML Piping									
31-23-16.13	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes sheeting or dewatering	0510	1,168.1 bcy	2.80	-	-	2.07	-	4.87 /bcy	5,688
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	426.4 ecy	1.23	-	-	2.60	-	3.82 /ecy	1,630
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	497.9 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	11,927
	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	497.9 ecy	5.57	-	-	0.41	-	5.98 /ecy	2,975
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	741.7 lcy	6.23	-	-	5.24	-	11.48 /lcy	8,511
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	9,050.0 sf		-	0.08	-		0.08 /sf	724
	Secondary Clarifier ML Piping		525.0 LF	31.35	10.33	1.38	16.87		59.91 /LF	31,455
33500 Seconda	ry Clarifier SE Piping									
	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes sheeting or dewatering	0510	1,480.6 bcy	2.80	-	-	2.07	-	4.87 /bcy	7,210
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	530.6 ecy	1.23	-	-	2.60	-	3.82 /ecy	2,028
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	632.6 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	15,154
	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	632.6 ecy	5.57	-	-	0.41	-	5.98 /ecy	3,780
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	950.0 lcy	6.23	-	-	5.24	-	11.48 /lcy	10,902
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	11,300.0 sf	-	-	0.08	-	-	0.08 /sf	904
	Secondary Clarifier SE Piping 31 EARTHWORK	_	650.0 LF	32.20	10.60	1.39	17.31	_	61.50 /LF	39,978 806,482
33 UTILITIES										
33500 Seconda	ry RAS Piping									
33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	8.0 clf	3.34	5.56	-	-	-	8.90 /clf	71
	Secondary RAS Piping	=	750.0 LF	0.04	0.06			_	0.10 /LF	71
33500 Seconda	ry Clarifier ML Piping									
	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	5.0 clf	3.34	5.56	-	-	-	8.90 /clf	44
	Secondary Clarifier ML Piping	-	525.0 LF	0.03	0.05			_	0.09 /LF	44
33500 Seconda	ry Clarifier SE Piping									
	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	7.0 clf	3.34	5.56	-	-	-	8.90 /clf	62
	Secondary Clarifier SE Piping 33 UTILITIES	-	650.0 LF	0.04	0.06			_	0.10 /LF	62 178

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Seconda	ry RAS Piping									
	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 24 Inch (600mm)	A241002 0000EA	100.0 If	-	56.88	-	-	-	56.88 /lf	5,688
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 24 Inch (600mm)	A241002 0000EA	100.0 If	-	56.88	-	-	-	56.88 /lf	5,688
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 24 Inch (600mm)	A242112 000000	1.0 ea	-	1,678.64	-	-	-	1,678.64 /ea	1,679
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 24 Inch (600mm)	A242112 000000	1.0 ea	-	1,678.64	-	-	-	1,678.64 /ea	1,679
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	550.0 If	-	168.69	-	-	-	168.69 /lf	92,779
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	3.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.35 /ea	21,370
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 24 Inch (600mm)	L244002 0000P1	100.0 If	19.57	-	-	3.62	-	23.19 /lf	2,319
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 24 Inch (600mm)	L244002 0000P1	100.0 If	19.57	-	-	3.62	-	23.19 /lf	2,319
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 24 Inch (600mm)		2.0 ea	983.77	17.51	-	78.79	-	1,080.06 /ea	2,160
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 24 Inch (600mm)		2.0 ea	983.77	17.51	-	78.79	-	1,080.06 /ea	2,160
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	550.0 If	24.46	-	-	4.83	-	29.29 /lf	16,107
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)		14.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	14,300
40-05-24 10	RAS 36" tie-in at existing pump station allowance		1.0 ls	3,930.00	15,015.00		5,000.00	_	23,945.00 /ls	23,945
10 00 2 1110	Secondary RAS Piping	_	750.0 LF	61.31	180.01		14.94	_	256.26 /LF	192,193
33500 Seconda	ry Clarifier ML Piping									
	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	100.0 If	-	168.69	-	-	-	168.69 /lf	16,869
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	100.0 If	-	168.69	-	-	-	168.69 /lf	16,869
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	1.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	7,123
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	1.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	7,123
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 54 Inch (1350mm)	A541002 0000EA	327.0 If	-	333.54	-	-	-	333.54 /lf	109,068
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 54 Inch (1350mm)	A542112 000000	4.0 ea	-	9,273.91	-	-	-	9,273.91 /ea	37,096
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	327.0 If	32.59	-	-	6.43	-	39.02 /lf	12,759
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)	L545102 000000 _	11.0 ea	1,950.39	39.40	-	156.21		2,145.99 /ea	23,606
	On a serial serial control of the serial ser		505.0 1.5	07.40	050.07		44.55		450.04 // 5	040 455

87.40

359.07

11.55

458.01 /LF

525.0 LF

Secondary Clarifier ML Piping

240,455

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Seconda	ry Clarifier SE Piping									
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	100.0 If	-	168.69	-	-	-	168.69 /lf	16,869
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	100.0 If	-	168.69	-	-	-	168.69 /lf	16,869
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	1.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	7,123
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	1.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	7,123
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 54 Inch (1350mm)	A541002 0000EA	450.0 If	-	333.54	-	-	-	333.54 /lf	150,093
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 54 Inch (1350mm)	A542112 000000	3.0 ea	-	9,273.90	-	-	-	9,273.90 /ea	27,822
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	450.0 If	32.59	-	-	6.43	-	39.02 /lf	17,558
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)	L545102 000000	12.0 ea	1,950.39	39.40	-	156.21	-	2,145.99 /ea	25,752
	Secondary Clarifier SE Piping 40	_	650.0 LF	79.76	338.93	_	10.78	_	429.47 /LF	279,152 711,800
	03 Seconday Clarifiers		1.0 LS	1,197,603.36	1,579,336.35	612,315.60	397,387.24		3,786,642.55 /LS	3,786,643

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
_	ion Tanks/RAS Tank Retrofit									
01 GENERAL C	ONDITIONS a tank demolition									
	Pressure Washer 7 gpm, 3000 psi	5460	16.0 day	_	_	_	87.60	_	87.60 /day	1,402
	Rent trash pump self-prime 4" diameter, diesel drive	5600	16.0 day	-	-	-	126.20		126.20 /day	2,019
	Aeration tank demolition 01 GENERAL CONDITIONS		1.0 LS				3,420.80		3,420.80 /LS	3,421 3,421
02 SITEWORK										
02225 Demo B		2000	02.2 av	17.39			6.50		22.00 /04	2,239
02-41-19.23	Rubbish handling, loading & trucking, machine loading truck, includes 2 mile haul, cost to be added to demolition cost.	3080	93.3 cy	17.39	-	-	6.59	-	23.98 /cy	2,239
02-41-19.25	Sawcutting, concrete walls, rod reinforcing, per inch of depth	0820	2,016.0 If	7.17	0.05	-	5.84	-	13.06 /lf	26,328
03-05-05.10	Selective concrete demolition, 2 - 5 tons, remove whole pieces, incl loading, excludes shoring, bracing, saw or torch cutting, hauling, dumping	0160	96.0 ea	106.31	-	-	32.26	-	138.57 /ea	13,303
	Demo Baffle walls	-	6,720.0 sf	3.91	0.02		2.30	_	6.23 /sf	41,870
02999 Aeration	tank demolition									
02-22-03.30	Dump Charge, typical urban city, fees only, bldg constr mat'ls	BC-0006	16.0 ton	-	-	-	-	33.00	33.00 /ton	528
02-22-04.50	Demo fine bubble aeration discs, piping, headers, laterals and drop legs, mixers, in basin only	BC-0071	16.0 days	2,284.78	-	-	967.88	-	3,252.66 /days	52,043
	Aeration tank demolition 02 SITEWORK & DEMOLITION	-	1.0 LS	36,556.52			15,486.08	528.00	52,570.60 /LS	52,571 94,440
03 CONCRETE										
03345 Baffle w	Reinforcing steel, in place, walls, #3 to #7, A615,	0700	35.0 ton	794.28	992.00	_	_	_	1.786.28 /ton	62,520
03 21 10.00	grade 60, incl labor for accessories, excl material for accessories	0700	33.0 1011	734.20	332.00				1,700.20 71011	02,020
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	35.0 ton	39.87	-	-	7.51	-	47.38 /ton	1,658
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	35.0 ton	43.34	-	-	8.17	-	51.51 /ton	1,803
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	588.0 cy	-	98.01	-	-	-	98.01 /cy	57,631
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	588.0 cy	32.29	-	-	6.65	-	38.94 /cy	22,898
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700	20,160.0 sf	1.89	0.42	-	0.22	-	2.53 /sf	50,932
04-05-19.16	Masonry anchors, wall tie dowels, plain, 3/4" diameter x 6" long	6150	28.0 c		313.83	-			313.83 /c	8,787
	Baffle walls 03 CONCRETE		588.0 cy	149.21	186.44		15.08		350.73 /cy	206,230 206,230
05 METALS										
11999 RAS Pui 05-58-09.50	mps Pump mounting base plate, complete w/ anchor bolts, 4 sf	BC-0001	2.0 ea	622.68	795.79	-	-	-	1,418.47 /ea	2,837
	RAS Pumps 05 METALS		1.0 LS	1,245.35	1,591.58			_	2,836.93 /LS	2,837 2,837

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11 EQUIPMENT	•									
11999 Aeration	• •									
	Aeration diffusers, fine bubble, complete with headers		10,432.0 ea	13.11	35.00	-	-	-	48.11 /ea	501,883
	Mixer, submerged propellar type, 10 hp, Flygt, with guiderail	BC-0621	24.0 ea	2,261.69	30,000.00	-	380.00	-	32,641.69 /ea	783,401
11-00-09.00	Pump, submerged axial flow. 18" Dia., wall pump, 3-hp, 2.5 mgd, IMLR pump	BC-0316	4.0 ea	1,696.27	25,000.00	-	190.00	-	26,886.26 /ea	107,545
	Aeration Equipment		1.0 LS	197,828.19	1,185,120.00		9,880.00		1,392,828.19 /LS	1,392,828
11999 RAS Pui	mns									
	Pump,vertical turbine, solids handling, can type, 50hp, VFD driven	BC-0791	2.0 ea	2,827.11	30,000.00	-	380.00	-	33,207.11 /ea	66,414
	RAS Pumps	-	1.0 LS	5,654.22	60,000.00	-	760.00		66,414.22 /LS	66,414
	11 EQUIPMENT									1,459,242
oo Di LIMDING										
22 PLUMBING 22999 RAS Pip	ing									
-	RAS above grade piping allowance		2.0 ls	8,975.00	12,500.00	-	_	-	21,475.00 /ls	42,950
	RAS Piping		1.0 LS	17,950.00	25,000.00				42,950.00 /LS	42,950
	22 PLUMBING									42,950
26 ELECTRICA	ı									
	Aeration Tanks/RAS Tank Retrofit - E&I (#13, #14)									
_	Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	445,133.73	-	-	445,133.73 /LS	445,134
	Existing Aeration Tanks/RAS Tank Retrofit - E&I		1.0 LS		-	445,133.73			445,133.73 /LS	445,134
	(#13, #14)									
	26 ELECTRICAL									445,134
27 COMMUNIC	ATIONS									
26001 Existing	Aeration Tanks/RAS Tank Retrofit - E&I (#13, #14)									
27-20-00.01	Instrumentation (This is based on a percentage of	FACTOR	1.0 LS	-	-	74,188.96	-	-	74,188.96 /LS	74,189
	the Total Project Costs) Existing Aeration Tanks/RAS Tank Retrofit - E&I	ED .	1.0 LS		-	74,188.96			74,188.96 /LS	74,189
	(#13, #14)					,			1 1,100.00 720	,
	27 COMMUNICATIONS									74,189
31 EARTHWOR	V									
	tank demolition									
	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv	9498	240.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	2,052
	borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel									
	truck,cycle 20 miles,45 mph,excld ldng eqpmnt Aeration tank demolition		1.0 LS	738.66		-	1,313.09		2,051.75 /LS	2,052
	Aeration tank demolition		1.0 LS	738.00			1,313.09		2,051.75 /L5	2,052
33500 Seconda	ary Clarifier ML Piping Exist Train									
31-23-16.13	Excavating, trench or continuous footing, common	0510	812.5 bcy	2.80	-	-	2.07	-	4.87 /bcy	3,957
	earth, 1 C.Y. excavator, 6' to 10' deep, excludes									
31-23-16 13	sheeting or dewatering Excavating, trench or continuous footing, common	1000	3,066.7 bcy	2.07	_	-	1.95	-	4.02 /bcy	12,320
	earth, 1-1/2 C.Y. excavator, 10' to 14' deep, excludes		-,,				30		,,	,
	sheeting or dewatering									
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling,	2200	2,187.5 ecy	1.23	-	-	2.60	-	3.82 /ecy	8,363
	compaction with vibrating roller									

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Seconda	ry Clarifier ML Piping Exist Train									
	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	1,199.2 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	28,727
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	1,199.2 ecy	5.57	-	-	0.41	-	5.98 /ecy	7,165
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	1,691.7 lcy	6.23	-	-	5.24	-	11.48 /lcy	19,413
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	33,450.0 sf	-	-	0.08	-	-	0.08 /sf	2,676
	Secondary Clarifier ML Piping Exist Train	-	1,475.0 LF	27.95	8.85	1.81	17.40	-	56.01 /LF	82,621
00500 DAG D	Diselement									
33500 RAS Pun 31-23-16.13	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes sheeting or dewatering	0510	902.8 bcy	2.80	-	-	2.07	-	4.87 /bcy	4,396
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	416.7 ecy	1.23	-	-	2.60	-	3.82 /ecy	1,593
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	398.8 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	9,555
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	398.8 ecy	5.57	-	-	0.41	-	5.98 /ecy	2,383
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	486.1 lcy	6.23	-	-	5.24	-	11.48 /lcy	5,578
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	9,750.0 sf	-	-	0.08	-	-	0.08 /sf	780
	RAS Pump Discharge 31 EARTHWORK	-	750.0 LF	16.68	5.79	1.04	8.87	-	32.38 /LF	24,286 108,958
00 11711 17150										
33 UTILITIES	Clarifica MI Dimina Fuint Train									
	ury Clarifier ML Piping Exist Train Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	15.0 clf	3.34	5.56	-	-	-	8.90 /clf	133
	Secondary Clarifier ML Piping Exist Train	-	1,475.0 LF	0.03	0.06			-	0.09 /LF	133
33500 RAS Pun	nn Discharge									
	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	8.0 clf	3.34	5.56	-	-	-	8.90 /clf	71
	RAS Pump Discharge 33 UTILITIES	-	750.0 LF	0.04	0.06			-	0.10 /LF	71 205
40										
	ry Clarifier ML Piping Exist Train									
	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	1,150.0 If	-	168.69	-	-	-	168.69 /lf	193,992
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	6.0 ea	2,580.88	6,067.82	-	488.91	-	9,137.60 /ea	54,826
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 54 Inch (1350mm)	A541002 0000EA	328.0 If	-	333.54	-	-	-	333.54 /lf	109,401
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 54 Inch (1350mm)	A542112 000000	5.0 ea	-	9,273.90	-	-	-	9,273.90 /ea	46,370
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	1,150.0 If	24.46	-	-	4.83	-	29.29 /lf	33,679

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Seconda	ary Clarifier ML Piping Exist Train									
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	32.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	32,685
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	328.0 If	32.59	-	-	6.43	-	39.02 /lf	12,798
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)	L545102 000000	12.0 ea	1,950.39	39.40	-	156.21	<u>-</u>	2,145.99 /ea	25,752
	Secondary Clarifier ML Piping Exist Train		1,475.0 LF	72.85	262.51		10.07		345.43 /LF	509,503
33500 RAS Pur	mp Discharge									
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 24 Inch (600mm)	A241002 0000EA	750.0 If	-	56.88	-	-	-	56.88 /lf	42,661
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 24 Inch (600mm)	A242112 000000	6.0 ea	-	1,678.64	-	-	-	1,678.64 /ea	10,072
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 24 Inch (600mm)	L244002 0000P1	750.0 If	19.57	-	-	3.62	-	23.19 /lf	17,391
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 24 Inch (600mm)	L245102 000000	19.0 ea	983.77	17.51	-	78.79	-	1,080.06 /ea	20,521
	RAS Pump Discharge 40	_	750.0 LF	44.49	70.75	-	5.62	_	120.86 /LF	90,645 600,148
	04 Existing aeration Tanks/RAS Tank Retrofit		1.0 LS	568,618.20	1,839,237.11	522,778.69	106,590.89	528.00	3,037,752.89 /LS	3,037,753

Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
05 Tertiary Treatn	nent Processes									
03330 Slabs Ac	tiflow tank									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	29.6 cy	-	33.69	-	-	-	33.69 /cy	998
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	120.0 If	3.61	4.42	-	-	-	8.03 /lf	963
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	10.0 ea	9.39	47.88	-	-	-	57.27 /ea	573
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	4.4 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	9,012
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	4.4 ton	39.87	-	-	7.51	-	47.38 /ton	211
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	4.4 ton	43.34	-	-	8.17	-	51.50 /ton	229
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	62.2 cy	-	98.01	-	-	-	98.01 /cy	6,099
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	62.2 cy	9.69	-	-	2.00	-	11.68 /cy	727
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	800.0 sf	0.88	-	-	0.03	-	0.91 /sf	729
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	800.0 sf	0.70	0.29	-	-	-	0.99 /sf	795
03-39-13.50	Curing, sprayed membrane curing compound Slabs Actiflow tank	0300	8.0 csf 800.0 cy	9.68 9.31	10.12 16.04		0.27		19.80 /csf 25.62 /cy	158 20,494
03330 Slabs Co 03-05-13.25	agulaton Tank Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	5.3 cy	-	33.69	-	-	-	33.69 /cy	180
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	48.0 If	3.61	4.42	-	-	-	8.03 /lf	385
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	4.0 ea	9.39	47.88	-	-	-	57.27 /ea	229
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.8 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	1,622
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.8 ton	39.88	-	-	7.51	-	47.39 /ton	38
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.8 ton	43.34	-	-	8.16	-	51.50 /ton	41
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	11.2 cy	-	98.01	-	-	-	98.01 /cy	1,098
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	11.2 cy	9.69	-	-	2.00	-	11.68 /cy	131
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	144.0 sf	0.88	-	-	0.03	-	0.91 /sf	131
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	144.0 sf	0.70	0.29	-	-	-	0.99 /sf	143
03-39-13.50	Curing, sprayed membrane curing compound Slabs Coagulaton Tank	0300	1.4 csf 144.0 cy	9.68 10.11	10.13 17.58		0.27		19.81 /csf 27.97 /cy	29 4,027

Estimator: DG-NDG-FB-IK

Project Number: 147571-040 Estimate Issue: 2 Due Date: 6/24/2015

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Hy	drocone									
03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	5.6 cy	-	33.69	-	-	-	33.69 /cy	187
03-11-13.65	C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	60.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	297
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.6 ton	1,036.02	992.00	-	-	-	2,028.02 /ton	1,268
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.6 ton	39.87	-	-	7.52	-	47.39 /ton	30
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	8.8 cy	-	98.01	-	-	-	98.01 /cy	858
03-31-05.70	Structural concrete, placing, slab on grade, direct chute, over 6" thick, includes vibrating, excludes material	4600	8.8 cy	17.32	-	-	0.39	-	17.71 /cy	155
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and broom finish	0150	225.0 sf	0.82	-	-	-	-	0.82 /sf	184
03-39-13.50	Curing, sprayed membrane curing compound	0300	2.3 csf	9.68	10.12	-	-	-	19.80 /csf	45
	Slabs Hydrocone		8.3 cy	153.51	208.25		0.97	_	362.73 /cy	3,023
03330 Slabs Dis	an Filtera									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	14.8 cy	-	33.69	-	-	-	33.69 /cy	499
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	40.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	344
03-11-13.65	C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	100.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	496
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	1.7 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	3,381
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	148.1 lb	0.52	0.48	-	-	-	0.99 /lb	147
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	1.7 ton	39.87	-	-	7.51	-	47.38 /ton	82
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	27.2 cy	-	98.01	-	-	-	98.01 /cy	2,668
03-31-05.70	Structural concrete, placing, slab on grade, direct chute, over 6" thick, includes vibrating, excludes material	4600	27.2 cy	17.32	-	-	0.39	-	17.71 /cy	482
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and broom finish	0150	600.0 sf	0.82	-	-	-	-	0.82 /sf	490
03-39-13.50	Curing, sprayed membrane curing compound	0300	6.0 csf	9.68	10.12	-	-	=	19.80 /csf	119
	Slabs Disc Filters	_	25.9 cy	138.81	196.18	•	0.91	_	335.90 /cy	8,708
	um Storage and Pumps Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	14.8 cy	-	33.69	-	-	-	33.69 /cy	499
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing,	2050	56.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	482
03-11-13.65	stripping and cleaning C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	110.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	545

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs A	lum Storage and Pumps									
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	1.7 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	3,381
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	170.4 lb	0.52	0.48	-	-	-	0.99 /lb	169
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	1.8 ton	39.87	-	-	7.51	-	47.38 /ton	83
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	27.8 cy	-	98.01	-	-	-	98.01 /cy	2,725
03-31-05.70	Structural concrete, placing, slab on grade, direct chute, over 6" thick, includes vibrating, excludes material	4600	27.8 cy	17.32	-	-	0.39	-	17.71 /cy	492
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and broom finish	0150	600.0 sf	0.82	-	-	-	-	0.82 /sf	490
03-39-13.50	Curing, sprayed membrane curing compound	0300 _	6.0 csf	9.68	10.12	-			19.80 /csf	119
	Slabs Alum Storage and Pumps		26.5 cy	142.68	195.75		0.90		339.33 /cy	8,986
03333 Alum ta	nk/pump equipment Pads and containment									
	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	740.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	6,365
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.3 ton	39.90	-	-	7.50	-	47.41 /ton	13
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.3 ton	43.33	-	-	8.20	-	51.50 /ton	14
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	13.5 cy	-	98.01	-	-	-	98.01 /cy	1,325
	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	13.5 cy	27.68	-	-	5.70	-	33.38 /cy	451
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460 -	13.5 cy	46.13	-	-	13.04	-	59.17 /cy	800
	Alum tank/pump equipment Pads and containment		13.5 cy	471.83	172.51		19.05		663.39 /cy	8,968
03333 Alum pu	ımps Equipment Pads									
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	72.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	619
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.0 ton	39.80	-	-	7.50	-	47.25 /ton	2
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.0 ton	43.30	-	-	8.30	-	51.50 /ton	2
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.0 cy	-	98.01	-	-	-	98.01 /cy	196
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	2.0 cy	27.68	-	-	5.70	-	33.38 /cy	67
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	2.0 cy	46.13	-	-	13.04	-	59.17 /cy	118
	Alum pumps Equipment Pads		2.0 cy	336.15	147.01		19.05		502.20 /cy	1,004
	e Walls actiflow Tank Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	4,320.0 sfca	6.95	0.75		-		7.70 /sfca	33,264

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concret	te Walls actiflow Tank									
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	11.5 gal	-	20.66	-	-	-	20.66 /gal	238
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	10.5 ton	794.28	992.00	-	-	-	1,786.28 /ton	18,756
03-21-10.60	 Reinforcing in place, unloading & sorting, add - walls, cols, beams 	2010	10.5 ton	39.87	-	-	7.51	-	47.38 /ton	498
03-21-10.60	 Reinforcing, crane cost for handling, add to above, walls, cols, beams 	2225	10.5 ton	43.34	-	-	8.17	-	51.51 /ton	541
03-31-05.35	6 Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	126.0 cy	-	98.01	-	-	-	98.01 /cy	12,350
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	126.0 cy	32.29	-	-	6.65	-	38.94 /cy	4,907
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls actiflow Tank	0700 _	4,320.0 sf 126.0 cy	1.89 408.53	0.42 222.58	-	0.22 15.46		2.53 /sf 646.56 /cy	10,914 81,467
03345 Concret	te Walls Coagulation Tank									
	5 Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	1,728.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	13,306
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	4.6 gal	-	20.66	-	-	-	20.66 /gal	95
03-21-10.60	D Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	3.6 ton	794.28	992.00	-	-	-	1,786.28 /ton	6,431
03-21-10.60	 Reinforcing in place, unloading & sorting, add - walls, cols, beams 	2010	3.6 ton	39.87	-	-	7.51	-	47.38 /ton	171
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	3.6 ton	43.34	-	-	8.17	-	51.51 /ton	185
03-31-05.35	6 Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	50.4 cy	-	98.01	-	-	-	98.01 /cy	4,940
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	50.4 cy	32.29	-	-	6.65	-	38.94 /cy	1,963
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700	1,728.0 sf	1.89	0.42	-	0.22	-	2.53 /sf	4,366
	Concrete Walls Coagulation Tank 03 CONCRETE	-	50.4 cy	398.08	210.77		15.27		624.12 /cy	31,456 168,133
05 METALS 05999 Actiflo o	Slarifier bridge									
	Clarifier bridge supports, structural steel, grating, handrail, allowance	MISC	2.0 LS	8,090.00	10,220.00		2,000.00	-	20,310.00 /LS	40,620
	Actiflo clarifier bridge 05 METALS	-	1.0 LS	16,180.00	20,440.00		4,000.00	-	40,620.00 /LS	40,620 40,620
11 EQUIPMENT										
03330 Slabs A			10.10	4.544.00	2 200 000 00				2 204 544 00 // 0	0.004.545
11-00-01.00	 14.2 mgd Actiflow systems - Vendor quote Slabs Actiflow tank 		1.0 LS 800.0 cy	<u>4,544.80</u> 5.68	2,300,000.00 2,875.00		-		2,304,544.80 /LS 2,880.68 /cy	2,304,545 2,304,545
11999 ACTIFLO	0									
	Filter units, rotating disc, complete	BC-0696	2.0 ea	8,481.33	257,500.00	-	1,200.00		267,181.33 /ea	534,363
	ACTIFLO clarifier bridge and supports allowance		2.0 ls	-,	22,000.00	-		-	22,000.00 /ls	44,000
	ACTIFLO - misc anchor bolts, mounting hardware		2.0 ls	-	10,000.00	-	-	-	10,000.00 /ls	20,000

allowance

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11999 ACTIFLO	1									
	FRP tank, alum,7,500 gal.,UV resistant	BC-0016	2.0 ea	2,022.71	21,000.00	-	622.71		23,645.42 /ea	47,291
	Chemical metering pump, alum	BC-0001	2.0 ea	459.41	11,000.00	-	-	-	11,459.41 /ea	22,919
	Chemical metering pump, methanol	BC-0041	2.0 ea	565.42	11,000.00	-	-	-	11,565.42 /ea	23,131
	Hydrocyclone installation		2.0 ea	3,347.94	-	-	747.26	-	4,095.19 /ea	8,190
11-99-99.99	ACTIFLO treatment system,14.2 MGD per train,incl in-line rapid mix,coag mixer,draft tube mix,lamella settler,scraper,troughs,recirc pumps,hydrocyclone	MISC	2.0 LS	31,386.92	1,150,000.00		7,502.40	-	1,188,889.31 /LS	2,377,779
	ACTIFLO 11 EQUIPMENT	-	1.0 LS	92,527.43	2,965,000.00	-	20,144.73	-	3,077,672.16 /LS	3,077,672 5,382,217
22 PLUMBING										
11999 ACTIFLO 22-07-19.10	Alum tank and pump heat trace and insulation allowance		1.0 ls	17,950.00	25,000.00	-	-	-	42,950.00 /ls	42,950
	ACTIFLO 22 PLUMBING	_	1.0 LS	17,950.00	25,000.00			-	42,950.00 /LS	42,950 42,950
26 ELECTRICAL										
-	Treatment Process - E&I (#12) Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	1,071,705.26	-	-	1,071,705.26 /LS	1,071,705
	Tertiary Treatment Process - E&I (#12) 26 ELECTRICAL	_	1.0 LS		-	1,071,705.26		-	1,071,705.26 /LS	1,071,705 1,071,705
27 COMMUNICA										
-	Treatment Process - E&I (#12) Instrumentation (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	357,235.09	-	-	357,235.09 /LS	357,235
	Tertiary Treatment Process - E&I (#12) 27 COMMUNICATIONS	_	1.0 LS		-	357,235.09		-	357,235.09 /LS	357,235 357,235
31 EARTHWORK 01999 Dewaterii										
	Rent wellpoint header pipe, 6" diameter, 400 gpm	0500	1,200.0 day	_	_	_	0.40	_	0.40 /day	480
	Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction	1100	120.0 day	857.51	-	-	377.70	-	1,235.21 /day	148,225
31-23-19.30	hose and 100 LF of discharge hose Wells, for dewatering, with steel casing, 10' to 20' deep, 2' diameter, minimum	0020	150.0 vlf	9.63	23.18	-	2.25	-	35.06 /vlf	5,259
	Dewatering	_	1.0 LS	104,345.66	3,477.00	-	46,141.20	-	153,963.86 /LS	153,964
03330 Slabs Ac	tiflow tank									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	88.9 sy	1.07	-		0.72		1.79 /sy	159
	Slabs Actiflow tank		800.0 cy	0.12			0.08		0.20 /cy	159
03330 Slabs Co		4400	40.0	4.07			0.70		4.70 /	20
31-22-16.10	Fine grading, fine grade for slab on grade, machine Slabs Coagulaton Tank	1100 _	16.0 sy 144.0 cy	1.07 0.12	-		0.72		1.79 /sy 0.20 /cy	
03330 Slabs Hy	drocone									
31-22-16.10	Fine grading, fine grade for slab on grade, machine Slabs Hydrocone	1100 _	25.0 sy 8.3 cy	1.07 3.20	-		0.72 2.17		1.79 /sy 5.36 /cy	45 45
03330 Slabs Dis 31-22-16.10	sc Filters Fine grading, fine grade for slab on grade, machine	1100	66.7 sy	1.07	-	-	0.72	-	1.79 /sy	119

7,382,858

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Slabs Disc Filters		25.9 cy	2.74			1.86	_	4.60 /cy	119
03330 Slabs Al	um Storage and Pumps									
31-22-16.10	Fine grading, fine grade for slab on grade, machine Slabs Alum Storage and Pumps	1100 _	66.7 sy 26.5 cy	1.07 2.68	-	-	0.72 1.82		1.79 /sy 4.50 /cy	119 119
31250 Shoring	Systems									
31-41-16.10	Sheet piling, steel, 27 psf, 20' excavation, per S.F., drive, extract and salvage, excludes wales	1600	4,374.0 sf	9.83	6.37	-	7.87	-	24.07 /sf	105,281
31-41-16.10	Sheet piling, wales, connections and struts, 2/3 salvage	2500	5.9 ton	-	410.40	-	-	-	410.40 /ton	2,421
	Shoring Systems		4,374.0 sf	9.83	6.92		7.87	_	24.62 /sf	107,703
31315 Excavati	ion and Backfill ACTIFLO									
31-05-16.10	Aggregate for earthwork, bank run gravel, spread with 200 H.P. dozer, includes load at pit and haul, 2 miles round trip, excludes compaction	0100	100.0 lcy	2.52	22.02	-	4.71	-	29.25 /lcy	2,925
31-23-16.42	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	2,430.0 bcy	6.99	-	-	7.64	-	14.63 /bcy	35,551
31-23-23.13	Backfill, bulk, air tamped compaction, add	1400	90.0 ecy	5.30	-	-	1.50	-	6.80 /ecy	612
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt	9498	2,196.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	18,774
	Excavation and Backfill ACTIFLO 31 EARTHWORK		2,451.3 cy	9.99	0.90		12.72		23.60 /cy	57,862 319,998

399,446.39 5,415,062.74 1,428,940.35

139,408.91

7,382,858.39 /LS

1.0 LS

05 Tertiary Treatment Processes

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
06 Centrate EQ										
03 CONCRETE	starts Tools No. 0. 400 000 sel									
	ntrate Tank No. 2 - 100,000 gal Aggregate, stone, 3/4" to 1-1/2", prices per C.Y.,	1050	48.0 cy	_	33.69	_	_	-	33.69 /cy	1,617
	includes material only								ŕ	1,211
	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	144.0 If	3.61	4.42	-	-	-	8.03 /lf	1,156
	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	12.0 ea	9.39	47.88	-	-	-	57.27 /ea	687
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	7.2 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	14,602
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	7.2 ton	39.87	-	-	7.51	-	47.39 /ton	341
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	7.2 ton	43.34	-	-	8.17	-	51.50 /ton	371
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	100.8 cy	-	98.01	-	-	-	98.01 /cy	9,880
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	100.8 cy	9.69	-	-	2.00	-	11.68 /cy	1,178
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	1,296.0 sf	0.88	-	-	0.03	-	0.91 /sf	1,181
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	1,296.0 sf	0.70	0.29	-	-	-	0.99 /sf	1,289
03-39-13.50	Curing, sprayed membrane curing compound Slabs Centrate Tank No. 2 - 100,000 gal	0300 _	13.0 csf 100.8 cy	9.68 117.50	10.12 201.99		3.50		19.80 /csf 322.98 /cy	257 32,557
02222 Controto	pumps equipment Pads									
	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	120.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	1,032
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.1 ton	39.90	-	-	7.50	-	47.40 /ton	5
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.1 ton	43.40	-	-	8.20	-	51.54 /ton	5
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	5.2 cy	-	98.01	-	-	-	98.01 /cy	508
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	5.2 cy	27.68	-	-	5.70	-	33.38 /cy	173
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	5.2 cy	46.13	-	-	13.04		59.17 /cy	307
	Centrate pumps equipment Pads		5.2 cy	243.06	129.51		19.05		391.63 /cy	2,031
	Walls - Centrate Tank Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	3,168.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	21,946
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	8.4 gal	-	20.66	-	-	-	20.66 /gal	175
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	5.5 ton	794.28	992.00	-	-	-	1,786.28 /ton	9,825

COM ALTERNATIVES ANALYSIS - ALT 1

				COM ALTERNAT	IVES ANALYS	IS - ALT 1				Estimator: DG-NDG-FB-
Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls - Centrate Tank									
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	5.5 ton	39.87	-	-	7.51	-	47.38 /ton	261
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	5.5 ton	43.34	-	-	8.17	-	51.51 /ton	283
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	92.4 cy	-	98.01	-	-	-	98.01 /cy	9,056
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	92.4 cy	32.29	-	-	6.65	-	38.94 /cy	3,598
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	3,168.0 sf	1.89	0.42	-	0.22		2.53 /sf	8,004
	Concrete Walls - Centrate Tank 03 CONCRETE		92.4 cy	361.15	198.96		15.08		575.19 /cy	53,148 87,735
05 METALS 11999 Centrate										
05-58-09.50		BC-0001	4.0 ea	622.68	795.79	-	-	-	1,418.47 /ea	5,674
	Centrate 05 METALS	-	1.0 LS	2,490.70	3,183.16			_	5,673.86 /LS	5,674 5,674
11 EQUIPMENT 11999 Centrate										
	Pump, cntfgl, horiz mtd, end suct,vert splt,sgl stg,70GPM,5HP,2"D	BC-0076	4.0 ea	1,255.48	4,000.00	-	150.05	-	5,405.53 /ea	21,622
	Centrate 11 EQUIPMENT	=	1.0 LS	5,021.91	16,000.00		600.19	_	21,622.10 /LS	21,622 21,622
13 SPECIAL CO										
	Crane crew, daily use for small jobs, 100-ton truck-mounted hydraulic crane, portal to portal	0600	2.0 day	955.55	-	-	2,382.93	-	3,338.48 /day	6,677
13-34-23.35	Geodesic dome, shell only, aluminum framed, aluminum closure panels, 40' diameter	2200	1,100.0 sffl	0.60	24.50	-	-	-	25.10 /sffl	27,613
	Aluminum dome 13 SPECIAL CONSTRUCTION	-	1.0 LS	2,574.47	26,950.00		4,765.86	_	34,290.33 /LS	34,290 34,290
22 PLUMBING	Plata									
22999 Centrate	. •	MISC	40.18	4,487.50	6 250 00				10 737 50 // 9	42.050
22-99-99.99	Centrate above grade piping allowance Centrate Piping	IVIIOC _	4.0 LS 1.0 LS	17,950.00	6,250.00 25,000.00		-	- =	10,737.50 /LS 42,950.00 /LS	42,950 42,950
33500 Centrate		DO 45	50 - 1 1						70.00 # f	

13.96

718.00

28.32

60.00

100.00

43,439.03

43,439.03

2,000.00

3.02

23.02

1,000.00

BC-0311

FACTOR

ED

50.0 Inft

1.0 ls

50.0 LF

1.0 LS

1.0 LS

Centrate EQ and Treatment - E&I (#10)

26 ELECTRICAL

22-20-00.65 Piping, DI, glass lined, CL 50, 6" dia

Centrate

26001 Centrate EQ and Treatment - E&I (#10)

Total Project Costs)

26 ELECTRICAL

22 PLUMBING

22-20-00.65 Tie-in to existing centrate discharge piping

26-00-00.02 Electrical (This is based on a percentage of the

27 COMMUNICATIONS

3,849

3,718

7,567

50,517

43,439

43,439

43,439

76.98 /lnft 3,718.00 /ls

151.34 /LF

43,439.03 /LS

43,439.03 /LS

6/24/
Project Number: 147571-040
Estimate Issue: 2
Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	EQ and Treatment - E&I (#10) Instrumentation (This is based on a percentage of	FACTOR	1.0 LS	-	_	14,479.68	_	_	14,479.68 /LS	14,480
	the Total Project Costs)	ED _			-					
	Centrate EQ and Treatment - E&I (#10) 27 COMMUNICATIONS		1.0 LS			14,479.68			14,479.68 /LS	14,480 14,480
31 EARTHWOR										
01999 Dewateri	•	1100	99 O dov	857.51			377.70		1 225 21 /dov	108,698
31-23-19.20	Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction hose and 100 LF of discharge hose	1100	88.0 day	857.51	-	-	3/7.70	-	1,235.21 /day	108,698
31-23-19.30	Wells, for dewatering, with steel casing, 10' to 20'	0020	150.0 vlf	76.64	184.52	-	17.92	-	279.08 /vlf	41,862
	deep, 2' diameter, minimum Dewatering	_	1.0 LS	86,956.83	27,678.48	-	35,925.34	-	150,560.65 /LS	150,561
	Dewatering		1.0 L3	00,950.05	21,010.40		33,923.34		150,560.65 /LS	150,561
03330 Slabs Ce	entrate Tank No. 2 - 100,000 gal									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	144.0 sy	1.07	-		0.72		1.79 /sy	257
	Slabs Centrate Tank No. 2 - 100,000 gal		100.8 cy	1.52			1.03		2.55 /cy	257
31315 Excavati	on and Backfill 100,000 gal tank									
	Aggregate for earthwork, bank run gravel, spread with 200 H.P. dozer, includes load at pit and haul, 2	0100	111.1 lcy	2.52	22.02	-	4.71	-	29.25 /lcy	3,250
	miles round trip, excludes compaction									
31-23-16.42	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	207.1 bcy	6.99	-	-	7.64	-	14.63 /bcy	3,030
31-23-23.13	Backfill, bulk, air tamped compaction, add	1400	111.1 ecy	13.60	-	-	3.85	-	17.44 /ecy	1,938
31-23-23.20	Cycl hIn(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt	9498	207.1 lcy	3.08	-	-	5.47	-	8.55 /lcy	1,771
	Excavation and Backfill 100,000 gal tank	_	207.1 cy	18.72	11.81	-	17.70		48.23 /cy	9,989
33500 Centrate										
	Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	0110	48.1 bcy	3.73	-	-	2.23	-	5.96 /bcy	287
31-23-23.13	Backfill, trench, air tamped compaction, add	2000	38.9 ecy	13.60	-	-	3.85	-	17.44 /ecy	678
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	8.9 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	213
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	8.9 ecy	5.57	-	-	0.41	-	5.98 /ecy	53
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump	0150	9.3 lcy	6.23	-	-	5.24	-	11.48 /lcy	106
	truck, highway haulers, excludes loading Centrate	_	50.0 LF	18.20	1.94	-	6.62		26.75 /LF	1,338
	31 EARTHWORK		00.0 1	10.20	1.04		0.02		25.70 721	162,145
33 UTILITIES										
33500 Centrate 33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2",	0400	1.0 clf	3.34	5.56	-	-	-	8.90 /clf	9
	excludes excavation and backfill Centrate	_	50.0 LF	0.07	0.11			-	0.18 /LF	9
	33 UTILITIES									9
	06 Centrate EQ		1.0 LS	167,827.55	145,776.96	57,918.71	48,387.31		419,910.53 /LS	419,911

COM ALTERNATIVES ANALYSIS - ALT 1

				OOM ALILAMAI	TVLO ANAL TO	IO - ALT T				Estillator. DG-NDG-FB-Ir
Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
08 Influent Pump 03 CONCRETE										
	ump station wet well									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	55.6 cy	-	33.69	-	-	-	33.69 /cy	1,872
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	130.0 lf	3.61	4.42	-	-	-	8.03 /lf	1,043
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	11.0 ea	9.39	47.88	-	-	-	57.27 /ea	630
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	11.1 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	22,533
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	11.1 ton	39.87	-	-	7.51	-	47.38 /ton	526
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	11.1 ton	43.34	-	-	8.17	-	51.51 /ton	572
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	116.7 cy	-	98.01	-	-	-	98.01 /cy	11,435
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	116.7 cy	9.69	-	-	2.00	-	11.68 /cy	1,363
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	1,500.0 sf	0.38	-	-	-	-	0.38 /sf	567
03-39-13.50	Curing, sprayed membrane curing compound Slabs Pump station wet well	0300 _	15.0 csf 116.7 cy	9.68 127.29	10.12 219.26		3.49		19.80 /csf 350.04 /cy	<u>297</u> 40,839
02220 Slobe B	ctation alab									
	ump station slab Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	37.0 cy	-	33.69	-	-	-	33.69 /cy	1,248
03-11-13.65	to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	140.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	694
03-21-10.60	A615, grade 60, incl labor for accessories, excl material for accessories	0600	2.8 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	5,634
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	2.8 ton	39.87	-	-	7.51	-	47.38 /ton	132
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	2.8 ton	43.34	-	-	8.17	-	51.51 /ton	143
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	38.9 cy	-	98.01	-	-	-	98.01 /cy	3,812
03-31-05.70	Structural concrete, placing, slab on grade, pumped, over 6" thick, includes vibrating, excludes material	4650	38.9 cy	20.95	-	-	4.31	-	25.26 /cy	982
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	1,000.0 sf	0.88	-	-	0.03	-	0.91 /sf	911
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	1,000.0 sf	0.70	0.29	-	-	-	0.99 /sf	994
03-39-13.50	Curing, sprayed membrane curing compound	0300	10.0 csf	9.68	10.12	-	-	-	19.80 /csf	198
	Slabs Pump station slab		38.9 cy	159.05	213.96		6.20	_	379.22 /cy	14,748
03345 Concret	e Walls wet well									
	C.I.P. concrete forms, wall, box out for opening, to C.I.P. concrete forms, wall, box out for opening, to	0150	16.0 If	9.93	2.33	-	-	-	12.26 /lf	196

16" thick, over 10 S.F. (use perimeter), includes erecting, bracing, stripping and cleaning

eport Project Number: 147571-040 Estimate Issue: 2

ct Number: 147571-040
mate Issue: 2
 Due Date: 6/24/2015
 Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls wet well									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	36.0 lf	10.50	2.14	-	-	-	12.63 /lf	455
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	4,680.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	36,036
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	12.5 gal	-	20.66	-	-	-	20.66 /gal	258
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	36.0 If	3.24	14.92	-	-	-	18.15 /lf	654
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	3.0 ea	9.38	35.78	-	-	-	45.17 /ea	136
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	12.9 ton	794.28	992.00	-	-	-	1,786.28 /ton	23,063
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	12.9 ton	39.87	-	-	7.51	-	47.38 /ton	612
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	12.9 ton	43.34	-	-	8.17	-	51.51 /ton	665
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	135.6 cy	-	98.01	-	-	-	98.01 /cy	13,287
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	135.6 cy	32.29	-	-	6.65	-	38.94 /cy	5,279
03-35-29.60	Finishing: break ties & patch voids (walls, cols or beams)	0010	4,648.0 sf	0.97	0.03	-	-	-	1.00 /sf	4,650
	Concrete Walls wet well		135.6 cy	394.32	226.66		8.14	_	629.12 /cy	85,290
03350 Wet well	elev slah									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring,	1150	750.0 sf	4.97	1.27	-	-	-	6.24 /sf	4,678
03-11-13.35	erecting, bracing, stripping and cleaning C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing,	7000	140.0 If	3.62	0.21	-	-	-	3.83 /lf	537
03-21-10.60	stripping and cleaning Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	2.4 ton	821.66	992.00	-	-	-	1,813.66 /ton	4,416
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	7.00	-	47.00 /ton	1
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	114.00	-	-	21.00	-	135.00 /ton	2
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	29.2 cy	-	98.01	-	-	-	98.01 /cy	2,859
03-31-05.70	Structural concrete, placing, elevated slab, with crane and bucket, over 10" thick, includes vibrating, excludes material	1650	29.2 cy	33.71	-	-	9.53	-	43.24 /cy	1,261
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	750.0 sf	0.88	-	-	0.03	-	0.91 /sf	683
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	7.5 csf	9.68	10.12	-	-	-	19.80 /csf	149
	Wet well elev slab 03 CONCRETE	_	27.8 cy	286.26	227.96		10.82	-	525.05 /cy	14,585 155,461

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
04220 Exterior	Masonry Walls Pump station									
04-05-16.30	Grout, door frames, 3' x 7' opening, 2.5 CF per opening	0800	2.0 opng	32.67	10.51	-	2.27	-	45.45 /opng	91
04-05-16.30	Grout, door frames, 6' x 7' opening, 3.5 CF per opening	0850	2.0 opng	43.56	14.70	-	3.03	-	61.28 /opng	123
04-05-16.30	Grout, for bond beams, lintels and concrete masonry unit (CMU) cores, C476, includes material only	2000	1,428.0 cf	5.60	4.20	-	0.39	-	10.19 /cf	14,555
04-05-19.26	Masonry reinforcing bars, #5 and #6 reinforcing steel bars, placed horizontally, ASTM A615	0020	1,156.0 lb	0.65	0.46	-	-	-	1.11 /lb	1,280
04-05-19.26	Masonry reinforcing bars, #5 and #6 reinforcing steel bars, placed vertically, ASTM A615	0060	2,652.0 lb	0.80	0.46	-	-	-	1.26 /lb	3,337
04-05-19.26	Masonry reinforcing bars, truss type steel joint reinforcing, mill standard galvanized, 12" wide	0250	25.5 clf	26.07	24.73	-	-	-	50.79 /clf	1,295
04-05-19.26	Allow - shoring and bracing at CMU walls (percentage wall area)	0500	1,700.0 sfwa	0.75	0.17	-	-	-	0.93 /sfwa	1,572
04-22-10.28	Concrt block,high strngt,hollow,3500 psi,12"8"16",inclds mortar and horzntl joint rnfrcng every other course,excluds scffldn,grout and verticl rnfrcng	0350	3,400.0 sf	11.33	5.95	-	-	-	17.28 /sf	58,748
04-72-10.10	Precast concrete coping, stock units, 12" wall, 14" wide, 4" tapers to 3-1/2", includes mortar, excludes scaffolding	0110	170.0 If	14.53	24.89	-	-	-	39.42 /lf	6,700
	Exterior Masonry Walls Pump station 04 STONE & MASONRY	_	3,400.0 sf	15.88	9.75		0.17	_	25.79 /sf	87,701 87,701
06 WOOD & PL	ASTICS									
	aming -Roof, Pump Station									
	Nails, floor or roof sheathing	1025	29.3 lb	-	2.45	-	-	-	2.45 /lb	72
06-05-23.10	Nails, roof framing, sinkers, 8d to 16d, allow 20 lbs per MBF	5625	107.0 lb	-	2.33	-	-	-	2.33 /lb	249
06-05-23.60	Average cost, hold downs (HD's), 7 to 12 gauge, glulams/beams	1230	4.0 ea	-	23.28	-	-	-	23.28 /ea	93
06-05-23.60	Threaded rod for hold downs, to 1-1/4" diameter, glulams/beams	1295	40.0 If	3.08	1.03	-	0.25	-	4.36 /lf	174
06-05-23.60	Rafter anchors, 18 ga galv, 1.5" wide, 5.25" L, cost per 100	3525	0.2 c	317.30	37.25	-	-	-	354.55 /c	71
06-11-10.10	Framing, beams/girders, 6x or larger, allow average cost per MBF	3800	1.0 mbf	1,150.34	1,539.45	-	-	-	2,689.79 /mbf	2,690
06-11-10.30	Wood framing, roofs, fascia boards, 2" x 8"	6070	0.2 mbf	3,067.58	601.80	-	-	-	3,669.40 /mbf	833
06-11-10.30	Wood framing, roofs, rafters, to 4 in 12 pitch, 2" x 8"	7060	2.0 mbf	730.37	601.79	-	-	-	1,332.16 /mbf	2,611
	Framing, roofs, hip and valley rafters, 2" x 10"	7365	0.0 mbf	862.90	681.20	-	-	-	1,544.00 /mbf	65
06-11-10.30	Wood framing, roofs, hip and valley rafters, to 4 in 12 pitch, 2" x 8"	7600	2.0 mbf	1,415.80	601.79	-	-	-	2,017.59 /mbf	4,067
06-11-10.30	Wood framing, roofs, rafter ties, #3, 1" x 4"	7800	0.0 mbf	3,409.00	1,306.00	-	-	-	4,714.00 /mbf	33
06-11-10.30	Framing, roofs, ridge board, #2 or better, 2" x 12"	7922	0.1 mbf	1,207.90	690.40	-	-	-	1,898.30 /mbf	190
	Furring, wood, on ceilings, on wood, 1" x 3"	0850	160.0 If	1.32	0.36	-	-	-	1.68 /lf	269
06-16-36.10	Sheathing, plywood on roof, CDX, 1/2" thick, pneumatic nailed	0105	1,800.0 sf	0.54	0.56	-	-	-	1.10 /sf	1,978
06-16-36.10	Sheathing, with boards, on roof, laid horizontal, 1" x 6"	1400	150.0 sf	1.27	1.47	-		-	2.73 /sf	410
	Wood Framing -Roof, Pump Station 06 WOOD & PLASTICS		1,800.0 sf	4.37	3.29		0.01		7.67 /sf	13,805 13,805

Project Number: 147571-040
Estimate Issue: 2
Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
04220 Exterior	Masonry Walls Pump station									
07-19-19.10	Silicone water repellants, sprayed on CMU, 2 coat	0300	6,800.0 sf	0.16	0.53	-	-	-	0.69 /sf	4,683
	Exterior Masonry Walls Pump station		3,400.0 sf	0.31	1.07				1.38 /sf	4,683
06120 Wood Er	raming -Roof, Pump Station									
	Blanket insulation, for walls or ceilings, kraft faced	0180	1,800.0 sf	0.28	0.37	_	_	_	0.65 /sf	1,175
07 21 10.20	fiberglass, 6" thick, R19, 23" wide	0100	1,000.0 31	0.20	0.57				0.00 /31	1,175
07-26-10.10	Building Paper, vapor barrier, asphalt felt sheathing paper, 15#	0400	18.0 sq	12.06	4.81	-	-	-	16.87 /sq	304
07-41-13.20	Steel roofing panels, on steel frame, flat profile, standard finish, 1-3/4" standing seams, 10" wide, 26	0710	1,800.0 sf	2.41	3.73	-	-	-	6.14 /sf	11,048
	gauge									
	Wood Framing -Roof, Pump Station 07 THERMAL PROTECTION	_	1,800.0 sf	2.81	4.15				6.96 /sf	12,526 17,210
09 FINISHES										
	raming -Roof, Pump Station	50 0054							0.70 / 6	4.000
09-91-06.41	Coatings & paints, B & C coating system E-8 (Clear epoxy, wood)	BC-0051	1,800.0 sqft	0.26	0.44	-	-	-	0.70 /sqft	1,262
	Wood Framing -Roof, Pump Station	_	1,800.0 sf	0.26	0.44				0.70 /sf	1,262
	09 FINISHES		1,000.0 31	0.20	0.44				0.70 731	1,262
										.,
11 EQUIPMENT										
11999 Influent I	Pump Station									
09-99-99.99	Coatings allowance	MISC	1.0 LS	-	-	30,000.00	-	-	30,000.00 /LS	30,000
11-00-04.00	Hydraulic structures, slide gate, stainless stl, ab &	BC-0106	1.0 ea	2,540.11	7,957.95	-	573.18	-	11,071.24 /ea	11,071
	grout,48" x 48"									
11-00-11.05	Wastewater, submersible,4400 GPM gpm,guide	BC-0011	4.0 ea	9,199.66	130,000.00	-	-	-	139,199.66 /ea	556,799
41-21-23 16	rails, base elbow,175 hp, VFD driven Conveyors, material handling, monorail, overhead,	3900	40.0 If	26.93	20.50	_	_	_	47.43 /lf	1.897
41-21-23.10	manual, channel type, 500 lb per LF	3900	40.0 11	20.93	20.30	_	_	_	47.45 /11	1,097
41-21-23.16	Conveyors, material handling, monorail, overhead,	4300	1.0 ea	-	770.00	300.00	-	-	1,070.00 /ea	1,070
	manual, channel type, trolleys for, 8 wheel, 500 lb									
	capacity									
41-22-23.10	Hoists, material handling, electric overhead, chain,	2500	1.0 ea	-	6,925.00	350.00	-	-	7,275.00 /ea	7,275
44 00 00 40	hook hung, 15' lift, 5 ton capacity	0.4.0.0	= 0.11			40.00			00.50 %	0.40
41-22-23.10	Hoists, material handling, electric overhead, chain,	3100	5.0 If	-	56.50	12.00	-	-	68.50 /lf	343
	hook hung, 15' lift, 1 ton capacity, for lifts over 15', 5 ton, add									
	Influent Pump Station	-	1.0 LS	40,415.72	536,755.45	30,710.00	573.18		608,454.35 /LS	608,454
	11 EQUIPMENT			10,110.12	333,133.13	00,1 10.00	0.0		720	608,454
22 PLUMBING										
22999 Influent I										
	Coating systems allowance	MISC	1.0 LS		-	20,000.00		-	20,000.00 /LS	20,000
22-11-13.44	Pump discharge piping allowance		1.0 ls	29,520.00	100,000.00	-	20,000.00	-	149,520.00 /ls	149,520
	Influent Pump piping		1.0 LS	29,520.00	100,000.00	20,000.00	20,000.00		169,520.00 /LS	169,520
33500 Influent I	PS Yard Piping									
	Piping, pipe, Welded Steel, Welded Jt, 36" diameter	BC-1256	1,625.0 Inft	20.11	244.00	_	4.35	-	268.45 /Inft	436,237
	Pipe, steel, welding labor per joint, 36"dia	BC-1306	45.0 ea	1,979.44	30	-	75.78	-	2,055.22 /ea	92,485
	Pipe, steel ftngs, CI, standard weight, black, 90< elb,	BC-0116	5.0 ea	1,843.18	3,042.00	-	995.92	-	5,881.10 /ea	29,406
	straight, 36"									
22-99-99.99	Tie into existing influent piping/structure allowance		1.0 LS	50,000.00	250,000.00		<u>-</u>	-	300,000.00 /LS	300,000
	Influent PS Yard Piping		1,625.0 LF	111.36	407.21		9.51		528.08 /LF	858,127

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	22 PLUMBING									1,027,647
26 ELECTRICA	L									
	Pump Station - E&I									
26-00-00.02	Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	597,328.02	-	-	597,328.02 /LS	597,328
	Influent Pump Station - E&I 26 ELECTRICAL	_	1.0 LS		-	597,328.02		_	597,328.02 /LS	597,328 597,328
27 COMMUNIC	ATIONS									
	Pump Station - E&I									
27-20-00.01	Instrumentation (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	114,870.78	-	-	114,870.78 /LS	114,871
	Influent Pump Station - E&I		1.0 LS		=	114,870.78		-	114,870.78 /LS	114,871
	27 COMMUNICATIONS									114,871
31 EARTHWOR	K									
01999 Dewater	•									
	Rent wellpoint header pipe, 6" diameter, 400 gpm Dewatering, pumping 8 hours, attended 2 hrs per	0500 1100	900.0 day 90.0 day	- 857.51	-	-	0.40 377.70	-	0.40 /day 1,235.21 /day	360 111,169
31-23-19.20	day, 6" centrifugal pump, includes 20 LF of suction	1100	90.0 day	637.51	-	-	311.10	-	1,233.21 /uay	111,109
	hose and 100 LF of discharge hose									
31-23-19.30	Wells, for dewatering, with steel casing, 10' to 20' deep, 2' diameter, minimum	0020	100.0 vlf	76.64	184.52	-	17.92	-	279.08 /vlf	27,908
	Dewatering	_	1.0 LS	84,839.97	18,452.33	=	36,144.70	_	139,437.00 /LS	139,437
02220 Claba D	ump station wet well									
	Fine grading, fine grade for slab on grade, machine	1100	166.7 sy	1.07	-	_	0.72	_	1.79 /sy	298
	Slabs Pump station wet well	_	116.7 cy	1.52		-	1.03	_	2.55 /cy	298
03330 Slabs P	ump station slab									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	111.1 sy	1.07	-		0.72		1.79 /sy	199
	Slabs Pump station slab		38.9 cy	3.04			2.06		5.11 /cy	199
31250 Shoring	•									
31-41-16.10	Sheet piling, steel, 27 psf, 20' excavation, per S.F., drive, extract and salvage, excludes wales	1600	3,400.0 sf	9.83	6.37	-	7.87	-	24.07 /sf	81,837
31-41-16.10	Sheet piling, wales, connections and struts, 2/3	2500	9.0 ton	-	410.40	-	-	-	410.40 /ton	3,698
	salvage Shoring Systems	-	3,400.0 sf	9.83	7.46	-	7.87	_	25.16 /sf	85,535
	Shoring dystems		3,400.0 31	3.03	7.40		7.07		23.10 /31	03,333
	ion and Backfill pump station	4400	4.000.0	0.00			7.04		44.00 //	40.004
31-23-16.42	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	1,296.0 bcy	6.99	-	-	7.64	-	14.63 /bcy	18,961
31-23-23.14	Backfill, structural, common earth, 105 H.P. dozer,	3020	964.0 lcy	0.70	-	-	0.50	-	1.20 /lcy	1,159
31-23-23 20	50' haul, from existing stockpile, excludes compaction Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv	า 9498	724.0 lcy	3.08	_	_	5.47	_	8.55 /lcy	6,189
31-23-23.20	borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel	3430	124.0 ILY	3.06	-	-	5.47	-	0.00 /ICy	0,109
	truck,cycle 20 miles,45 mph,excld ldng eqpmnt									
31-23-23.23	 Compaction, 3 passes, 12" lifts, riding, sheepsfoot or wobbly wheel roller 	5700	668.0 ecy	0.25	-	-	0.35	-	0.60 /ecy	399
	Excavation and Backfill pump station	_	648.0 cy	18.72		-	22.50	_	41.22 /cy	26,708

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Influent	PS Yard Piping									
31-23-16.13	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes sheeting or dewatering	0510	6,454.9 bcy	2.80	-	-	2.07	-	4.87 /bcy	31,434
31-23-23.13	B Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with sheepsfoot roller	2300	4,092.6 ecy	1.32	-	-	2.85	-	4.16 /ecy	17,043
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	1,936.8 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	46,399
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	1,936.8 ecy	5.57	-	-	0.41	-	5.98 /ecy	11,573
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	2,362.3 lcy	6.23	-	-	5.24	-	11.48 /lcy	27,109
	Influent PS Yard Piping 31 EARTHWORK	_	1,625.0 LF	42.75	12.98	_	26.46	-	82.19 /LF	133,557 385,733
33 UTILITIES										
	PS Yard Piping									
33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	16.0 clf	3.34	5.56	-	-	-	8.90 /clf	142
	Influent PS Yard Piping 33 UTILITIES	_	1,625.0 LF	0.03	0.06			_	0.09 /LF	142 142
	08 Influent Pump Station		1.0 LS	601,963.90	1,485,405.99	762,908.80	159,335.54		3,009,614.23 /LS	3,009,614

Estimate Detail Report

Project Number: 147571-040 Estimate Issue: 2 Due Date: 6/24/2015 **COM ALTERNATIVES ANALYSIS - ALT 1** Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
09 Acetate/Methai	nol									
03 CONCRETE										
03330 Slabs Ch	-	1050	F.C. ov		22.60				22.60 /04	107
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	5.6 cy	-	33.69	-	-	-	33.69 /cy	187
03-11-13.65	C.I.P. concrete forms, slab on grade, slab blockouts, wood, to 12" high, 1 use, includes erecting, bracing, stripping and cleaning	4000	32.0 lf	9.05	0.81	-	-	-	9.86 /lf	315
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.6 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	1,128
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.6 ton	39.87	-	-	7.52	-	47.40 /ton	26
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.6 ton	43.35	-	-	8.17	-	51.51 /ton	29
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	11.7 cy	-	98.01	-	-	-	98.01 /cy	1,144
03-31-05.70	Structural concrete, placing, slab on grade, pumped, over 6" thick, includes vibrating, excludes material	4650	11.7 cy	20.95	-	-	4.31	-	25.26 /cy	295
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	300.0 sf	0.88	-	-	0.03	-	0.91 /sf	273
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	300.0 sf	0.70	0.29	-	-	-	0.99 /sf	298
03-39-13.50	Curing, sprayed membrane curing compound	0300	3.0 csf	9.68	10.12	-			19.80 /csf	59
	Slabs Chemical Storage		300.0 cy	5.53	6.75		0.23		12.52 /cy	3,754
03330 Slabs tar	nk									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	14.8 cy	-	33.69	-	-	-	33.69 /cy	499
03-11-13.65	C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	110.0 sfca	4.16	0.80	-	-	=	4.96 /sfca	545
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	1.4 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	2,817
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	1.4 ton	39.87	-	-	7.52	-	47.39 /ton	66
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	1.4 ton	43.34	-	-	8.16	-	51.51 /ton	72
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	22.2 cy	-	98.01	-	-	-	98.01 /cy	2,178
03-31-05.70	Structural concrete, placing, slab on grade, pumped, over 6" thick, includes vibrating, excludes material	4650	22.2 cy	20.95	-	-	4.31	-	25.26 /cy	561
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and broom finish	0150	600.0 sf	0.82	-	-	-	-	0.82 /sf	490
	Slabs tank	_	22.2 cy	133.56	186.42	•	5.29	_	325.27 /cy	7,228
03333 Acetate t	anks/pumps equipment Pads and containment									
	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing,	2050	740.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	6,365
03-21-10.60	stripping and cleaning Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.3 ton	39.90	-	-	7.50	-	47.41 /ton	13
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.3 ton	43.33	-	-	8.20	-	51.50 /ton	14

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03333 Acetate	tanks/pumps equipment Pads and containment									
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	13.5 cy	-	98.01	-	-	-	98.01 /cy	1,325
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	13.5 cy	27.68	-	-	5.70	-	33.38 /cy	451
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	13.5 cy	46.13	-	-	13.04	-	59.17 /cy	800
	Acetate tanks/pumps equipment Pads and containment	_	13.5 cy	471.83	172.51		19.05		663.39 /cy	8,968
03333 Acetate	pumps Equipment Pads									
	to 1.1.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	72.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	619
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.0 ton	39.80	-	-	7.50	-	47.25 /ton	2
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.0 ton	43.30	-	-	8.30	-	51.50 /ton	2
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.0 cy	-	98.01	-	-	-	98.01 /cy	196
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	2.0 cy	27.68	-	-	5.70	-	33.38 /cy	67
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	2.0 cy	46.13	-	-	13.04	-	59.17 /cy	118
	Acetate pumps Equipment Pads	_	2.0 cy	336.15	147.01		19.05		502.20 /cy	1,004
03333 Methano	ol tank/pump Equipment Pads and containment									
	to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	374.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	3,217
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.3 ton	39.86	-	-	7.50	-	47.37 /ton	13
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.3 ton	43.35	-	-	8.17	-	51.50 /ton	14
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	13.9 cy	-	98.01	-	-	-	98.01 /cy	1,361
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	13.9 cy	27.68	-	-	5.70	-	33.38 /cy	464
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	13.9 cy	46.13	-	-	13.04	-	59.17 /cy	822
	Methanol tank/pump Equipment Pads and	_	13.9 cy	270.46	134.66		19.05		424.17 /cy	5,891
	containment 03 CONCRETE									26,847
04 STONE & MA	ASONRY									
04220 Exterior	Masonry Walls chemical storage									
04-05-16.30	Grout, door frames, 3' x 7' opening, 2.5 CF per opening	0800	2.0 opng	32.67	10.51	-	2.27	-	45.45 /opng	91
04-05-16.30	Grout, door frames, 6' x 7' opening, 3.5 CF per opening	0850	2.0 opng	43.56	14.70	-	3.03	-	61.28 /opng	123
04-05-16.30	Grout, for bond beams, lintels and concrete masonry unit (CMU) cores, C476, includes material only	2000	441.0 cf	5.60	4.20	-	0.39	-	10.19 /cf	4,495
04-05-19.26	Masonry reinforcing bars, #5 and #6 reinforcing steel bars, placed horizontally, ASTM A615	0020	1,575.0 lb	0.65	0.46	-	-	-	1.11 /lb	1,745
04-05-19.26	Masonry reinforcing bars, #5 and #6 reinforcing steel bars, placed vertically, ASTM A615	0060	819.0 lb	0.80	0.46	-	-	-	1.26 /lb	1,030

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
04220 Exterior	Masonry Walls chemical storage									
04-05-19.26	Masonry reinforcing bars, truss type steel joint reinforcing, mill standard galvanized, 12" wide	0250	7.7 clf	26.07	24.73	-	-	-	50.79 /clf	391
04-22-10.28	Concrt block,high strngt,hollow,3500 psi,12"8"16",inclds mortar and horzntl joint rnfrcng every other course,excluds scffldn,grout and verticl rnfrcng	0350	1,050.0 sf	11.33	5.95	-	-	-	17.28 /sf	18,143
	Exterior Masonry Walls chemical storage 04 STONE & MASONRY	_	1,050.0 sf	15.62	8.98		0.17		24.78 /sf	26,017 26,017
06 WOOD & PL										
	aming - Roof Chemical Storage									
	Nails, floor or roof sheathing	1025	6.0 lb	-	2.45	-	-	-	2.45 /lb	15
06-05-23.10	Nails, roof framing, sinkers, 8d to 16d, allow 20 lbs per MBF	5625	6.0 lb	-	2.33	-	-	-	2.33 /lb	14
06-05-23.60	Average cost, hold downs (HD's), 7 to 12 gauge, glulams/beams	1230	4.0 ea	-	23.28	-	-	-	23.28 /ea	93
06-05-23.60	Threaded rod for hold downs, to 1-1/4" diameter, glulams/beams	1295	40.0 If	3.08	1.03	-	0.25	-	4.36 /lf	174
06-05-23.60	I-joist hanger (EWP), 12 to 16 ga., per 100, avg cost	1460	0.1 c	296.80	656.40	-	-	-	953.20 /c	95
	Rafter anchors, 18 ga galv, 1.5" wide, 5.25" L, cost per 100	3525	0.2 c	317.30	37.25	-	-	-	354.55 /c	71
06-11-10.10	Framing, beams/girders, 6x or larger, allow average cost per MBF	3800	0.6 mbf	1,150.34	1,539.44	-	-	-	2,689.79 /mbf	1,641
06-11-10.30	I-joist (composite) rafters , 24" o.c., w/ blocking, avg cost/sf	1050	320.0 sffl	0.78	1.92	-	-	-	2.70 /sffl	865
06-11-10.30	Wood framing, roofs, fascia boards, 2" x 8"	6070	0.2 mbf	3,067.58	601.80	_	-	_	3,669.40 /mbf	833
	Wood framing, roofs, rafters, to 4 in 12 pitch, 2" x 8"	7060	2.0 mbf	730.37	601.79	_	-	_	1,332.16 /mbf	2,611
	Framing, roofs, hip and valley rafters, 2" x 10"	7365	0.0 mbf	862.90	681.20	_	_	_	1,544.00 /mbf	65
	Wood framing, roofs, hip and valley rafters, to 4 in 12 pitch, 2" x 8"	7600	2.0 mbf	1,415.80	601.79	-	-	-	2,017.59 /mbf	4,067
06-11-10 30	Wood framing, roofs, rafter ties, #3, 1" x 4"	7800	0.0 mbf	3,409.00	1,306.00	_	_	_	4,714.00 /mbf	33
	Framing, roofs, ridge board, #2 or better, 2" x 12"	7922	0.1 mbf	1,207.90	690.40	_	_	_	1,898.30 /mbf	190
	Furring, wood, on ceilings, on wood, 1" x 3"	0850	320.0 If	1,207.90	0.36	_	_	_	1.68 /lf	537
	Sheathing, plywood on roof, CDX, 1/2" thick, pneumatic nailed	0105	300.0 sf	0.54	0.56	-	-	-	1.10 /sf	330
06-16-36.10	Sheathing, with boards, on roof, laid horizontal, 1" x 6"	1400	150.0 sf	1.27	1.47	-	-	-	2.73 /sf	410
	Wood Framing - Roof Chemical Storage 06 WOOD & PLASTICS	_	300.0 sf	23.68	16.44		0.03		40.15 /sf	12,044 12,044
07 THERMAL P	ROTECTION									
04220 Exterior	Masonry Walls chemical storage									
07-19-19.10	Silicone water repellants, sprayed on CMU, 2 coat Exterior Masonry Walls chemical storage	0300 _	2,100.0 sf 1,050.0 sf	0.16 0.31	0.53 1.07	-	-	-	0.69 /sf 1.38 /sf	1,446 1,446
	aming - Roof Chemical Storage Blanket insulation, for walls or ceilings, kraft faced	0180	300.0 sf	0.28	0.37	-	-	-	0.65 /sf	196
07-26-10.10	fiberglass, 6" thick, R19, 23" wide Building Paper, vapor barrier, asphalt felt sheathing	0400	3.0 sq	12.06	4.81	-	-	-	16.87 /sq	51
07-41-13.20	paper, 15# Steel roofing panels, on steel frame, flat profile,	0710	300.0 sf	2.41	3.73	-	-	-	6.14 /sf	1,841
	standard finish, 1-3/4" standing seams, 10" wide, 26 gauge									
	Wood Framing - Roof Chemical Storage	_	300.0 sf	2.81	4.15				6.96 /sf	2,088

COM ALTERNATIVES ANALYSIS - ALT 1

Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	07 THERMAL PROTECTION									3,534
09 FINISHES										
	aming - Roof Chemical Storage Coatings & paints, B & C coating system E-8 (Clear epoxy, wood)	BC-0051	320.0 sqft	0.26	0.44	-	-	-	0.70 /sqft	224
	Wood Framing - Roof Chemical Storage 09 FINISHES	_	300.0 sf	0.27	0.47				0.75 /sf	224 224
11 EQUIPMENT										
11999 Aeration	FRP tank, acetate, 7,500 gal.,	BC-0016	1.0 ea	2,022.71	21,000.00	_	622.71		23,645.42 /ea	23,645
	Chemical metering pump, acetate	BC-0010	2.0 ea	459.41	11,000.00	_	022.71	_	11,459.41 /ea	22,919
	Chemical metering pump, methanol	BC-0041	2.0 ea	565.42	11,000.00	_	_	_	11,565.42 /ea	23,131
	Storage tank, horizontal, concrete, above ground, fuel-oil, vaulted, 20,000 gallon, incl. pad & pump	0600	1.0 ea	2,722.91	108,000.00	-	1,150.56	-	111,873.47 /ea	111,873
	Aeration Chemical 11 EQUIPMENT	_	1.0 LS	6,795.27	173,000.00	-	1,773.27		181,568.54 /LS	181,569 181,569
21 FIRE SUPPR										
22999 Chemica		MISC	1.0 LS			20,000.00			20,000.00 /LS	20,000
21-99-99.99	Fire suppression system allowance Chemical Piping	IVIISC _	1.0 LS	-		20,000.00	-	-	20,000.00 /LS 20,000.00 /LS	20,000
	21 FIRE SUPPRESSION		1.0 L3			20,000.00			20,000.00 /L3	20,000
22 PLUMBING										
22999 Chemica	l Piping									
22-99-99.99		MISC	2.0 LS	1,795.00	2,500.00		-	-	4,295.00 /LS	8,590
22-99-99.99	Chemical piping allowance methanol tank/pumps	MISC _	2.0 LS	2,692.50	3,750.00		-	-	6,442.50 /LS	12,885
	Chemical Piping 22 PLUMBING		1.0 LS	8,975.00	12,500.00				21,475.00 /LS	21,475 21,475
26 ELECTRICAL	_									
26001 Aeration	Chemical Storage - E&I (#15)									
26-00-00.02	Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	64,012.09	-	-	64,012.09 /LS	64,012
	Aeration Chemical Storage - E&I (#15) 26 ELECTRICAL		1.0 LS			64,012.09			64,012.09 /LS	64,012 64,012
27 COMMUNICA	ATIONS									
	Chemical Storage - E&I (#15) Instrumentation (This is based on a percentage of	FACTOR	1.0 LS			16,003.03			16,003.03 /LS	16,003
27-20-00.01	the Total Project Costs)	ED	1.0 L3	_	_	10,003.03	_	_	10,003.03 /L3	10,003
	Aeration Chemical Storage - E&I (#15) 27 COMMUNICATIONS	_	1.0 LS		-	16,003.03			16,003.03 /LS	16,003 16,003
31 EARTHWOR	K									
03330 Slabs Ch									, == ,	
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	33.3 sy	1.07	-		0.72	-	1.79 /sy	60
	Slabs Chemical Storage		300.0 cy	0.12			0.08		0.20 /cy	60
03330 Slabs tar										
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	66.7 sy	1.07	-		0.72	-	1.79_/sy	119
	Slabs tank		22.2 cy	3.20			2.17		5.36 /cy	119

COM ALTERNATIVES ANALYSIS - ALT 1

Project Number: 147571-040 Estimate Issue: 2

Due Date: 6/24/2015
Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
31 E	EARTHWORK									179
33 UTILITIES 33999 Chemical feed	yard piping									
33-11-13.25 Che	emical piping, double contained, allowance		1.0 ls	6,152.00	20,020.00	-	2,000.00	-	28,172.00 /ls	28,172
Ch	emical feed yard piping		1.0 LS	6,152.00	20,020.00		2,000.00		28,172.00 /LS	28,172
33 L	JTILITIES									28,172
09 A	Acetate/Methanol		1.0 LS	62,221,40	233.055.77	100.015.12	4.783.21		400.075.50 /LS	400.076

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
10 Sidestream P										
11 EQUIPMENT	। Pearl Nutrient Removal									
	OStara Pearl nutrient removal process, quote from 2010 project, including all equip, conc, bldngs for	MISC	1.0 LS	-	-	2,400,000.00	-	-	2,400,000.00 /LS	2,400,000
	complete turnkey system, increased for inflation Ostara Pearl Nutrient Removal	_	1.0 LS		-	2,400,000.00			2,400,000.00 /LS	2,400,000
	11 EQUIPMENT									2,400,000
26 ELECTRICA	ıL									
26001 Ostara -	E&I (#10)									
26-00-00.02	Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	289,158.69	-	-	289,158.69 /LS	289,159
	Ostara - E&I (#10) 26 ELECTRICAL		1.0 LS		-	289,158.69			289,158.69 /LS	289,159 289,159
27 COMMUNIC	ATIONS									
26001 Ostara -										
27-20-00.01	Instrumentation (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	96,386.24	-	-	96,386.24 /LS	96,386
	Ostara - E&I (#10) 27 COMMUNICATIONS	_	1.0 LS		_	96,386.24			96,386.24 /LS	96,386 96,386
31 EARTHWOR	RK									
33500 Centrate	e Discharge									
31-23-16.13	B Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	0110	63.3 bcy	3.73	-	-	2.23	-	5.96 /bcy	377
31-23-23.13	B Backfill, trench, air tamped compaction, add	2000	39.3 ecy	13.60	-	-	3.85	-	17.44 /ecy	685
31-23-23.16	6 Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	22.8 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	546
31-23-23.16	6 Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	22.8 ecy	5.57	-	-	0.41	-	5.98 /ecy	136
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump	0150	24.1 lcy	6.23	-	-	5.24	-	11.48 /lcy	276
31-41-13.10	truck, highway haulers, excludes loading Trench box and jacks, cost per sfca trench wall,	2000	1,140.0 sf	-	-	6.69	-	-	6.69 /sf	7,627
	monthly rental Centrate Discharge	_	100.0 unit	12.88	2.48	76.27	4.84		96.47 /unit	9,647
	31 EARTHWORK		100.0 unit	12.00	2.40	70.27	4.04		30.47 /uiii	9,647
33 UTILITIES										
33500 Centrate										_
33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	1.0 clf	3.34	5.56	-	-	-	8.90 /clf	9
	Centrate Discharge	_	100.0 unit	0.03	0.06				0.09 /unit	9
	33 UTILITIES 10 Sidestream P Removal 01 TOTAL AMOUNT		1.0 LS	1,291.44	253.62	2,793,171.53	483.98		2,795,200.57 /LS	9 2,795,201 34,926,640

COM ALTERNATIVES ANALYSIS - ALT 1

Estimate Totals

Description	Rate		Hours	Amount	Totals
Labor			97,664 hrs	6,841,825	
Material Subcontract				16,903,505	
Equipment			124,550 hrs	9,364,086 1,816,696	
Other			124,550 1113	528	
			_	34,926,640	34,926,640
Civil and Misc. Yard Piping	5.000	%	_	1,746,332	
				1,746,332	36,672,972
Labor Mark-up	10.000	%		684,183	
Material Mark-up	8.000	%		1,352,280	
Subcontractor Mark-up	5.000	%		140,305	
Construction Equipment Mark-up	8.000	%		145,336	
Other - Process Equip Mark-up	8.000	%		42	
Material Shipping & Handling	2.000	%		338,070	
Material Sales Tax	6.000	%		609,942	
				3,270,158	39,943,130
Contractor General Conditions	10.000	%		3,994,313	
Start-Up, Training, O&M	2.000	%		798,863	
Undesign/Undevelop Contingency	30.000	%		11,982,939	
				16,776,115	56,719,245
Bldg Risk, Liability Auto Ins	2.000	%		1,134,385	
Contractor Bonds & Insurance	1.500	%		850,789	
			_	1,985,174	58,704,419
Total					58,704,419

Estimate Detail Report

6/24/2015 9:13 AM

Project Number: 147571-040

Estimate Issue: 2

Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

COM ALTERNATIVES ANALYSIS - ALT 2

CITY OF MERIDIAN COM ALTERNATIVES ANALYSIS - ALT 2 PRE-BODR - FACILITY PLANNING

Estimator DG-NDG-FB-IK

BC Project Manager Richard Kelly

BC Office Seattle Estimate Issue No. 2

QA/QC Reviewer Don Snowden QA/QC Review Date 5/26/2015

Notes PROCESS LOCATION/AREA INDEX

01 Primary Clarifiers

02 Aeration Tanks

03 Secondary Clarifiers

04 Existing Aeration Tanks/RAS Tanks Retrofit

05 Tertiary Treatment Process

07 MBR Treatment

08 Influent Pump Station

09 Acetate/Methanol

10 Sidestream P Removal

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
01 Primary Clarific	ers									
03 CONCRETE										
03330 Slabs Pri	=	1050	210.1 cy		33.69				33.69 /cv	7,078
03-03-13.23	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1030	210.1 Cy	-	33.09	-	-	-	33.09 /Cy	7,078
03-11-13.85	C.I.P. concrete forms, wall, job built, plywood, to 8' high, 2 use, includes erecting, bracing, stripping and cleaning	2050	360.0 sfca	6.39	1.76	-	-	-	8.16 /sfca	2,937
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	252.0 If	3.61	4.42	-	-	-	8.03 /lf	2,022
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	21.0 ea	9.39	47.88	-	-	-	57.27 /ea	1,203
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	31.5 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	63,905
03-21-10.60	Reinforcing in place, A615 Gr 60, walls, #8 to #18	0760	1,800.0 lb	0.30	0.48	-	-	-	0.77 /lb	1,393
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	32.4 ton	39.87	-	-	7.51	-	47.38 /ton	1,536
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	32.4 ton	43.34	-	-	8.17	-	51.51 /ton	1,669
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	455.2 cy	-	98.01	-	-	-	98.01 /cy	44,611
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	441.2 cy	9.69	-	-	2.00	-	11.68 /cy	5,154
03-31-05.70	Structural concrete, placing, walls, pumped, 8" thick, includes vibrating, excludes material	4950	14.0 cy	38.75	-	-	7.98	-	46.73 /cy	654
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	5,672.0 sf	0.88	-	-	0.03	-	0.91 /sf	5,167
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	5,672.0 sf	0.70	0.29	-	-	-	0.99 /sf	5,640
03-39-13.50	Curing, sprayed membrane curing compound Slabs Primary Clarifiers	0300 _	56.7 csf 22.2 cy	9.68 2,413.50	10.12 3,996.12		75.13		19.80 /csf 6,484.75 /cy	1,123 144,091
03330 Slabs Pu 03-05-13.25	mp Station Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	14.8 cy	-	33.69	-	-	-	33.69 /cy	499
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	21.3 sfca	7.24	1.36	-	-	-	8.60 /sfca	184
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	80.0 If	3.61	4.42	-	-	-	8.03 /lf	642
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	7.0 ea	9.38	47.88	-	-	-	57.26 /ea	401
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	2.2 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	4,506
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	31.6 lb	0.52	0.48	-	-	-	0.99 /lb	31
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	2.2 ton	39.87	-	-	7.51	-	47.38 /ton	106
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	2.2 ton	43.34	-	-	8.17	-	51.51 /ton	115
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	31.9 cy	-	98.01	-	-	-	98.01 /cy	3,131

Brown AND Caldwell COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Pu	ump Station									
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	31.9 cy	9.69	-	-	2.00	-	11.68 /cy	373
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	400.0 sf	0.38	-	-	-	-	0.38 /sf	151
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	400.0 sf	0.70	0.29	-	-	-	0.99 /sf	398
03-39-13.50	Curing, sprayed membrane curing compound Slabs Pump Station	0300	4.0 csf 400.0 cy	9.68	10.12 16.81	-	0.25		19.80 /csf 26.54 /cy	79 10,616
03330 Slabs Sp	Nitter Boy									
-	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	5.3 cy	-	33.69	-	-	-	33.69 /cy	180
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	48.0 If	3.61	4.42	-	-	-	8.03 /lf	385
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	4.0 ea	9.39	47.88	-	-	-	57.27 /ea	229
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.8 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	1,622
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.8 ton	39.88	-	-	7.51	-	47.39 /ton	38
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.8 ton	43.34	-	-	8.16	-	51.50 /ton	41
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	11.2 cy	-	98.01	-	-	-	98.01 /cy	1,098
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	11.2 cy	9.69	-	-	2.00	-	11.68 /cy	131
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	144.0 sf	0.38	-	-	-	-	0.38 /sf	54
	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	144.0 sf	0.70	0.29	-	-	-	0.99 /sf	143
03-39-13.50	Curing, sprayed membrane curing compound Slabs Splitter Box	0300	1.4 csf 11.2 cy	9.68	10.13 226.00	-	3.12		19.81 /csf 352.69 /cy	29 3,950
03330 Slabs So	sum Pumn									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	1.3 cy	-	33.69	-	-	-	33.69 /cy	45
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	5.3 sfca	7.24	1.36	-	-	-	8.60 /sfca	46
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	24.0 If	3.61	4.42	-	-	-	8.03 /lf	193
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	2.0 ea	9.39	47.88	-	-	-	57.27 /ea	115
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.2 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	406
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	4.0 lb	0.52	0.48	-	-	-	1.00 /lb	4
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.2 ton	39.85	-	-	7.50	-	47.40 /ton	10
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.2 ton	43.30	-	-	8.17	-	51.50 /ton	10

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Sc	cum Pump									
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.9 cy	-	98.01	-	-	-	98.01 /cy	285
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	2.9 cy	9.69	-	-	1.99	-	11.68 /cy	34
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and hand trowel finish	0200	36.0 sf	1.20	-	-	-	-	1.20 /sf	43
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	36.0 sf	0.70	0.29	-	-	-	0.99 /sf	36
03-39-13.50	Curing, sprayed membrane curing compound Slabs Scum Pump	0300 _	0.4 csf 2.9 cy	9.67 162.05	10.10 259.65	-	3.09	-	19.78 /csf 424.79 /cy	<u>7</u> 1,232
	imary Clarifiers Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	210.1 cy	-	33.69	-	-	-	33.69 /cy	7,078
03-11-13.85	C.I.P. concrete forms, wall, job built, plywood, to 8' high, 2 use, includes erecting, bracing, stripping and cleaning	2050	360.0 sfca	6.39	1.76	-	-	-	8.16 /sfca	2,937
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	252.0 If	3.61	4.42	-	-	-	8.03 /lf	2,022
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	21.0 ea	9.39	47.88	-	-	-	57.27 /ea	1,203
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	31.5 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	63,905
03-21-10.60	Reinforcing in place, A615 Gr 60, walls, #8 to #18	0760	1,800.0 lb	0.30	0.48	-	-	-	0.77 /lb	1,393
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	32.4 ton	39.87	-	-	7.51	-	47.38 /ton	1,536
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	32.4 ton	43.34	-	-	8.17	-	51.51 /ton	1,669
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	455.2 cy	-	98.01	-	-	-	98.01 /cy	44,611
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	441.2 cy	9.69	-	-	2.00	-	11.68 /cy	5,154
03-31-05.70	Structural concrete, placing, walls, pumped, 8" thick, includes vibrating, excludes material	4950	14.0 cy	38.75	-	-	7.98	-	46.73 /cy	654
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	5,672.0 sf	0.88	-	-	0.03	-	0.91 /sf	5,167
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	5,672.0 sf	0.70	0.29	-	-	-	0.99 /sf	5,640
03-39-13.50	Curing, sprayed membrane curing compound Slabs Primary Clarifiers	0300 _	56.7 csf 455.2 cy	9.68 117.82	10.12 195.08	-	3.67	-	19.80 /csf 316.57 /cy	1,123 144,091
03330 Slabs So	Sum Pumn									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	1.3 cy	-	33.69	-	-	-	33.69 /cy	45
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing,	2050	5.3 sfca	7.24	1.36	-	-	-	8.60 /sfca	46
03-15-13.50	stripping and cleaning Waterstop, PVC, ribbed type, split, 3/8" thick x 6"	1300	24.0 If	3.61	4.42	-	-	-	8.03 /lf	193
03-15-13.50	wide Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	2.0 ea	9.39	47.88	-	-	-	57.27 /ea	115

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Sc	um Pump									
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.2 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	406
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	4.0 lb	0.52	0.48	-	-	-	1.00 /lb	4
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.2 ton	39.85	-	-	7.50	-	47.40 /ton	10
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.2 ton	43.30	-	-	8.17	-	51.50 /ton	10
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.9 cy	-	98.01	-	-	-	98.01 /cy	285
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	2.9 cy	9.69	-	-	1.99	-	11.68 /cy	34
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and hand trowel finish	0200	36.0 sf	1.20	-	-	-	-	1.20 /sf	43
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	36.0 sf	0.70	0.29	-	-	-	0.99 /sf	36
03-39-13.50	Curing, sprayed membrane curing compound Slabs Scum Pump	0300 _	0.4 csf 2.9 cy	9.67 162.05	10.10 259.65	-	3.09		19.78 /csf 424.79 /cy	<u>7</u> 1,232
00000 D-!	aliadas assessa a serbana and Barda									
-	sludge pump equipment Pads C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing,	2050	60.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	516
03-21-10.60	stripping and cleaning Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.1 ton	39.80	-	-	7.50	-	47.30 /ton	2
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.1 ton	43.30	-	-	8.00	-	51.30 /ton	3
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.6 cy	-	98.01	-	-	-	98.01 /cy	254
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	2.6 cy	27.68	-	-	5.70	-	33.38 /cy	87
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	2.6 cy	46.13		-	13.04		59.16 /cy	153
	Primary sludge pump equipment Pads		2.6 cy	243.02	129.51		19.05		391.58 /cy	1,015
03345 Concrete	e Walls Primary Carifiers									
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	7,056.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	48,881
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	18.8 gal	-	20.66	-	-	-	20.66 /gal	389
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	9.8 ton	794.28	992.00	-	-	-	1,786.28 /ton	17,506
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	9.8 ton	39.87	-	-	7.51	-	47.38 /ton	464
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	9.8 ton	43.34	-	-	8.17	-	51.51 /ton	505
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	137.2 cy	-	98.01	-	-	-	98.01 /cy	13,447
03-31-05.70	Structural concrete, placing, walls, pumped, 15"	5350	137.2 cy	32.29	-	-	6.65	-	38.94 /cy	5,343

thick, includes vibrating, excludes material

Project Number: 147571-040

Estimate Issue: 2

Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls Primary Carifiers									
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Primary Carifiers	0700 _	7,056.0 sf 137.2 cy	1.89 509.91	0.42 231.72	-	0.22 19.02		2.53 /sf 760.65 /cy	17,826 104,361
03345 Concrete	e Walls Pump Station									
	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	20.0 If	10.50	2.14	-	-	-	12.63 /lf	253
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	3,200.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	24,640
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	8.5 gal	-	20.66	-	-	-	20.66 /gal	176
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	4.4 ton	794.28	992.00	-	-	-	1,786.28 /ton	7,938
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	4.4 ton	39.87	-	-	7.51	-	47.38 /ton	211
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	4.4 ton	43.34	-	-	8.17	-	51.50 /ton	229
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	62.2 cy	-	98.01	-	-	-	98.01 /cy	6,099
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	62.2 cy	32.29	-	-	6.65	-	38.94 /cy	2,423
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	3,200.0 sf	1.89	0.42	-	0.22		2.53 /sf	8,084
	Concrete Walls Pump Station		62.2 cy	553.02	232.41		19.02		804.45 /cy	50,053
03345 Concrete	e Walls Splitter Box									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	20.0 If	10.50	2.14	-	-	-	12.63 /lf	253
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	1,920.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	14,784
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	5.1 gal	-	20.66	-	-	-	20.66 /gal	106
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	4.7 ton	794.28	992.00	-	-	-	1,786.27 /ton	8,337
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	4.7 ton	39.87	-	-	7.51	-	47.38 /ton	221
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	4.7 ton	43.34	-	-	8.17	-	51.51 /ton	240
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	56.0 cy	-	98.01	-	-	-	98.01 /cy	5,489
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	56.0 cy	32.29	-	-	6.65	-	38.94 /cy	2,181
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Splitter Box	0700 _	1,920.0 sf 56.0 cy	1.89 412.28	0.42 223.35	-	0.22 15.46		2.53 /sf 651.08 /cy	4,851 36,461
03345 Concrete	e Walls scum pump									
	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	20.0 If	10.50	2.14	-	-	-	12.63 /lf	253

Estimator: DG-NDG-FB-IK

Project Number: 147571-040 Estimate Issue: 2 Due Date: 6/24/2015

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls scum pump									
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	960.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	7,392
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	2.6 gal	-	20.66	-	-	-	20.66 /gal	53
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	20.0 If	3.24	14.92	-	-	-	18.15 /lf	363
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	2.0 ea	9.39	35.79	-	-	-	45.17 /ea	90
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	2.0 ton	794.28	992.00	-	-	-	1,786.28 /ton	3,573
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	2.0 ton	39.87	-	-	7.52	-	47.39 /ton	95
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	2.0 ton	43.34	-	-	8.17	-	51.51 /ton	103
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	28.0 cy	-	98.01	-	-	-	98.01 /cy	2,744
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	28.0 cy	32.29	-	-	6.65	-	38.94 /cy	1,090
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	960.0 sf	1.89	0.42		0.22		2.53 /sf	2,425
	Concrete Walls scum pump		28.0 cy	408.56	225.51		15.27		649.34 /cy	18,181
03345 Concrete	Walls Primary Carifiers									
	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	7,056.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	48,881
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	18.8 gal	-	20.66	-	-	-	20.66 /gal	389
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	9.8 ton	794.28	992.00	-	-	-	1,786.28 /ton	17,506
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	9.8 ton	39.87	-	-	7.51	-	47.38 /ton	464
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	9.8 ton	43.34	-	-	8.17	-	51.51 /ton	505
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	137.2 cy	-	98.01	-	-	-	98.01 /cy	13,447
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	137.2 cy	32.29	-	-	6.65	-	38.94 /cy	5,343
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	7,056.0 sf	1.89	0.42		0.22		2.53 /sf	17,826
	Concrete Walls Primary Carifiers		137.2 cy	509.91	231.72		19.02		760.65 /cy	104,361
03345 Concrete	Walls scum pump									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	20.0 If	10.50	2.14	-	-	-	12.63 /lf	253
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	960.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	7,392
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	2.6 gal	-	20.66	-	-	-	20.66 /gal	53

Project Number: 147571-040
Estimate Issue: 2
Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls scum pump									
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	20.0 If	3.24	14.92	-	-	-	18.15 /lf	363
	Waterstop, rubber, field union, 3/8" x 6" wide, walls Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for	5205 0700	2.0 ea 2.0 ton	9.39 794.28	35.79 992.00	-	-	-	45.17 /ea 1,786.28 /ton	90 3,573
03-21-10.60	accessories Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	2.0 ton	39.87	-	-	7.52	-	47.39 /ton	95
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	2.0 ton	43.34	-	-	8.17	-	51.51 /ton	103
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	28.0 cy	-	98.01	-	-	-	98.01 /cy	2,744
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	28.0 cy	32.29	-	-	6.65	-	38.94 /cy	1,090
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls scum pump	0700 _	960.0 sf 28.0 cy	1.89 408.56	0.42 225.51		0.22 15.27		2.53 /sf 649.34 /cy	2,425 18,181
022E0 Elevetes	I Slab Pump station									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring,	1150	400.0 sf	4.97	1.27	-	-	-	6.24 /sf	2,495
03-11-13.35	erecting, bracing, stripping and cleaning Cip concrete forms,elevated slab,box-out for shallow slab openings,over 10 sf (use perimeter),includes	5550	24.0 If	4.64	1.62	-	-	-	6.26 /lf	150
03-11-13.35	shoring,erecting,bracing,stripping and cleaning C.I.P. concrete forms, elevated slab, edge forms, to 6' high, 4 use, includes shoring, erecting, bracing,	7000	80.0 If	3.62	0.21	-	-	-	3.83 /lf	307
03-11-13.35	stripping and cleaning C.I.P. concrete forms, elevated slab, perimeter deck and rail, straight, includes shoring, erecting, bracing,	8000	80.0 If	20.11	12.55	-	-	-	32.66 /lf	2,613
03-21-10.60	stripping and cleaning Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.0 ton	822.00	992.00	-	-	-	1,814.00 /ton	29
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	8.00	-	48.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	114.00	-	-	21.00	-	135.00 /ton	1
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	15.6 cy	-	98.01	-	-	-	98.01 /cy	1,525
	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	15.6 cy	21.53	-	-	4.43	-	25.96 /cy	404
	Concrete finishing, floors, monolithic, screed finish Concrete finishing, floor, hardener, non-metallic, light	0020 2300	400.0 sf 400.0 sf	0.32 0.62	0.19	-	-	-	0.32 /sf 0.81 /sf	126 324
03-39-13.50	service, 0.50 psf, add Curing, sprayed membrane curing compound, elevated decks	0310	4.0 csf	9.68	10.12	-	-	-	19.80 /csf	79
	Elevated Slab Pump station	_	15.6 cy	305.79	207.31	-	4.45	_	517.55 /cy	8,053
03350 Elevated	I Slab Splitter Box									
03-11-13.35	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	144.0 sf	4.97	1.27	-	-	-	6.24 /sf	898
03-11-13.35	Cip concrete forms, elevated slab,box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	24.0 If	4.64	1.62	-	-	-	6.26 /lf	150

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03350 Elevated	Slab Splitter Box									
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	48.0 If	3.62	0.21	-	-	-	3.83 /lf	184
03-11-13.35	C.I.P. concrete forms, elevated slab, perimeter deck and rail, straight, includes shoring, erecting, bracing, stripping and cleaning	8000	48.0 If	20.11	12.55	-	-	-	32.66 /lf	1,568
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.4 ton	821.66	992.00	-	-	-	1,813.66 /ton	635
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	7.00	-	46.67 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	113.00	-	-	20.00	-	133.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	5.6 cy	-	98.01	-	-	-	98.01 /cy	549
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	5.6 cy	21.53	-	-	4.43	-	25.96 /cy	145
03-35-29.30	Concrete finishing, floors, monolithic, screed finish	0020	144.0 sf	0.32	-	-	-	-	0.32 /sf	45
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	144.0 sf	0.62	0.19	-	-	-	0.81 /sf	117
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	1.4 csf	9.68	10.13	-	-		19.81 /csf	29
	Elevated Slab Splitter Box		5.6 cy	450.48	316.56		4.45		771.49 /cy	4,320
03350 Flevated	Slab Scum pump									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	36.0 sf	4.97	1.27	-	-	-	6.24 /sf	225
03-11-13.35	Cip concrete forms, elevated slab, box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	24.0 If	4.64	1.62	-	-	-	6.26 /lf	150
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	36.0 If	3.62	0.21	-	-	-	3.83 /lf	138
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.1 ton	821.70	992.00	-	-	-	1,813.71 /ton	127
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	10.00	-	50.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	110.00	-	-	20.00	-	130.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	1.4 cy	-	98.01	-	-	-	98.01 /cy	137
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	1.4 cy	21.53	-	-	4.44	-	25.96 /cy	36
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	36.0 sf	0.88	-	-	0.03	-	0.91 /sf	33
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	36.0 sf	0.62	0.19	-	-	-	0.81 /sf	29
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	0.4 csf	9.67	10.10	-			19.78 /csf	7
	Elevated Slab Scum pump		1.4 cy	404.06	221.08		5.22		630.36 /cy	883

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03350 Elevated	Slab Scum pump									
03-11-13.35	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	36.0 sf	4.97	1.27	-	-	-	6.24 /sf	225
03-11-13.35	Cip concrete forms, elevated slab, box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	24.0 lf	4.64	1.62	-	-	-	6.26 /lf	150
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	36.0 lf	3.62	0.21	-	-	-	3.83 /lf	138
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.1 ton	821.70	992.00	-	-	-	1,813.71 /ton	127
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	10.00	-	50.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	110.00	-	-	20.00	-	130.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	1.4 cy	-	98.01	-	-	-	98.01 /cy	137
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	1.4 cy	21.53	-	-	4.44	-	25.96 /cy	36
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	36.0 sf	0.88	-	-	0.03	-	0.91 /sf	33
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	36.0 sf	0.62	0.19	-	-	-	0.81 /sf	29
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	0.4 csf	9.67	10.10	-	-	-	19.78 /csf	7
	Elevated Slab Scum pump 03 CONCRETE		1.4 cy	404.06	221.08		5.22		630.36 /cy	883 651,964
05 METALS										
11999 Primary	Clarifier									
05-01-10.51	Metal cleaning, steel surface treatment, 5.6 lb sand per S.F., near white blast, loose scale, fine powder rust (SSPC-SP10)	6255	3,200.0 sf	4.22	0.88	-	0.54	-	5.63 /sf	18,030
05-01-10.51	Metal cleaning, steel surface treatment, 5.6 lb sand per S.F., near white blast, loose scale, fine powder rust (SSPC-SP10)	6255	3,200.0 sf	4.22	0.88	-	0.54	-	5.63 /sf	18,030
09-91-06.41	Coatings & paints, B & C coating system E-2 (Epoxy, metal tanks, structures)	BC-0021	6,400.0 sqft	0.28	1.40	-	-	-	1.69 /sqft	10,797
	Primary Clarifier		1.0 LS	28,823.45	14,611.20		3,421.32		46,855.97 /LS	46,856
44000 Cludes F	Number and Bining									
_	Pumps and Piping Pump mounting base plate, complete w/ anchor bolts. 4 sf	BC-0001	2.0 ea	622.68	795.79	-	-	-	1,418.47 /ea	2,837
	Sludge Pumps and Piping 05 METALS	_	1.0 LS	1,245.35	1,591.58			-	2,836.93 /LS	2,837 49,693
07 THERMAL P	ROTECTION ructural Steel Work									
	Manhole cover	1100	1.0 ea	249.60	1,584.55	_	_	_	1,834.15 /ea	1,834
52 56.10	Misc. Structural Steel Work 07 THERMAL PROTECTION		1.0 LS	249.60	1,584.55			_	1,834.15 /LS	1,834 1,834

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11999 Primary	Clarifier									
09-91-06.41	Coatings & paints, B & C coating system E-2 (Epoxy, metal tanks, structures)	BC-0021	6,400.0 sqft	0.28	1.40	-	-	-	1.69 /sqft	10,797
	Primary Clarifier	_	1.0 LS	1,811.25	8,985.60			_	10,796.85 /LS	10,797
11999 Sludge P	tumps and Piping									
_	Coatings allowance	MISC _	1.0 LS	-		20,000.00	-		20,000.00 /LS	20,000
	Sludge Pumps and Piping 09 FINISHES		1.0 LS			20,000.00			20,000.00 /LS	20,000 30,797
11 EQUIPMENT										
11999 Primary										
11-00-01.00	Mechanical, clarifier mechanism, primary, 80' dia., 14' sidewall, w/ bridge, cage, launders, FRP weirs, & baffles	BC-1036	1.0 ea	30,631.78	215,000.00	-	8,710.92	-	254,342.70 /ea	254,343
11-00-01.00	Mechanical, clarifier mechanism, primary, 80' dia., 14' sidewall, w/ bridge, cage, launders, FRP weirs, & baffles	BC-1036	1.0 ea	30,631.78	215,000.00	-	8,710.92	-	254,342.70 /ea	254,343
11-00-11.05	Wastewater, submersible, 3-inch, 6.5 hp,,guide rails, base elbow, scum pump	BC-0071	1.0 ea	1,194.45	7,510.00	-	-	-	8,704.45 /ea	8,704
11-00-11.05	Wastewater, submersible, 3-inch, 6.5 hp,,guide rails, base elbow, scum pump	BC-0071	1.0 ea	1,194.45	7,510.00	-	-	-	8,704.45 /ea	8,704
	Primary Clarifier	-	1.0 LS	63,652.46	445,020.00	-	17,421.84	_	526,094.30 /LS	526,094
44000 Cludes D	tumps and Piping									
_	Pump, double disc diaphragm, sludge pump	BC-0176	2.0 ea	2,789.95	31,000.00	-	333.44	_	34,123.39 /ea	68,247
	Sludge Pumps and Piping 11 EQUIPMENT	_	1.0 LS	5,579.90	62,000.00	_	666.88	-	68,246.78 /LS	68,247 594,341
22 PLUMBING										
11999 Primary	Clarifier									
11-00-04.00	Hydraulic structures, slide gate, stainless stl, ab & grout,36" x 36"	BC-0101	1.0 ea	2,455.44	4,774.77	-	554.07	-	7,784.28 /ea	7,784
11-00-04.00	Hydraulic structures, slide gate, stainless stl, ab & grout,36" x 36"	BC-0101	1.0 ea	2,455.44	4,774.77	-	554.07	-	7,784.28 /ea	7,784
22-05-23.70	Valves, semi-steel, lubricated plug valve, flanged, 200 psi, 12"	7070	1.0 ea	907.31	4,700.00	-	-	-	5,607.31 /ea	5,607
22-05-23.70	Valves, semi-steel, lubricated plug valve, flanged, 200 psi, 12"	7070	1.0 ea	907.31	4,700.00	-	-	-	5,607.31 /ea	5,607
22-11-13.44	Pipe, steel, black, welded, 36" diameter, schedule 40, Spec. A-53, includes two rod, roll hanger & saddle, sized for covering, 10' OC	2220	75.0 If	280.75	275.00	-	9.20	-	564.94 /lf	42,371
22-11-13.44	Pipe, steel, black, welded, 36" diameter, schedule 40, Spec. A-53, includes two rod, roll hanger & saddle, sized for covering, 10' OC	2220	75.0 lf	280.75	275.00	-	9.20	-	564.94 /lf	42,371
22-11-13.47	Elbow, 90 Deg., steel, carbon steel, black, long radius, butt weld, standard weight, 36" pipe size, includes 1 weld per joint and weld machine	3194	1.0 ea	1,554.30	3,450.00	-	57.70	-	5,062.00 /ea	5,062
22-11-13.47	Elbow, 90 Deg., steel, carbon steel, black, long radius, butt weld, standard weight, 36" pipe size, includes 1 weld per joint and weld machine	3194	1.0 ea	1,554.30	3,450.00	-	57.70	-	5,062.00 /ea	5,062
22-20-00.30	Piping, water dist, DI, cement lined, 18' L, restrained jt, 12" dia	BC-0001	45.0 Inft	6.58	25.25	-		-	31.83 /Inft	1,432
22-20-00.30	Piping, water dist, DI, cement lined, 18' L, restrained it, 12" dia	BC-0001	45.0 Inft	6.58	25.25	-		-	31.83 /Inft	1,432
22-20-00.31	Piping, water dist, DI, 90< bend or elbow, 12" dia	BC-0026	1.0 ea	212.17	228.00	-	45.86	-	486.03 /ea	486

Project Number: 147571-040
Estimate Issue: 2
Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11999 Primary	Clarifier									
22-20-00.31	Piping, water dist, DI, 90< bend or elbow, 12" dia	BC-0026	1.0 ea	212.17	228.00	-	45.86	-	486.03 /ea	486
22-20-01.95	Pipe, steel ftngs, sch 40, tee 54" X 36" welded	BC-2866	1.0 ea	1,843.18	13,429.84	-	995.92	-	16,268.94 /ea	16,269
	Pipe, steel ftngs, sch 40, tee 54" X 36" welded	BC-2866	1.0 ea	1,843.18	13,429.84	_	995.92	-	16,268.94 /ea	16,269
	Primary Clarifier	_	1.0 LS	56,648.84	96,687.72		4,686.54	-	158,023.10 /LS	158,023
11999 Sludge P	Pumps and Piping									
22-99-99.99	Sludge piping allowance	MISC	1.0 LS	25,130.00	35,000.00		-	-	60,130.00 /LS	60,130
22-99-99.99	Scum piping allowance	MISC	1.0 LS	7,180.00	10,000.00		-	-	17,180.00 /LS	17,180
	Sludge Pumps and Piping	_	1.0 LS	32,310.00	45,000.00			_	77,310.00 /LS	77,310
33500 PC Yard	Piping									
31-23-16.13	Excavating, trench or continuous footing, common earth, 1-1/2 C.Y. excavator, 10' to 14' deep, excludes sheeting or dewatering	1000	699.1 bcy	2.07	-	-	1.95	-	4.02 /bcy	2,808
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with sheepsfoot roller	2300	427.1 ecy	1.32	-	-	2.85	-	4.16 /ecy	1,779
	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	213.8 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	5,122
	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	213.8 ecy	5.57	-	-	0.41	-	5.98 /ecy	1,278
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	272.0 lcy	6.23	-	-	5.24	-	11.48 /lcy	3,121
33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	1.0 clf	3.34	5.56	-	-	-	8.90 /clf	9
	PC Yard Piping	_	125.0 LF	57.32	18.67		36.94	_	112.93 /LF	14,117
33500 Sludge P	riping									
22-20-00.65	Piping, DI, glass lined, CL 50, 10" dia	BC-0326	1,325.0 Inft	19.55	100.00	-	4.23	-	123.77 /Inft	164,001
	Sludge Piping 22 PLUMBING	_	1,325.0 LF	19.55	100.00	-	4.23	_	123.77 /LF	164,001 413,450
26 ELECTRICAL										
	NAL COST: Service to New Primary Clarifiers Additional Cost associated with Primary Clarifiers -	MISC	450.0 LF	-	-	250.00	-	-	250.00 /LF	112,500
	Electrical Service in Ductbank ADDITIONAL COST: Service to New Primary Clarifiers	=	450.0 LF		-	250.00		-	250.00 /LF	112,500
	Clarifiers - E&I (#1,2,3) Electrical (This is based on a percentage of the	FACTOR	1.0 LS	-	-	491,472.24	-	-	491,472.24 /LS	491,472
	Total Project Costs) Primary Clarifiers - E&I (#1,2,3)	ED _	1.0 LS		-	491,472.24		-	491,472.24 /LS	491,472
	26 ELECTRICAL		1.0 L3			451,472.24			491,472.24 723	603,972
27 COMMUNICA										
	Clarifiers - E&I (#1,2,3) Instrumentation (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	122,868.07	-	-	122,868.07 /LS	122,868
	Primary Clarifiers - E&I (#1,2,3) 27 COMMUNICATIONS	_	1.0 LS		-	122,868.07		-	122,868.07 /LS	122,868 122,868
31 EARTHWOR 01999 Dewateri 01-54-33.70		0500	1,760.0 day	-	-		0.40	-	0.40 /day	704
	,		,,							

COM ALTERNATIVES ANALYSIS - ALT 2

Brown AND Caldwell

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
01999 Dewater	ring									
31-23-19.20	Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction hose and 100 LF of discharge hose	1100	176.0 day	857.51	-	-	377.70	-	1,235.21 /day	217,397
31-23-19.30	Wells, for dewatering, with steel casing, 10' to 20' deep, 2' diameter, minimum	0020	250.0 vlf	76.64	184.52	-	17.92	-	279.08 /vlf	69,770
	Dewatering	_	1.0 LS	170,081.77	46,130.81		71,658.65	_	287,871.23 /LS	287,871
03330 Slabs P	rimary Clarifiers									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	630.2 sy	1.07	-	-	0.72	-	1.79 /sy	1,126
31-23-16.16	S Strt excvtn for minor strtrs,bank measur,for spread and mat footngs,elevatr pits,and small buildng fndtns,3/4 cy bucket,machine excavtn,hydrlc backhoe	6035	22.2 bcy	12.43	-	-	7.42	-	19.86 /bcy	441
31-23-23.18	B Hauling, excavated or borrow material, loose cubic yards, 1 mile round trip, 2.2 loads/hour, 12 C.Y. truck, highway haulers, excludes loading	0400	22.2 lcy	2.77	-	-	3.92	-	6.69 /lcy	149
	Slabs Primary Clarifiers		22.2 cy	45.41			31.81		77.22 /cy	1,716
03330 Slabs P	ump Station									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	44.4 sy	1.07	-	-	0.72		1.79 /sy	79
	Slabs Pump Station		400.0 cy	0.12			0.08		0.20 /cy	79
03330 Slabs S	plitter Box									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	16.0 sy	1.07	-	-	0.72		1.79 /sy	29
	Slabs Splitter Box		11.2 cy	1.52			1.03		2.55 /cy	29
03330 Slabs S	cum Pump									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	4.0 sy	1.07	-	-	0.72		1.79 /sy	7
	Slabs Scum Pump		2.9 cy	1.47			1.00		2.47 /cy	7
03330 Slabs P	rimary Clarifiers									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	630.2 sy	1.07	-	-	0.72	-	1.79 /sy	1,126
31-23-16.16	S Strt excvtn for minor strtrs,bank measur,for spread and mat footngs,elevatr pits,and small building fndtns,3/4 cy bucket,machine excavtn,hydrlc backhoe	6035	22.2 bcy	12.43	-	-	7.42	-	19.86 /bcy	441
31-23-23.18	B Hauling, excavated or borrow material, loose cubic yards, 1 mile round trip, 2.2 loads/hour, 12 C.Y. truck, highway haulers, excludes loading	0400	22.2 lcy	2.77	-	-	3.92	-	6.69 /lcy	149
	Slabs Primary Clarifiers	_	455.2 cy	2.22			1.55	-	3.77 /cy	1,716
03330 Slabs S	cum Pump									
	Fine grading, fine grade for slab on grade, machine	1100	4.0 sy	1.07	_	-	0.72	-	1.79 /sy	7
	Slabs Scum Pump	_	2.9 cy	1.47			1.00	_	2.47 /cy	7
31315 Excavat	tion and Backfill prim Clarifier									
31-23-16.42	2 Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	1,177.0 bcy	6.99	-	-	7.64	-	14.63 /bcy	17,220
	B Backfill, bulk, air tamped compaction, add	1400	495.0 ecy	5.30	-	-	1.50	-	6.80 /ecy	3,364
31-23-23.20	O Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt	9498	682.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	5,830
	Excavation and Backfill prim Clarifier	_	1,177.0 cy	11.01			11.44	_	22.44 /cy	26,414
31315 Excavat	tion and Backfill splitter Box									
	2 Excavating, bulk bank measure, in sheeting or	4400	3,497.8 bcy	6.99	-	-	7.64	-	14.63 /bcy	51,173
31-03-03 13	cofferdam, with all other equipment, minimum Backfill, bulk, air tamped compaction, add	1400	2,088.9 ecy	5.30			1.50		6.80 /ecy	14,197
31-23-23.13	Dackiii, buik, ali tairipeu corripaction, aud	1400	2,000.9 ecy	5.50	-	-	1.50	-	0.60 /eCy	14,197

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
31315 Excavation	on and Backfill splitter Box									
	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt	9498	106.7 lcy	3.08	-	-	5.47	-	8.55 /lcy	912
	Excavation and Backfill splitter Box	-	2,195.6 cy	16.33			13.86		30.19 /cy	66,282
31315 Evcavation	on and Backfill Pump station									
	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	3,629.6 bcy	6.99	-	-	7.64	-	14.63 /bcy	53,102
31-23-23.13	Backfill, bulk, air tamped compaction, add	1400	3,333.3 ecy	13.60	-	-	3.85	-	17.44 /ecy	58,141
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt	9498	296.3 lcy	3.08	-	-	5.47	-	8.55 /lcy	2,533
	Excavation and Backfill Pump station		3,629.6 cy	19.73			11.61		31.35 /cy	113,776
31315 Excavation	on and Backfill prim Clarifier									
	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	1,177.0 bcy	6.99	-	-	7.64	-	14.63 /bcy	17,220
	Backfill, bulk, air tamped compaction, add	1400	495.0 ecy	5.30	-	-	1.50	-	6.80 /ecy	3,364
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt	9498	682.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	5,830
	Excavation and Backfill prim Clarifier	-	1,177.0 cy	11.01			11.44		22.44 /cy	26,414
33500 Sludge P	• •	0440	C40 4 have	2.72			2.02		5.00 /b	2.054
31-23-10.13	Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	0110	613.4 bcy	3.73	-	-	2.23	-	5.96 /bcy	3,654
	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	327.2 ecy	1.23	-	-	2.60	-	3.82 /ecy	1,251
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	259.5 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	6,217
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	259.5 ecy	5.57	-	-	0.41	-	5.98 /ecy	1,551
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump	0150	286.3 lcy	6.23	-	-	5.24	-	11.48 /lcy	3,285
31-41-13.10	truck, highway haulers, excludes loading Trench box and jacks, cost per sfca trench wall, monthly rental	2000	13,250.0 sf	-	-	0.08	-	-	0.08 /sf	1,060
	Sludge Piping	-	1,325.0 LF	6.54	2.13	0.80	3.37		12.84 /LF	17,017
22500 Deimon.	Effluent Bining									
33500 Primary I 31-23-16.13	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes	0510	1,115.3 bcy	2.80	-	-	2.07	-	4.87 /bcy	5,431
31-23-23.13	sheeting or dewatering Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	390.3 ecy	1.23	-	-	2.60	-	3.82 /ecy	1,492
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	477.9 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	11,449
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	477.9 ecy	5.57	-	-	0.41	-	5.98 /ecy	2,856
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	725.0 lcy	6.23	-	-	5.24	-	11.48 /lcy	8,320
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	8,350.0 sf	-	-	0.08	-	-	0.08 /sf	668

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Primary Effluent Piping 31 EARTHWORK	_	1,225.0 LF	12.93	4.25	0.55	6.94		24.67 /LF	30,216 571,544
33 UTILITIES	No. to a									
33500 Sludge P 33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	13.0 clf	3.34	5.56	-	-	-	8.90 /clf	116
	Sludge Piping	_	1,325.0 LF	0.03	0.06				0.09 /LF	116
33500 Primary	Effluent Piping									
33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	6.0 clf	3.34	5.56	-	-	-	8.90 /clf	53
	Primary Effluent Piping 33 UTILITIES	_	1,225.0 LF	0.02	0.03				0.04 /LF	53 169
40										
33500 PC Yard	Piping Pipe Plain End-CS A53/A106-ERW Grade	A541002	125.0 If		333.54				333.54 /lf	41,692
40-05-24.10	A-Non-Specific 54 Inch (1350mm)	0000EA	125.0 11	-	333.34	-	-	-	333.54 /11	41,092
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	125.0 If	32.59	-	-	6.43	-	39.02 /lf	4,877
40-05-24.10	Field Other Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)	L545502 000000	3.0 ea	3,900.77	78.79	-	312.41	-	4,291.97 /ea	12,876
40-05-24.10	Misc process/utility piping allowance		1.0 ls	7,860.00	10,010.00	-	-	-	17,870.00 /ls	17,870
40-05-24.10	Misc process/utility piping allowance		1.0 ls	7,860.00	10,010.00		- 42.02	-	17,870.00 /ls	17,870
	PC Yard Piping		125.0 LF	251.97	495.59		13.93		761.49 /LF	95,186
33500 Primary	Effluent Piping									
	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	100.0 If	-	168.69	-	-	-	168.69 /lf	16,869
	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	2.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	14,247
	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 54 Inch (1350mm)	A541002 0000EA	375.0 lf	-	333.54	-	-	-	333.54 /lf	125,077
	Fitting Butt Weld-CS A53/A106-Tee-Non-Specific 54 Inch (1350mm)	A542114 000000	1.0 ea	-	11,667.66	-	-	-	11,667.66 /ea	11,668
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	375.0 If	32.59	-	-	6.43	-	39.02 /lf	14,632
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)	L545102 000000 _	10.0 ea	1,950.39	39.40	-	156.21	-	2,145.99 /ea	21,460
	Primary Effluent Piping 40	_	1,225.0 LF	33.63	132.37	-	4.56		170.55 /LF	208,924 304,109
	01 Primary Clarifiers		1.0 LS	968,910.86	1,386,162.29	748,568.31	241,100.14		3,344,741.60 /LS	3,344,742

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
02 Aeration Tanks	3									
03 CONCRETE	andles Berline									
03330 Slabs Ae 03-05-13 25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y.,	1050	853.3 cy	_	33.69	_	_	_	33.69 /cy	28,752
00 00 10.20	includes material only	1000	000.0 Oy		00.00				00.00 70y	20,702
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	1,696.0 If	3.61	4.42	-	-	-	8.03 /lf	13,610
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	140.0 ea	9.39	47.88	-	-	-	57.27 /ea	8,017
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	128.0 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	259,585
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	128.0 ton	39.87	-	-	7.51	-	47.38 /ton	6,065
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	128.0 ton	43.34	-	-	8.17	-	51.51 /ton	6,593
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	1,792.0 cy	-	98.01	-	-	-	98.01 /cy	175,638
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	1,792.0 cy	9.69	-	-	2.00	-	11.68 /cy	20,936
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	23,040.0 sf	0.88	-	-	0.03	-	0.91 /sf	20,987
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	23,040.0 sf	0.70	0.29	-	-	-	0.99 /sf	22,910
03-39-13.50	Curing, sprayed membrane curing compound	0300	230.4 csf	9.68	10.12	_	_	-	19.80 /csf	4,562
	Slabs Aeration Basins	-	2,560.0 SY	80.76	138.53	-	2.45	_	221.74 /SY	567,654
03330 Slabs Pip	pe Utilidor									
03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	138.9 cy	-	33.69	-	-	-	33.69 /cy	4,680
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	32.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	275
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	350.0 If	3.61	4.42	-	-	-	8.03 /lf	2,809
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	29.0 ea	9.38	47.88	-	-	-	57.26 /ea	1,661
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	8.3 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	16,899
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	47.4 lb	0.52	0.48	-	-	-	0.99 /lb	47
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	8.4 ton	39.87	-	-	7.51	-	47.38 /ton	396
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	8.4 ton	43.34	-	-	8.17	-	51.50 /ton	430
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	292.9 cy	-	98.01	-	-	-	98.01 /cy	28,709
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	292.9 cy	9.69	-	-	2.00	-	11.68 /cy	3,422

0.38

03-35-29.30 Concrete finishing, floors, monolithic, screed and bull

float(darby) finish

0100 3,750.0 sf

1,417

0.38 /sf

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Pi	pe Utilidor									
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	3,750.0 sf	0.70	0.29	-	-	-	0.99 /sf	3,729
03-39-13.50	Curing, sprayed membrane curing compound Slabs Pipe Utilidor	0300 _	37.5 csf 3,750.0 cy	9.68	10.12 12.30	-	0.19		19.80 /csf 17.39 /cy	743 65,216
			.,						,	,
03330 Slabs Ae										
03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	426.7 cy	-	33.69	-	-	-	33.69 /cy	14,376
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	848.0 If	3.61	4.42	-	-	-	8.03 /lf	6,805
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	70.0 ea	9.39	47.88	-	-	-	57.27 /ea	4,009
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	64.0 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	129,793
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	64.0 ton	39.87	-	-	7.51	-	47.38 /ton	3,033
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	64.0 ton	43.34	-	-	8.17	-	51.51 /ton	3,296
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	896.0 cy	-	98.01	-	-	-	98.01 /cy	87,819
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	896.0 cy	9.69	-	-	2.00	-	11.68 /cy	10,468
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	11,520.0 sf	0.88	-	-	0.03	-	0.91 /sf	10,493
03-35-29.30		2350	11,520.0 sf	0.70	0.29	-	-	-	0.99 /sf	11,455
03-39-13.50	Curing, sprayed membrane curing compound	0300	115.2 csf	9.68	10.12	-	-	-	19.80 /csf	2,281
	Slabs Aeration Basins		896.0 CY	115.37	197.90		3.50		316.77 /CY	283,827
03333 Blower E	Equipment Pads									
	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	120.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	1,032
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.1 ton	39.87	-	-	7.50	-	47.37 /ton	7
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.1 ton	43.30	-	-	8.20	-	51.50 /ton	8
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	7.4 cy	-	98.01	-	-	-	98.01 /cy	726
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	7.4 cy	27.68	-	-	5.70	-	33.38 /cy	247
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	7.4 cy	46.13	-	-	13.04	-	59.17 /cy	438
	Blower Equipment Pads	_	7.4 cy	192.78	120.06		19.05	-	331.89 /cy	2,458
03345 Concrete	e Walls Aeration Basin									
	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	56.0 If	10.50	2.14	-	-	-	12.63 /lf	707
03-11-13.85	Cip concret forms, walls, steel framed plywd, over 8'16'hg, based 50 us purched forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9260	47,488.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	328,975

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls Aeration Basin									
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	126.6 gal	-	20.66	-	-	-	20.66 /gal	2,617
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	56.0 If	3.24	14.92	-	-	-	18.15 /lf	1,017
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	4.0 ea	9.39	35.79	-	-	-	45.17 /ea	181
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	82.4 ton	794.28	992.00	-	-	-	1,786.28 /ton	147,268
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	82.4 ton	39.87	-	-	7.51	-	47.38 /ton	3,907
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	82.4 ton	43.34	-	-	8.17	-	51.51 /ton	4,246
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	1,385.1 cy	-	98.01	-	-	-	98.01 /cy	135,753
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	1,385.1 cy	32.29	-	-	6.65	-	38.94 /cy	53,938
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700	47,488.0 sf	1.89	0.42	-	0.22		2.53 /sf	119,974
	Concrete Walls Aeration Basin		1,385.1 cy	361.73	199.75		15.08		576.57 /cy	798,582
03345 Concrete	e Walls Baffle walls									
	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	672.0 If	10.50	2.14	-	-	-	12.63 /lf	8,490
03-11-13.85	Cip concret forms, walls, steel framed plywd, over 8'16'hg, based 50 us purched forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9260	21,504.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	148,970
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	57.3 gal	-	20.66	-	-	-	20.66 /gal	1,185
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	672.0 If	3.24	14.92	-	-	-	18.15 /lf	12,199
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	48.0 ea	9.39	35.78	-	-	-	45.17 /ea	2,168
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	82.1 ton	794.28	992.00	-	-	-	1,786.28 /ton	146,712
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	82.1 ton	39.87	-	-	7.51	-	47.38 /ton	3,892
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	82.1 ton	43.34	-	-	8.17	-	51.51 /ton	4,230
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	627.2 cy	-	98.01	-	-	-	98.01 /cy	61,473
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	627.2 cy	32.29	-	-	6.65	-	38.94 /cy	24,425
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700	21,504.0 sf	1.89	0.42	-	0.22		2.53 /sf	54,328
	Concrete Walls Baffle walls		627.2 cy	439.26	290.83		16.20		746.29 /cy	468,072
02245 Company	Wella Bina Hillidae									
	e Walls Pipe Utilidor Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and	9460	14,000.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	107,800
03-15-05.95	cleaning Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	37.3 gal	-	20.66	-	-	-	20.66 /gal	771

COM ALTERNATIVES ANALYSIS - ALT 2

Brown AND Caldwell

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls Pipe Utilidor									
	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	19.4 ton	794.28	992.00	-	-	-	1,786.28 /ton	34,732
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	19.4 ton	39.87	-	-	7.51	-	47.38 /ton	921
	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	19.4 ton	43.34	-	-	8.17	-	51.51 /ton	1,001
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	272.2 cy	-	98.01	-	-	-	98.01 /cy	26,681
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	272.2 cy	32.29	-	-	6.65	-	38.94 /cy	10,601
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	14,000.0 sf	1.89	0.42	-	0.22		2.53 /sf	35,370
	Concrete Walls Pipe Utilidor		272.2 cy	549.64	231.72		19.02		800.38 /cy	217,879
	e Walls Aeration Basin C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	28.0 If	10.50	2.14	-	-	-	12.63 /lf	354
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purched forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	19,264.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	133,452
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	63.3 gal	-	20.66	-	-	-	20.66 /gal	1,308
03-15-13.50	Waterstop, rubber, center bulb, split, $3/8$ " thick x 6" wide	3500	28.0 If	3.24	14.92	-	-	-	18.15 /lf	508
	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	2.0 ea	9.39	35.79	-	-	-	45.17 /ea	90
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	41.2 ton	794.28	992.00	-	-	-	1,786.28 /ton	73,634
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	41.2 ton	39.87	-	-	7.51	-	47.38 /ton	1,953
	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	41.2 ton	43.34	-	-	8.17	-	51.51 /ton	2,123
	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	692.5 cy	-	98.01	-	-	-	98.01 /cy	67,877
	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	692.5 cy	32.29	0.40	-	6.65	-	38.94 /cy	26,969
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Aeration Basin	0700 _	23,744.0 sf	1.89	0.42	-	0.22	-	2.53 /sf	59,987
	Concrete Walls Aeration Basin		-10,486.9 cy	(21.25)	(12.87)		(1.00)		(35.12) /cy	368,256
03345 Concrete	e Walls Baffle walls									
	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	504.0 If	10.50	2.14	-	-	-	12.63 /lf	6,367
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	10,752.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	74,485
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	28.7 gal	-	20.66	-	-	-	20.66 /gal	592
	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	504.0 If	3.24	14.92	-	-	-	18.15 /lf	9,150
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	12.0 ea	9.39	35.78	-	-	-	45.17 /ea	542

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	Walls Baffle walls									
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	63.5 ton	794.28	992.00	-	-	-	1,786.28 /ton	113,364
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	63.5 ton	39.87	-	-	7.51	-	47.38 /ton	3,007
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	63.5 ton	43.34	-	-	8.17	-	51.51 /ton	3,269
	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	313.6 cy	-	98.01	-	-	-	98.01 /cy	30,737
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	313.6 cy	32.29	-	-	6.65	-	38.94 /cy	12,212
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Baffle walls	0700	10,752.0 sf 313.6 cy	1.89 508.93	0.42 369.45	-	<u>0.22</u> 17.32		2.53 /sf 895.69 /cy	27,164 280,889
03350 Floyatod	Slabs Pipe Utilidor									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	3,750.0 sf	4.97	1.27	-	-	-	6.24 /sf	23,388
03-11-13.35	Cip concrete forms, elevated slab,box-out for shallow slab openings,over 10 sf (use perimeter),includes shoring,erecting,bracing,stripping and cleaning	5550	32.0 If	4.64	1.62	-	-	-	6.26 /lf	200
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	350.0 If	3.62	0.21	-	-	-	3.83 /lf	1,341
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	9.1 ton	821.66	992.00	-	-	-	1,813.66 /ton	16,532
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.1 ton	39.90	-	-	7.50	-	47.40 /ton	3
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.1 ton	114.00	-	-	21.50	-	135.50 /ton	10
	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	145.8 cy	-	98.01	-	-	-	98.01 /cy	14,293
	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	145.8 cy	21.53	-	-	4.43	-	25.96 /cy	3,786
	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	3,750.0 sf	0.88	-	-	0.03	-	0.91 /sf	3,416
	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	3,750.0 sf	0.62	0.19	-	-	-	0.81 /sf	3,039
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	37.5 csf	9.68	10.12	-		- -	19.80 /csf	743
	Elevated Slabs Pipe Utilidor 03 CONCRETE		145.8 cy	251.44	201.08		5.22		457.74 /cy	66,752 3,119,585
05 METALS	and the state of t									
	uctural Steel Work Railing, pipe, aluminum, clear finish, 3 rails, 3'-6"	0210	2,640.0 If	18.34	74.00		1.09		93.43 /lf	246,655
	high, posts @ 5' O.C., 1-1/2" dia, shop fabricated Floor grating, steel, expanded mesh, 7.0# per S.F.,	2900	2,880.0 sf	3.59	19.65	_	0.21	_	23.45 /sf	67,543
00 30 21.30	field fabricated from panels Misc. Structural Steel Work	-	1.0 LS	58,767.13	251,952.00	_	3,478.72	_	314,197.85 /LS	314,198
			3	,	,		-, 		,	2,100
	uctural Steel Work Railing, pipe, aluminum, clear finish, 3 rails, 3'-6" high, posts @ 5' O.C., 1-1/2" dia, shop fabricated	0210	1,320.0 If	18.34	74.00	-	1.09	-	93.43 /lf	123,328

Project Number: 147571-040 Estimate Issue: 2 Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Estimate Detail Report

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	ructural Steel Work									
05-53-21.50	 Floor grating, steel, expanded mesh, 7.0# per S.F., field fabricated from panels 	2900	1,440.0 sf	3.59	19.65	-	0.21	-	23.45 /sf	33,771
	Misc. Structural Steel Work 05 METALS	-	1.0 LS	29,383.57	125,976.00		1,739.36		157,098.93 /LS	157,099 471,297
11 EQUIPMENT	г									
11999 Aeration	• •									
	A Academy diffusers, fine bubble, complete with headers		10,432.0 ea	13.11	35.00	-	-	-	48.11 /ea	501,883
	A Agration Blower, fine bubble, complete with headers		5,216.0 ea	13.11	35.00 200.000.00	-	-	-	48.11 /ea 205,654.22 /ea	250,933 822,617
11-00-01.00	 Aeration Blower, high speed turbo, (5,000 scfm at 10 psig) 	DC-0330	4.0 ea	5,654.22	200,000.00	-	-	-	205,654.22 /ea	022,017
11-00-01.00	Mixer, submerged propellar type, 10 hp, Flygt, with guiderail	BC-0621	24.0 ea	2,261.69	30,000.00	-	380.00	-	32,641.69 /ea	783,401
11-00-01.00	 Mixer, submerged propellar type, 10 hp, Flygt, with quiderail 	BC-0621	12.0 ea	2,261.69	30,000.00	-	380.00	-	32,641.69 /ea	391,700
11-00-09.00	Pump, submerged axial flow. 18" Dia., wall pump, 3-hp, 2.5 mgd, IMLR pump	BC-0316	4.0 ea	1,696.27	25,000.00	-	190.00	-	26,886.26 /ea	107,545
11-00-09.00	Pump, submerged axial flow. 18" Dia., wall pump, 3-hp, 2.5 mgd, IMLR pump	BC-0316	2.0 ea	1,696.27	25,000.00	-	190.00	-	26,886.26 /ea	53,773
	Aeration Equipment 11 EQUIPMENT	-	1.0 LS	319,350.54	2,577,680.00		14,820.00		2,911,850.54 /LS	2,911,851 2,911,851
22 PLUMBING										
22999 Aeration	n Piping									
22-99-99.99	Aeration piping allowance	MISC	4.0 LS	17,950.00	75,000.00		-	-	92,950.00 /LS	371,800
22-99-99.99	Aeration piping allowance	MISC	2.0 LS	17,950.00	75,000.00		-	-	92,950.00 /LS	185,900
	Aeration Piping 22 PLUMBING		1.0 LS	107,700.00	450,000.00				557,700.00 /LS	557,700 557,700
26 ELECTRICA	L									
	ONAL COST: Service to New Aeration Basis									
01-99-99.99	Additional Cost associated with Aeration Basin - Electrical Service in Ductbank	MISC	750.0 LF	-	-	250.00	-	-	250.00 /LF	187,500
	ADDITIONAL COST: Service to New Aeration Basis	-	750.0 LF		-	250.00			250.00 /LF	187,500
	n Tanks - E&I (#4, #5, #6)									
26-00-00.02	? Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-		1,719,975.04	-	-	1,719,975.04 /LS	1,719,975
	Aeration Tanks - E&I (#4, #5, #6) 26 ELECTRICAL		2.0 LS			859,987.52			859,987.52 /LS	1,719,975 1,907,475
27 COMMUNIC										
	n Tanks - E&I (#4, #5, #6)	FACTOR	1.0 LS			429.993.77			429,993.77 /LS	429,994
27-20-00.01	Instrumentation (This is based on a percentage of the Total Project Costs)	ED	1.0 L3	-	-	429,993.77	-	-	429,993.77 /LS	429,994
	Aeration Tanks - E&I (#4, #5, #6) 27 COMMUNICATIONS		2.0 LS			214,996.89			214,996.89 /LS	429,994 429,994
31 EARTHWOR										
01999 Dewater	-									
	Rent wellpoint header pipe, 6" diameter, 400 gpm	0500	2,600.0 day 260.0 day	057.54	-	-	0.40	-	0.40 /day	1,040
31-23-19.20	Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction hose and 100 LF of discharge hose	1100	260.0 day	857.51	-	-	377.70	-	1,235.21 /day	321,154

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
01999 Dewateri	ng									
31-23-19.30	Wells, for dewatering, with steel casing, 10' to 20' deep, 2' diameter, minimum	0020	175.0 vlf	76.64	184.52	-	17.92	-	279.08 /vlf	48,839
	Dewatering	-	1.0 LS	236,365.01	32,291.57		102,377.06	-	371,033.64 /LS	371,034
03330 Slabs Ae	eration Basins									
	Fine grading, fine grade for slab on grade, machine	1100	2,560.0 sy	1.07	_	-	0.72	_	1.79 /sy	4,574
	Slabs Aeration Basins		2,560.0 SY	1.07			0.72	-	1.79 /SY	4,574
03330 Slabs Pi	oe Utilidor									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	416.7 sy	1.07	-	-	0.72	-	1.79 /sy	745
	Slabs Pipe Utilidor	_	3,750.0 cy	0.12			0.08	-	0.20 /cy	745
03330 Slabs Ae	eration Basins									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	1,280.0 sy	1.07	-	-	0.72		1.79 /sy	2,287
	Slabs Aeration Basins		896.0 CY	1.52			1.03		2.55 /CY	2,287
31315 Excavati	on and Backfill Aeration Basin									
31-23-16.42	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	18,848.2 bcy	6.99	-	-	7.64	-	14.63 /bcy	275,750
31-23-23.13	Backfill, bulk, air tamped compaction, add	1400	4,611.1 ecy	5.30	-	-	1.50	-	6.80 /ecy	31,339
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles.45 mph,excld ldng egpmnt	9498	14,237.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	121,712
	Excavation and Backfill Aeration Basin	-	18,848.2 cy	10.62			12.14	=	22.75 /cy	428,801
31315 Excavati	on and Backfill Aeration Basin									
31-23-16.42	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	23,644.0 bcy	6.99	-	-	7.64	-	14.63 /bcy	345,914
31-23-23.13	Backfill, bulk, air tamped compaction, add	1400	2,022.0 ecy	5.30	-	-	1.50	-	6.80 /ecy	13,742
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles.45 mph,excld ldng egpmnt	9498	21,622.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	184,846
	Excavation and Backfill Aeration Basin 31 EARTHWORK	-	23,644.0 cy	10.26			12.77	-	23.03 /cy	544,502 1,351,943
	02 Aeration Tanks		1.0 LS	2,873,941.79	4,819,214.20	2,337,468.81	719,219.14		10,749,843.94 /LS	10,749,844

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03 Seconday Clar	ifiers									
03 CONCRETE	condary Clarifier									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	205.1 cy	-	33.69	-	-	-	33.69 /cy	6,912
03-11-13.65	C.I.P. concrete forms, slab on grade, slab blockouts, wood, to 24" high, 1 use, includes erecting, bracing, stripping and cleaning	4050	32.0 If	15.09	1.02	-	-	-	16.10 /lf	515
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	264.0 If	3.61	4.42	-	-	-	8.03 /lf	2,118
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	22.0 ea	9.39	47.88	-	-	-	57.27 /ea	1,260
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	30.8 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	62,406
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	30.8 ton	39.87	-	-	7.51	-	47.38 /ton	1,458
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	30.8 ton	43.34	-	-	8.17	-	51.51 /ton	1,585
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	430.8 cy	-	98.01	-	-	-	98.01 /cy	42,225
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	430.8 cy	9.69	-	-	2.00	-	11.68 /cy	5,033
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	5,539.0 sf	0.88	-	-	0.03	-	0.91 /sf	5,045
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	5,539.0 sf	0.70	0.29	-	-	-	0.99 /sf	5,508
03-39-13.50	Curing, sprayed membrane curing compound Slabs Secondary Clarifier	0300 _	55.4 csf 615.4 SY	9.68 80.52	10.12 136.65		2.45		19.80 /csf 219.62 /SY	1,097 135,162
03330 Slabs Sp	litter Box									
-	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	14.8 cy	-	33.69	-	-	-	33.69 /cy	499
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	80.0 If	3.61	4.42	-	-	-	8.03 /lf	642
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	7.0 ea	9.38	47.88	-	-	-	57.26 /ea	401
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	2.2 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	4,506
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	2.2 ton	39.87	-	-	7.51	-	47.38 /ton	105
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	2.2 ton	43.34	-	-	8.17	-	51.51 /ton	114
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	31.1 cy	-	98.01	-	-	-	98.01 /cy	3,049
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	31.1 cy	9.69	-	-	2.00	-	11.68 /cy	363
	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	400.0 sf	0.38	-	-	-	-	0.38 /sf	151
	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	400.0 sf	0.70	0.29	-	-	-	0.99 /sf	398
03-39-13.50	Curing, sprayed membrane curing compound	0300	4.0 csf	9.68	10.12	-	-	-	19.80 /csf	79

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Slabs Splitter Box	-	31.1 cy	116.18	212.18		3.12	-	331.47 /cy	10,309
03330 Slabs So	cum Pump									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	1.3 cy	-	33.69	-	-	-	33.69 /cy	45
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	36.0 If	3.61	4.42	-	-	-	8.02 /lf	289
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	3.0 ea	9.38	47.88	-	-	-	57.26 /ea	172
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.2 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	406
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.2 ton	39.85	-	-	7.50	-	47.35 /ton	9
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.2 ton	43.35	-	-	8.15	-	51.50 /ton	10
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.8 cy	-	98.01	-	-	-	98.01 /cy	274
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	2.8 cy	9.69	-	-	2.00	-	11.69 /cy	33
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and hand trowel finish	0200	36.0 sf	1.20	-	-	-	-	1.20 /sf	43
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	36.0 sf	0.70	0.29	-	-	-	0.99 /sf	36
03-39-13.50	Curing, sprayed membrane curing compound Slabs Scum Pump	0300 _	0.4 csf 4.0 sy	9.67 120.20	10.10 208.63		2.18		19.78 /csf 331.01 /sy	
03330 Slabe S	econdary Clarifier									
	6 Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	205.1 cy	-	33.69	-	-	-	33.69 /cy	6,912
03-11-13.65	6 C.I.P. concrete forms, slab on grade, slab blockouts, wood, to 24" high, 1 use, includes erecting, bracing, stripping and cleaning	4050	32.0 If	15.09	1.02	-	-	-	16.10 /lf	515
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	264.0 If	3.61	4.42	-	-	-	8.03 /lf	2,118
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	22.0 ea	9.39	47.88	-	-	-	57.27 /ea	1,260
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	30.8 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	62,406
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	30.8 ton	39.87	-	-	7.51	-	47.38 /ton	1,458
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	30.8 ton	43.34	-	-	8.17	-	51.51 /ton	1,585
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	430.8 cy	-	98.01	-	-	-	98.01 /cy	42,225
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	430.8 cy	9.69	-	-	2.00	-	11.68 /cy	5,033
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	5,539.0 sf	0.88	-	-	0.03	-	0.91 /sf	5,045
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	5,539.0 sf	0.70	0.29	-	-	-	0.99 /sf	5,508
03-39-13.50	Curing, sprayed membrane curing compound	0300	55.4 csf	9.68	10.12	-	-	-	19.80 /csf	1,097

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Slabs Secondary Clarifier	-	430.8 CY	115.03	195.21		3.50	-	313.74 /CY	135,162
03330 Slabs So	cum Pump									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	1.3 cy	-	33.69	-	-	-	33.69 /cy	45
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	36.0 If	3.61	4.42	-	-	-	8.02 /lf	289
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	3.0 ea	9.38	47.88	-	-	-	57.26 /ea	172
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.2 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	406
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.2 ton	39.85	-	-	7.50	-	47.35 /ton	9
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.2 ton	43.35	-	-	8.15	-	51.50 /ton	10
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.8 cy	-	98.01	-	-	-	98.01 /cy	274
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	2.8 cy	9.69	-	-	2.00	-	11.69 /cy	33
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and hand trowel finish	0200	36.0 sf	1.20	-	-	-	-	1.20 /sf	43
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	36.0 sf	0.70	0.29	-	-	-	0.99 /sf	36
03-39-13.50	Curing, sprayed membrane curing compound Slabs Scum Pump	0300 _	0.4 csf 2.8 cy	9.67 171.71	10.10 298.04	-	3.11		19.78 /csf 472.87 /cy	<u>7</u> 1,324
03345 Concret	e Walls Secondary Clarifiers									
	Cip concret forms, walls, steel framed plywd, over 16'20'h, based 50 us purchsd forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9460	11,304.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	87,041
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	30.1 gal	-	20.66	-	-	-	20.66 /gal	623
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	15.7 ton	794.28	992.00	-	-	-	1,786.28 /ton	28,045
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	15.7 ton	39.87	-	-	7.51	-	47.38 /ton	744
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	15.7 ton	43.34	-	-	8.17	-	51.50 /ton	809
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	219.8 cy	-	98.01	-	-	-	98.01 /cy	21,543
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	219.8 cy	32.29	-	-	6.65	-	38.94 /cy	8,560
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Secondary Clarifiers	0700 _	11,304.0 sf 219.8 cy	1.89 549.63	0.42 231.72	-	0.22 19.02		2.53 /sf 800.37 /cy	28,558 175,922
02245 0	e Wells soum numn									
	e Walls scum pump Cip concret forms, walls, steel framed plywd, over 16'20'h, based 50 us purchsd forms, 4 us bracing lumber, includes erecting, bracing, stripping and	9460	864.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	6,653
03-15-05.95	cleaning Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	2.3 gal	-	20.66	-	-	-	20.66 /gal	48

Brown AND Caldwell	
Phase	

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls scum pump									
	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	1.2 ton	794.28	992.00	-	-	-	1,786.28 /ton	2,144
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	1.2 ton	39.87	-	-	7.52	-	47.38 /ton	57
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	1.2 ton	43.34	-	-	8.17	-	51.51 /ton	62
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 5000 psi	0407	16.8 cy	-	103.51	-	-	-	103.51 /cy	1,739
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	16.8 cy	32.29	-	-	6.65	-	38.94 /cy	654
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls scum pump	0700 _	864.0 sf 16.8 cy	1.89 549.63	0.42 237.22		0.22 19.02		2.53 /sf 805.87 /cy	2,183 13,539
	Walls Secondary Clarifiers Cip concret forms, walls, steel framed plywd, over 16'20'h, based 50 us purchsd forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9460	11,304.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	87,041
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	30.1 gal	-	20.66	-	-	-	20.66 /gal	623
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	15.7 ton	794.28	992.00	-	-	-	1,786.28 /ton	28,045
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	15.7 ton	39.87	-	-	7.51	-	47.38 /ton	744
	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	15.7 ton	43.34	-	-	8.17	-	51.50 /ton	809
	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	219.8 cy	-	98.01	-	-	-	98.01 /cy	21,543
	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	219.8 cy	32.29	-	-	6.65	-	38.94 /cy	8,560
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	11,304.0 sf	1.89	0.42		0.22		2.53 /sf	28,558
	Concrete Walls Secondary Clarifiers		219.8 cy	549.63	231.72		19.02		800.37 /cy	175,922
02245 Camanata	- Welle									
	a Walls scum pump Cip concret forms, walls, steel framed plywd, over 16'20'h, based 50 us purchsd forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9460	864.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	6,653
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	2.3 gal	-	20.66	-	-	-	20.66 /gal	48
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	1.2 ton	794.28	992.00	-	-	-	1,786.28 /ton	2,144
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	1.2 ton	39.87	-	-	7.52	-	47.38 /ton	57
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	1.2 ton	43.34	-	-	8.17	-	51.51 /ton	62
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 5000 psi	0407	16.8 cy	-	103.51	-	-	-	103.51 /cy	1,739
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	16.8 cy	32.29	-	-	6.65	-	38.94 /cy	654
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700	864.0 sf	1.89	0.42	-	0.22	-	2.53 /sf	2,183

Estimate Detail Report

Project Number: 147571-040

Estimate Issue: 2

Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Concrete Walls scum pump	-	16.8 cy	549.63	237.22		19.02	-	805.87 /cy	13,539
03345 Concrete	e Walls Splitter Box									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	20.0 lf	10.50	2.14	-	-	-	12.63 /lf	253
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	3,200.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	24,640
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	8.5 gal	-	20.66	-	-	-	20.66 /gal	176
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	7.8 ton	794.28	992.00	-	-	-	1,786.28 /ton	13,894
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	7.8 ton	39.87	-	-	7.51	-	47.38 /ton	369
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	7.8 ton	43.34	-	-	8.17	-	51.50 /ton	401
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	93.3 cy	-	98.01	-	-	-	98.01 /cy	9,148
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	93.3 cy	32.29	-	-	6.65	-	38.94 /cy	3,635
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	3,200.0 sf	1.89	0.42	-	0.22		2.53 /sf	8,084
	Concrete Walls Splitter Box		3,200.0 cy	11.98	6.51		0.45		18.94 /cy	60,599
03350 Elevated	d Slab Splitter Box									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	400.0 sf	4.97	1.27	-	-	-	6.24 /sf	2,495
03-11-13.35	Cip concrete forms,elevated slab,box-out for shallow slab openings,over 10 sf (use perimeter),includes shoring,erecting,bracing,stripping and cleaning	5550	24.0 lf	4.64	1.62	-	-	-	6.26 /lf	150
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	80.0 If	3.62	0.21	-	-	-	3.83 /lf	307
03-11-13.35	C.I.P. concrete forms, elevated slab, perimeter deck and rail, straight, includes shoring, erecting, bracing, stripping and cleaning	8000	80.0 If	20.11	12.55	-	-	-	32.66 /lf	2,613
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.0 ton	822.00	992.00	-	-	-	1,814.00 /ton	29
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	8.00	-	48.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	114.00	-	-	21.00	-	135.00 /ton	1
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	15.6 cy	-	98.01	-	-	-	98.01 /cy	1,525
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	15.6 cy	21.53	-	-	4.43	-	25.96 /cy	404
03-35-29.30	Concrete finishing, floors, monolithic, screed finish	0020	400.0 sf	0.32	-	-	-	-	0.32 /sf	126
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	400.0 sf	0.62	0.19	-	-	-	0.81 /sf	324
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	4.0 csf	9.68	10.12	-	-	-	19.80 /csf	79

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Elevated Slab Splitter Box	_	15.6 cy	305.79	207.31		4.45	-	517.55 /cy	8,053
03350 Elevated	Slabs Scum Pump									
03-11-13.35	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	72.0 sf	4.97	1.27	-	-	-	6.24 /sf	449
03-11-13.35	Cip concrete forms, elevated slab, box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	64.0 If	4.64	1.62	-	-	-	6.26 /lf	401
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	700.0 If	3.62	0.21	-	-	-	3.83 /lf	2,683
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.2 ton	821.67	992.00	-	-	-	1,813.67 /ton	381
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	10.00	-	50.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	110.00	-	-	20.00	-	130.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	2.8 cy	-	98.01	-	-	-	98.01 /cy	274
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	2.8 cy	21.53	-	-	4.43	-	25.96 /cy	73
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	72.0 sf	0.88	-	-	0.03	-	0.91 /sf	66
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	72.0 sf	0.62	0.19	-	-	-	0.81 /sf	58
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	0.7 csf	9.68	10.13	-	-	-	19.80 /csf	14
	Elevated Slabs Scum Pump	_	2.8 cy	1,263.06	302.70		5.21	_	1,570.98 /cy	4,399
03350 Elevated	Slabs Scum Pump									
	C.I.P. concrete forms, elevated slab, flat plate,	1150	72.0 sf	4.97	1.27	-	-	-	6.24 /sf	449
	plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning									
03-11-13.35	Cip concrete forms, elevated slab, box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	64.0 If	4.64	1.62	-	-	-	6.26 /lf	401
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	700.0 If	3.62	0.21	-	-	-	3.83 /lf	2,683
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl	0400	0.2 ton	821.67	992.00	-	-	-	1,813.67 /ton	381
03-21-10.60	material for accessories Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	10.00	-	50.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	110.00	-	-	20.00	-	130.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	2.8 cy	-	98.01	-	-	-	98.01 /cy	274
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	2.8 cy	21.53	-	-	4.43	-	25.96 /cy	73
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	72.0 sf	0.88	-	-	0.03	-	0.91 /sf	66
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	72.0 sf	0.62	0.19	-	-	-	0.81 /sf	58

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03350 Elevated	d Slabs Scum Pump									
	Curing, sprayed membrane curing compound, elevated decks	0310	0.7 csf	9.68	10.13	-	-	-	19.80 /csf	14
	Elevated Slabs Scum Pump 03 CONCRETE	-	72.0 cy	49.12	11.77		0.20	-	61.09 /cy	4,399 739,652
05 METALS										
11999 Seconda	•									
05-01-10.51	Metal cleaning, steel surface treatment, 5.6 lb sand per S.F., near white blast, loose scale, fine powder rust (SSPC-SP10)	6255	6,400.0 sf	4.22	0.88	-	0.54	-	5.63 /sf	36,059
05-01-10.51	Metal cleaning, steel surface treatment, 5.6 lb sand per S.F., near white blast, loose scale, fine powder rust (SSPC-SP10)	6255	6,400.0 sf	4.22	0.88	-	0.54	-	5.63 /sf	36,059
09-91-06.41	Coatings & paints, B & C coating system E-2 (Epoxy, metal tanks, structures)	BC-0021	12,800.0 sqft	0.28	1.40	-	-	-	1.69 /sqft	21,594
	Secondary Clarifier 05 METALS	-	1.0 LS	57,646.89	29,222.40		6,842.62	-	93,711.91 /LS	93,712 93,712
09 FINISHES										
11999 Seconda										
09-91-06.41	Coatings & paints, B & C coating system E-2 (Epoxy, metal tanks, structures)	BC-0021	12,800.0 sqft	0.28	1.40	-	-	-	1.69 /sqft	21,594
	Secondary Clarifier 09 FINISHES		1.0 LS	3,622.49	17,971.20				21,593.69 /LS	21,594 21,594
11 EQUIPMENT	г									
11999 Seconda										
11-00-01.00	Mechanical, clarifier mechanism, secondary, 100' dia., 18' sidewall, w/ bridge, cage, FRP weirs, & baffles	BC-1036	1.0 ea	34,035.31	270,000.00	-	9,678.80	-	313,714.11 /ea	313,714
11-00-01.00	Mechanical, clarifier mechanism, secondary, 100' dia., 18' sidewall, w/ bridge, cage, FRP weirs, & baffles	BC-1036	1.0 ea	34,035.31	270,000.00	-	9,678.80	-	313,714.11 /ea	313,714
11-00-11.05	Wastewater, submersible, 3-inch, 6.5 hp,,guide rails, base elbow, scum pump	BC-0071	1.0 ea	1,194.45	7,510.00	-	-	-	8,704.45 /ea	8,704
11-00-11.05	Wastewater, submersible, 3-inch, 6.5 hp,,guide rails, base elbow, scum pump	BC-0071	1.0 ea	1,194.45	7,510.00	-	-	-	8,704.45 /ea	8,704
	Secondary Clarifier 11 EQUIPMENT		1.0 LS	70,459.52	555,020.00		19,357.60		644,837.12 /LS	644,837 644,837
22 PLUMBING										
11999 Seconda	•									
	Hydraulic structures, slide gate, stainless stl, ab & grout,36" x 36"	BC-0101	1.0 ea	2,455.44	4,774.77	-	554.07	-	7,784.28 /ea	7,784
	Hydraulic structures, slide gate, stainless stl, ab & grout,36" x 36"	BC-0101	1.0 ea	2,455.44	4,774.77	-	554.07	-	7,784.28 /ea	7,784
	Valves, semi-steel, lubricated plug valve, flanged, 200 psi, 12"	7070	1.0 ea	907.31	4,700.00	-	-	-	5,607.31 /ea	5,607
	Valves, semi-steel, lubricated plug valve, flanged, 200 psi, 12"	7070	1.0 ea	907.31	4,700.00	-	-	-	5,607.31 /ea	5,607
22-11-13.44	Pipe, steel, black, welded, 36" diameter, schedule 40, Spec. A-53, includes two rod, roll hanger & saddle, sized for covering, 10' OC	2220	75.0 lf	280.75	275.00	-	9.20	-	564.94 /lf	42,371

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11999 Seconda	ary Clarifier									
22-11-13.44	Pipe, steel, black, welded, 36" diameter, schedule 40, Spec. A-53, includes two rod, roll hanger & saddle, sized for covering, 10' OC	2220	75.0 If	280.75	275.00	-	9.20	-	564.94 /lf	42,371
22-11-13.47	Elbow, 90 Deg., steel, carbon steel, black, long radius, butt weld, standard weight, 36" pipe size, includes 1 weld per joint and weld machine	3194	1.0 ea	1,554.30	3,450.00	-	57.70	-	5,062.00 /ea	5,062
22-11-13.47	Elbow, 90 Deg., steel, carbon steel, black, long radius, butt weld, standard weight, 36" pipe size, includes 1 weld per joint and weld machine	3194	1.0 ea	1,554.30	3,450.00	-	57.70	-	5,062.00 /ea	5,062
22-20-00.30	Piping, water dist, DI, cement lined, 18' L, restrained jt, 12" dia	BC-0001	55.0 Inft	6.58	25.25	-		-	31.83 /Inft	1,751
22-20-00.30	Piping, water dist, DI, cement lined, 18' L, restrained jt, 12" dia	BC-0001	55.0 Inft	6.58	25.25	-		-	31.83 /Inft	1,751
22-20-00.31	Piping, water dist, DI, 90< bend or elbow, 12" dia	BC-0026	1.0 ea	212.17	228.00	-	45.86	-	486.03 /ea	486
22-20-00.31	Piping, water dist, DI, 90< bend or elbow, 12" dia	BC-0026	1.0 ea	212.17	228.00	-	45.86	-	486.03 /ea	486
22-20-01.95	Pipe, steel ftngs, sch 40, tee 54" X 36" welded	BC-2866	1.0 ea	1,843.18	13,429.84	_	995.92	-	16,268.94 /ea	16,269
	Pipe, steel ftngs, sch 40, tee 54" X 36" welded	BC-2866	1.0 ea	1,843.18	13,429.84	_	995.92	_	16,268.94 /ea	16,269
	Secondary Clarifier 22 PLUMBING		1.0 LS	56,780.46	97,192.72	-	4,686.54	_	158,659.72 /LS	158,660 158,660
26 ELECTRICAL										
	ry Clarifiers - E&I (#7, #8, #9)									
26-00-00.02	Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	475,884.95	-	-	475,884.95 /LS	475,885
	Secondary Clarifiers - E&I (#7, #8, #9) 26 ELECTRICAL	_	2.0 LS		-	237,942.48		_	237,942.48 /LS	475,885 475,885
27 COMMUNICA	ATIONS									
26001 Seconda	ry Clarifiers - E&I (#7, #8, #9)									
	Instrumentation (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	133,842.65	-	-	133,842.65 /LS	133,843
	Secondary Clarifiers - E&I (#7, #8, #9) 27 COMMUNICATIONS		2.0 LS			66,921.32			66,921.32 /LS	133,843 133,843
31 EARTHWOR 01999 Dewateri										
	Rent wellpoint header pipe, 6" diameter, 400 gpm	0500	1,760.0 day		_	_	0.40		0.40 /day	704
	Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction	1100	176.0 day	857.51	-	-	377.70	-	1,235.21 /day	217,397
31-23-19.30	hose and 100 LF of discharge hose Wells, for dewatering, with steel casing, 10' to 20' deep, 2' diameter, minimum	0020	250.0 vlf	9.63	23.18	-	2.25	-	35.06 /vlf	8,765
	Dewatering	_	1.0 LS	153,329.11	5,795.00	-	67,741.30	_	226,865.41 /LS	226,865
02220 Slabe So	econdary Clarifier									
	Fine grading, fine grade for slab on grade, machine	1100	615.4 sy	1.07			0.72		1.79 /sy	1,100
31-22-10.10	Slabs Secondary Clarifier	1100 _	615.4 SY	1.07	-		0.72	-	1.79 /SY	1,100
03330 Slabs Sp	litter Dev									
-		4400	44.4 ***	4.07			0.72		4.70 /	70
31-22-10.10	Fine grading, fine grade for slab on grade, machine Slabs Splitter Box	1100 _	44.4 sy 31.1 cy	1.07 1.52	-	· .	1.03		1.79 /sy 2.55 /cy	
	_									
03330 Slabs So 31-22-16.10	sum Pump Fine grading, fine grade for slab on grade, machine	1100	4.0 sy	1.07	-	-	0.72	-	1.79 /sy	7

Brown AND Caldwell COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Slabs Scum Pump	_	4.0 sy	1.07			0.72		1.79 /sy	7
03330 Slabs Seco	ondary Clarifier									
	Fine grading, fine grade for slab on grade, machine	1100	615.4 sy	1.07	_	-	0.72	-	1.79 /sy	1,100
	Slabs Secondary Clarifier		430.8 CY	1.52			1.03		2.55 /CY	1,100
03330 Slabs Scun	n Pump									
31-22-16.10 F	Fine grading, fine grade for slab on grade, machine	1100	4.0 sy	1.07	-	-	0.72	-	1.79 /sy	7
	Slabs Scum Pump		2.8 cy	1.52			1.03		2.55 /cy	7
31315 Excavation	and Backfill secondary Clarifier									
	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	8,744.0 bcy	6.99	-	-	7.64	-	14.63 /bcy	127,926
31-23-23.13 E	Backfill, bulk, air tamped compaction, add	1400	4,900.0 ecy	5.30	-	-	1.50	-	6.80 /ecy	33,302
b	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv orrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel	9498	4,289.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	36,667
	ruck,cycle 20 miles,45 mph,excld ldng eqpmnt Excavation and Backfill secondary Clarifier	-	19,218.4 cy	5,22			5.08		10.30 /cy	197,894
	Expanding and Basiam Secondary Starmer		10,210.4 09	0.22			0.00		10.00 709	101,004
	and Backfill splitter Box Excavating, bulk bank measure, in sheeting or	4400	3,888.9 bcy	6.99			7.64		14.63 /bcy	56,895
С	cofferdam, with all other equipment, minimum				-	-		-	•	,
	Backfill, bulk, air tamped compaction, add	1400	2,444.4 ecy	5.30	-	-	1.50	-	6.80 /ecy	16,613
b	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv corrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel ruck,cycle 20 miles,45 mph,excld ldng eqpmnt	9498	296.3 lcy	3.08	-	-	5.47	-	8.55 /lcy	2,533
	Excavation and Backfill splitter Box	-	3,889.0 cy	10.56			8.99		19.55 /cy	76,041
31315 Excavation	and Backfill secondary Clarifier									
	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	8,744.0 bcy	6.99	-	-	7.64	-	14.63 /bcy	127,926
31-23-23.13 E	Backfill, bulk, air tamped compaction, add	1400	4,900.0 ecy	5.30	-	-	1.50	-	6.80 /ecy	33,302
b	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv orrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel	9498	4,289.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	36,667
	ruck,cycle 20 miles,45 mph,excld ldng eqpmnt Excavation and Backfill secondary Clarifier	-	8,744.0 cy	11.47			11.16		22.63 /cy	197.894
	Excavation and Backini Secondary Clarine		8,744.0 Cy	11.47			11.10		22.03 /cy	197,094
33500 Secondary	• •	0=40	4 000 0 1						4.07 #	
е	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes sheeting or dewatering	0510	1,333.3 bcy	2.80	-	-	2.07	-	4.87 /bcy	6,493
31-23-23.13 E	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	627.8 ecy	1.23	-	-	2.60	-	3.82 /ecy	2,400
31-23-23.16 F	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	538.3 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	12,895
31-23-23.16 F	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	538.3 ecy	5.57	-	-	0.41	-	5.98 /ecy	3,216
31-23-23.18 H	Hauling, excavated or borrow material, loose cubic rards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump	0150	705.6 lcy	6.23	-	-	5.24	-	11.48 /lcy	8,097
31-41-13.10 T	ruck, highway haulers, excludes loading French box and jacks, cost per sfca trench wall,	2000	12,000.0 sf	-	-	0.08	-	-	0.08 /sf	960
	nonthly rental Secondary RAS Piping	-	750.0 LF	23.46	7.82	1.28	12.86		45.42 /LF	34,062

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Seconda	ary Clarifier ML Piping									
	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes sheeting or dewatering	0510	1,168.1 bcy	2.80	-	-	2.07	-	4.87 /bcy	5,688
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	426.4 ecy	1.23	-	-	2.60	-	3.82 /ecy	1,630
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	497.9 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	11,927
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	497.9 ecy	5.57	-	-	0.41	-	5.98 /ecy	2,975
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump	0150	741.7 lcy	6.23	-	-	5.24	-	11.48 /lcy	8,511
	truck, highway haulers, excludes loading									
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	9,050.0 sf	-	-	0.08	-	-	0.08 /sf	724
	Secondary Clarifier ML Piping	_	525.0 LF	31.35	10.33	1.38	16.87	_	59.91 /LF	31,455
33500 Seconda	ary Clarifier SE Piping									
	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes sheeting or dewatering	0510	1,480.6 bcy	2.80	-	-	2.07	-	4.87 /bcy	7,210
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	530.6 ecy	1.23	-	-	2.60	-	3.82 /ecy	2,028
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	632.6 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	15,154
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	632.6 ecy	5.57	-	-	0.41	-	5.98 /ecy	3,780
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	950.0 lcy	6.23	-	-	5.24	-	11.48 /lcy	10,902
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	11,300.0 sf	-	-	0.08	-	-	0.08 /sf	904
	Secondary Clarifier SE Piping 31 EARTHWORK		650.0 LF	32.20	10.60	1.39	17.31		61.50 /LF	39,978 806,482
33 UTILITIES										
	ary RAS Piping									
33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	8.0 clf	3.34	5.56	-	-	-	8.90 /clf	71
	Secondary RAS Piping	-	750.0 LF	0.04	0.06			_	0.10 /LF	71
33500 Seconds	ary Clarifier ML Piping									
	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2",	0400	5.0 clf	3.34	5.56	-	-	-	8.90 /clf	44
	excludes excavation and backfill Secondary Clarifier ML Piping	-	525.0 LF	0.03	0.05			_	0.09 /LF	44
	Obelfier OF Biology									
	ury Clarifier SE Piping Utility line signs, markers, and flags, underground	0400	7.0 clf	3.34	5.56	-	-	-	8.90 /clf	62

0.04

0.06

650.0 LF

tape, detectable, reinforced, aluminum foil core, 2",

excludes excavation and backfill

Secondary Clarifier SE Piping

33 UTILITIES

62

178

0.10 /LF

Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Seconda	ry RAS Piping									
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 24 Inch (600mm)	A241002 0000EA	100.0 If	-	56.88	-	-	-	56.88 /lf	5,688
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 24 Inch (600mm)	A241002 0000EA	100.0 If	-	56.88	-	-	-	56.88 /lf	5,688
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 24 Inch (600mm)	A242112 000000	1.0 ea	-	1,678.64	-	-	-	1,678.64 /ea	1,679
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 24 Inch (600mm)	A242112 000000	1.0 ea	-	1,678.64	-	-	-	1,678.64 /ea	1,679
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	550.0 If	-	168.69	-	-	-	168.69 /lf	92,779
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	3.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.35 /ea	21,370
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 24 Inch (600mm)	L244002 0000P1	100.0 If	19.57	-	-	3.62	-	23.19 /lf	2,319
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 24 Inch (600mm)	L244002 0000P1	100.0 If	19.57	-	-	3.62	-	23.19 /lf	2,319
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 24 Inch (600mm)		2.0 ea	983.77	17.51	-	78.79	-	1,080.06 /ea	2,160
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 24 Inch (600mm)		2.0 ea	983.77	17.51	-	78.79	-	1,080.06 /ea	2,160
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	550.0 If	24.46	-	-	4.83	-	29.29 /lf	16,107
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)		14.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	14,300
40-05-24 10	RAS 36" tie-in at existing pump station allowance		1.0 ls	3,930.00	15,015.00		5,000.00	_	23,945.00 /ls	23,945
40 03 24.10	Secondary RAS Piping	_	750.0 LF	61.31	180.01	-	14.94	_	256.26 /LF	192,193
	, , ,									,
33500 Seconda	ry Clarifier ML Piping									
	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	100.0 If	-	168.69	-	-	-	168.69 /lf	16,869
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	100.0 If	-	168.69	-	-	-	168.69 /lf	16,869
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	1.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	7,123
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	1.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	7,123
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 54 Inch (1350mm)	A541002 0000EA	327.0 If	-	333.54	-	-	-	333.54 /lf	109,068
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 54 Inch (1350mm)	A542112 000000	4.0 ea	-	9,273.91	-	-	-	9,273.91 /ea	37,096
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	327.0 If	32.59	-	-	6.43	-	39.02 /lf	12,759
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)		11.0 ea	1,950.39	39.40	-	156.21	-	2,145.99 /ea	23,606
	Secondary Clarifier ML Piping	_	525.0 LF	87.40	359.07	-	11.55	_	458.01 /LF	240,455

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Seconda	ry Clarifier SE Piping									
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	100.0 If	-	168.69	-	-	-	168.69 /lf	16,869
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	100.0 If	-	168.69	-	-	-	168.69 /lf	16,869
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	1.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	7,123
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	1.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	7,123
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 54 Inch (1350mm)	A541002 0000EA	450.0 If	-	333.54	-	-	-	333.54 /lf	150,093
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 54 Inch (1350mm)	A542112 000000	3.0 ea	-	9,273.90	-	-	-	9,273.90 /ea	27,822
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	450.0 If	32.59	-	-	6.43	-	39.02 /lf	17,558
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)	L545102 000000	12.0 ea	1,950.39	39.40	-	156.21	-	2,145.99 /ea	25,752
	Secondary Clarifier SE Piping	_	650.0 LF	79.76	338.93	_	10.78	_	429.47 /LF	279,152
	40									711,800
	03 Seconday Clarifiers		1.0 LS	1,197,603.36	1,579,336.35	612,315.60	397,387.24		3,786,642.55 /LS	3,786,643

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 2

			.	Labor	Material	Sub	Equip	Other		Total Net
Phase	Estimate Breakdown	Item	Quantity	Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit	Total Cost/Unit	Amount
04 Existing aerati	ion Tanks/RAS Tank Retrofit									
01 GENERAL C										
	tank demolition	= 400	40.0				07.00		07.00 //	4 400
	Pressure Washer 7 gpm, 3000 psi Rent trash pump self-prime 4" diameter, diesel drive	5460 5600	16.0 day 16.0 day	-	-	-	87.60 126.20	-	87.60 /day 126.20 /day	1,402 2,019
01-54-55.40	Aeration tank demolition	3600	1.0 LS	-	-	-	3,420.80	-	3,420.80 /LS	3,421
	01 GENERAL CONDITIONS		1.0 20				0,420.00		0,420.00 720	3,421
02 SITEWORK	& DEMOLITION									
02225 Demo B	affle walls									
02-41-19.23	Rubbish handling, loading & trucking, machine loading truck, includes 2 mile haul, cost to be added to demolition cost.	3080	93.3 cy	17.39	-	-	6.59	-	23.98 /cy	2,239
02-41-19.25	Sawcutting, concrete walls, rod reinforcing, per inch of depth	0820	2,016.0 If	7.17	0.05	-	5.84	-	13.06 /lf	26,328
03-05-05.10	Selective concrete demolition, 2 - 5 tons, remove whole pieces, incl loading, excludes shoring, bracing, saw or torch cutting, hauling, dumping	0160	96.0 ea	106.31	-	-	32.26	-	138.57 /ea	13,303
	Demo Baffle walls	-	6,720.0 sf	3.91	0.02		2.30	_	6.23 /sf	41,870
02999 Aeration	tank demolition									
02-22-03.30	Dump Charge, typical urban city, fees only, bldg constr mat'ls	BC-0006	16.0 ton	-	-	-	-	33.00	33.00 /ton	528
02-22-04.50	Demo fine bubble aeration discs, piping, headers, laterals and drop legs, in basin only	BC-0071	16.0 days	2,284.78	-	-	967.88		3,252.66 /days	52,043
	Aeration tank demolition 02 SITEWORK & DEMOLITION		1.0 LS	36,556.52			15,486.08	528.00	52,570.60 /LS	52,571 94,440
03 CONCRETE										
03345 Baffle w	alls									
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	35.0 ton	794.28	992.00	-	-	-	1,786.28 /ton	62,520
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	35.0 ton	39.87	-	-	7.51	-	47.38 /ton	1,658
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	35.0 ton	43.34	-	-	8.17	-	51.51 /ton	1,803
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	588.0 cy	-	98.01	-	-	-	98.01 /cy	57,631
	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	588.0 cy	32.29	-	-	6.65	-	38.94 /cy	22,898
	Concrete finishing, walls, sandblast, light penetration	0700	20,160.0 sf	1.89	0.42	-	0.22	-	2.53 /sf	50,932
04-05-19.16	Masonry anchors, wall tie dowels, plain, 3/4" diameter x 6" long	6150	28.0 c	-	313.83	-	-	-	313.83 /c	8,787
	Baffle walls 03 CONCRETE		588.0 cy	149.21	186.44		15.08		350.73 /cy	206,230 206,230
05 METALS 11999 RAS Pui	mne									
05-58-09.50		BC-0001	2.0 ea	622.68	795.79	-	-	-	1,418.47 /ea	2,837
	RAS Pumps 05 METALS	-	1.0 LS	1,245.35	1,591.58			_	2,836.93 /LS	2,837 2,837

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11 EQUIPMENT	•									
11999 Aeration	• •									
	Aeration diffusers, fine bubble, complete with headers		10,432.0 ea	13.11	35.00	-	-	-	48.11 /ea	501,883
	Mixer, submerged propellar type, 10 hp, Flygt, with guiderail	BC-0621	24.0 ea	2,261.69	30,000.00	-	380.00	-	32,641.69 /ea	783,401
11-00-09.00	Pump, submerged axial flow. 18" Dia., wall pump, 3-hp, 2.5 mgd, IMLR pump	BC-0316	4.0 ea	1,696.27	25,000.00	-	190.00	-	26,886.26 /ea	107,545
	Aeration Equipment		1.0 LS	197,828.19	1,185,120.00		9,880.00		1,392,828.19 /LS	1,392,828
11999 RAS Pur	mns									
	Pump,vertical turbine, solids handling, can type, 50hp, VFD driven	BC-0791	2.0 ea	2,827.11	30,000.00	-	380.00	-	33,207.11 /ea	66,414
	RAS Pumps	-	1.0 LS	5,654.22	60,000.00	-	760.00		66,414.22 /LS	66,414
	11 EQUIPMENT									1,459,242
22 PLUMBING 22999 RAS Pip	ina									
-	RAS above grade piping allowance		2.0 ls	8,975.00	12,500.00	_	_	_	21,475.00 /ls	42,950
22 00 00.00	RAS Piping	-	1.0 LS	17,950.00	25,000.00				42,950.00 /LS	42,950
	22 PLUMBING									42,950
26 ELECTRICA	—									
_	Aeration Tanks/RAS Tank Retrofit - E&I (#13, #14) Electrical (This is based on a percentage of the	FACTOR	1.0 LS	-	-	445,133.73	-	-	445,133.73 /LS	445,134
	Total Project Costs) Existing Aeration Tanks/RAS Tank Retrofit - E&I	ED _	2.0 LS		-	222,566.86			222,566.86 /LS	445,134
	(#13, #14) 26 ELECTRICAL									445,134
27 COMMUNICA	ATIONS									
26001 Existing	Aeration Tanks/RAS Tank Retrofit - E&I (#13, #14)									
27-20-00.01	Instrumentation (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	74,188.96	-	-	74,188.96 /LS	74,189
	Existing Aeration Tanks/RAS Tank Retrofit - E&I (#13, #14)		2.0 LS		-	37,094.48			37,094.48 /LS	74,189
	27 COMMUNICATIONS									74,189
31 EARTHWOR	K									
	tank demolition									
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv	9498	240.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	2,052
	borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel									
	truck,cycle 20 miles,45 mph,excld ldng eqpmnt Aeration tank demolition	-	1.0 LS	738.66		-	1,313.09		2,051.75 /LS	2,052
	Aeration tank demoiition		1.0 LS	738.00			1,313.09		2,051.75 /LS	2,052
33500 Seconda	ary Clarifier ML Piping Exist Train									
31-23-16.13	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes	0510	812.5 bcy	2.80	-	-	2.07	-	4.87 /bcy	3,957
	sheeting or dewatering									
31-23-16.13	Excavating, trench or continuous footing, common	1000	3,066.7 bcy	2.07	-	-	1.95	-	4.02 /bcy	12,320
	earth, 1-1/2 C.Y. excavator, 10' to 14' deep, excludes									
31_23_23 12	sheeting or dewatering Backfill, trench, 6" to 12" lifts, dozer backfilling,	2200	2,187.5 ecy	1.23	_	_	2.60	_	3.82 /ecy	8,363
01 20 20.10	compaction with vibrating roller	2200	2,101.0 Coy	1.23	_		2.00	_	3.02 /ccy	0,505

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Seconda	ary Clarifier ML Piping Exist Train									
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	1,199.2 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	28,727
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	1,199.2 ecy	5.57	-	-	0.41	-	5.98 /ecy	7,165
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	1,691.7 lcy	6.23	-	-	5.24	-	11.48 /lcy	19,413
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	33,450.0 sf	-	-	0.08	-	-	0.08 /sf	2,676
	Secondary Clarifier ML Piping Exist Train	-	1,475.0 LF	27.95	8.85	1.81	17.40	-	56.01 /LF	82,621
33500 RAS Pur	mp Discharge									
	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes sheeting or dewatering	0510	902.8 bcy	2.80	-	-	2.07	-	4.87 /bcy	4,396
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	416.7 ecy	1.23	-	-	2.60	-	3.82 /ecy	1,593
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	398.8 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	9,555
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	398.8 ecy	5.57	-	-	0.41	-	5.98 /ecy	2,383
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	486.1 lcy	6.23	-	-	5.24	-	11.48 /lcy	5,578
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	9,750.0 sf	-	-	0.08	-	-	0.08 /sf	780
	RAS Pump Discharge 31 EARTHWORK	-	750.0 LF	16.68	5.79	1.04	8.87	-	32.38 /LF	24,286 108,958
33 UTILITIES										
	ary Clarifier ML Piping Exist Train									
33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	15.0 clf	3.34	5.56	-	-	-	8.90 /clf	133
	Secondary Clarifier ML Piping Exist Train	-	1,475.0 LF	0.03	0.06			-	0.09 /LF	133
33500 RAS Pur	,	0400	8.0 clf	3.34	5.56				8.90 /clf	71
33-03-20.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	8.0 CII	3.34	5.50	-	-	-	8.90 /611	71
	RAS Pump Discharge 33 UTILITIES	-	750.0 LF	0.04	0.06			-	0.10 /LF	71 205
40										
33500 Seconda	ary Clarifier ML Piping Exist Train									
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	1,150.0 If	-	168.69	-	-	-	168.69 /lf	193,992
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	6.0 ea	2,580.88	6,067.82	-	488.91	-	9,137.60 /ea	54,826
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 54 Inch (1350mm)	A541002 0000EA	328.0 If	-	333.54	-	-	-	333.54 /lf	109,401
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 54 Inch (1350mm)	A542112 000000	5.0 ea	-	9,273.90	-	-	-	9,273.90 /ea	46,370
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	1,150.0 lf	24.46	-	-	4.83	-	29.29 /lf	33,679

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Seconda	ary Clarifier ML Piping Exist Train									
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	32.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	32,685
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	328.0 If	32.59	-	-	6.43	-	39.02 /lf	12,798
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)	L545102 000000	12.0 ea	1,950.39	39.40	-	156.21	-	2,145.99 /ea	25,752
	Secondary Clarifier ML Piping Exist Train		1,475.0 LF	72.85	262.51		10.07		345.43 /LF	509,503
33500 RAS Pui	mp Discharge									
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 24 Inch (600mm)	A241002 0000EA	750.0 If	-	56.88	-	-	-	56.88 /lf	42,661
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 24 Inch (600mm)	A242112 000000	6.0 ea	-	1,678.64	-	-	-	1,678.64 /ea	10,072
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 24 Inch (600mm)	L244002 0000P1	750.0 If	19.57	-	-	3.62	-	23.19 /lf	17,391
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 24 Inch (600mm)	L245102 000000	19.0 ea	983.77	17.51	-	78.79	-	1,080.06 /ea	20,521
	RAS Pump Discharge	_	750.0 LF	44.49	70.75	-	5.62	_	120.86 /LF	90,645
	40)								600,148
	04 Existing aeration Tanks/RAS Tank Retrofit		1.0 LS	568,618.20	1,839,237.11	522,778.69	106,590.89	528.00	3,037,752.89 /LS	3,037,753

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
05 Tertiary Treatm	nent Processes									
03 CONCRETE										
03330 Slabs Ac		4050	00.0		00.00				00.00 /	000
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	29.6 cy	-	33.69	-	-	-	33.69 /cy	998
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	120.0 If	3.61	4.42	-	-	=	8.03 /lf	963
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	10.0 ea	9.39	47.88	-	-	-	57.27 /ea	573
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	4.4 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	9,012
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	4.4 ton	39.87	-	-	7.51	-	47.38 /ton	211
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	4.4 ton	43.34	-	-	8.17	-	51.50 /ton	229
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	62.2 cy	-	98.01	-	-	-	98.01 /cy	6,099
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	62.2 cy	9.69	-	-	2.00	-	11.68 /cy	727
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	800.0 sf	0.88	-	-	0.03	-	0.91 /sf	729
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	800.0 sf	0.70	0.29	-	-	-	0.99 /sf	795
03-39-13.50	Curing, sprayed membrane curing compound	0300	8.0 csf	9.68	10.12	-	-	-	19.80 /csf	158
	Slabs Actiflow tank		800.0 cy	9.31	16.04	,	0.27	_	25.62 /cy	20,494
03330 Slabs Co	agulaton Tank									
03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	5.3 cy	-	33.69	-	-	-	33.69 /cy	180
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	48.0 If	3.61	4.42	-	-	-	8.03 /lf	385
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	4.0 ea	9.39	47.88	-	-	-	57.27 /ea	229
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.8 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	1,622
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.8 ton	39.88	-	-	7.51	-	47.39 /ton	38
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.8 ton	43.34	-	-	8.16	-	51.50 /ton	41
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	11.2 cy	-	98.01	-	-	-	98.01 /cy	1,098
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	11.2 cy	9.69	-	-	2.00	-	11.68 /cy	131
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	144.0 sf	0.88	-	-	0.03	-	0.91 /sf	131
03-35-29.30	Concrete finishing, floor, hardener, non-metallic,	2350	144.0 sf	0.70	0.29	-	-	-	0.99 /sf	143

9.68

10.11

10.13

17.58

0.27

medium service, 0.75 psf, add 03-39-13.50 Curing, sprayed membrane curing compound

Slabs Coagulaton Tank

0300 _

1.4 csf

144.0 cy

29

4,027

19.81 /csf

27.97 /cy

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Hy	ydrocone									
03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	5.6 cy	-	33.69	-	-	-	33.69 /cy	187
03-11-13.65	C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	60.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	297
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.6 ton	1,036.02	992.00	-	-	-	2,028.02 /ton	1,268
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.6 ton	39.87	-	-	7.52	-	47.39 /ton	30
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	8.8 cy	-	98.01	-	-	-	98.01 /cy	858
03-31-05.70	Structural concrete, placing, slab on grade, direct chute, over 6" thick, includes vibrating, excludes material	4600	8.8 cy	17.32	-	-	0.39	-	17.71 /cy	155
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and broom finish	0150	225.0 sf	0.82	-	-	-	-	0.82 /sf	184
03-39-13.50	Curing, sprayed membrane curing compound Slabs Hydrocone	0300 _	2.3 csf 8.3 cy	9.68 153.51	10.12 208.25		0.97		19.80 /csf 362.73 /cy	45 3,023
03330 Slabs Di		1050	110 00	_	22.60				22.60 /04	400
03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	14.8 cy		33.69	-	-	-	33.69 /cy	499
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	40.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	344
03-11-13.65	C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	100.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	496
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	1.7 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	3,381
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	148.1 lb	0.52	0.48	-	-	-	0.99 /lb	147
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	1.7 ton	39.87	-	-	7.51	-	47.38 /ton	82
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	27.2 cy	-	98.01	-	-	-	98.01 /cy	2,668
03-31-05.70	Structural concrete, placing, slab on grade, direct chute, over 6" thick, includes vibrating, excludes material	4600	27.2 cy	17.32	-	-	0.39	-	17.71 /cy	482
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and broom finish	0150	600.0 sf	0.82	-	-	-	-	0.82 /sf	490
03-39-13.50	Curing, sprayed membrane curing compound Slabs Disc Filters	0300 _	6.0 csf 25.9 cy	9.68	10.12 196.18		0.91		19.80 /csf 335.90 /cy	119 8,708
03330 Slabs Al	um Storage and Pumps									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	14.8 cy	-	33.69	-	-	-	33.69 /cy	499
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing,	2050	56.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	482
03-11-13.65	stripping and cleaning C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	110.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	545

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Al	um Storage and Pumps									
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	1.7 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	3,381
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	170.4 lb	0.52	0.48	-	-	-	0.99 /lb	169
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	1.8 ton	39.87	-	-	7.51	-	47.38 /ton	83
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	27.8 cy	-	98.01	-	-	-	98.01 /cy	2,725
03-31-05.70	Structural concrete, placing, slab on grade, direct chute, over 6" thick, includes vibrating, excludes material	4600	27.8 cy	17.32	-	-	0.39	-	17.71 /cy	492
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and broom finish	0150	600.0 sf	0.82	-	-	-	-	0.82 /sf	490
03-39-13.50	Curing, sprayed membrane curing compound	0300 _	6.0 csf	9.68	10.12	-			19.80 /csf	119
	Slabs Alum Storage and Pumps		26.5 cy	142.68	195.75		0.90		339.33 /cy	8,986
02222 Alum to	nk/pump equipment Pads and containment									
	to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	740.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	6,365
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.3 ton	39.90	-	-	7.50	-	47.41 /ton	13
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.3 ton	43.33	-	-	8.20	-	51.50 /ton	14
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	13.5 cy	-	98.01	-	-	-	98.01 /cy	1,325
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	13.5 cy	27.68	-	-	5.70	-	33.38 /cy	451
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	13.5 cy	46.13	-	-	13.04	-	59.17 /cy	800
	Alum tank/pump equipment Pads and containment		13.5 cy	471.83	172.51		19.05		663.39 /cy	8,968
03333 Alum nu	mps Equipment Pads									
	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	72.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	619
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.0 ton	39.80	-	-	7.50	-	47.25 /ton	2
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.0 ton	43.30	-	-	8.30	-	51.50 /ton	2
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.0 cy	-	98.01	-	-	-	98.01 /cy	196
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	2.0 cy	27.68	-	-	5.70	-	33.38 /cy	67
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	2.0 cy	46.13	-	-	13.04	-	59.17 /cy	118
	Alum pumps Equipment Pads		2.0 cy	336.15	147.01		19.05		502.20 /cy	1,004
03345 Concrete	e Walls actiflow Tank									
	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	4,320.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	33,264

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls actiflow Tank									
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	11.5 gal	-	20.66	-	-	-	20.66 /gal	238
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	10.5 ton	794.28	992.00	-	-	-	1,786.28 /ton	18,756
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	10.5 ton	39.87	-	-	7.51	-	47.38 /ton	498
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	10.5 ton	43.34	-	-	8.17	-	51.51 /ton	541
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	126.0 cy	-	98.01	-	-	-	98.01 /cy	12,350
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	126.0 cy	32.29	-	-	6.65	-	38.94 /cy	4,907
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls actiflow Tank	0700 _	4,320.0 sf 126.0 cy	1.89 408.53	0.42 222.58	-	0.22 15.46		2.53 /sf 646.56 /cy	10,914 81,467
	e Walls Coagulation Tank Cip concret forms, walls, steel framed plywd, over 16'20'h, based 50 us purchsd forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9460	1,728.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	13,306
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	4.6 gal	-	20.66	-	-	-	20.66 /gal	95
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	3.6 ton	794.28	992.00	-	-	-	1,786.28 /ton	6,431
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	3.6 ton	39.87	-	-	7.51	-	47.38 /ton	171
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	3.6 ton	43.34	-	-	8.17	-	51.51 /ton	185
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	50.4 cy	-	98.01	-	-	-	98.01 /cy	4,940
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	50.4 cy	32.29	-	-	6.65	-	38.94 /cy	1,963
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	1,728.0 sf	1.89	0.42	-	0.22		2.53 /sf	4,366
	Concrete Walls Coagulation Tank 03 CONCRETE		50.4 cy	398.08	210.77		15.27		624.12 /cy	31,456 168,133
05 METALS										
05999 Actiflo c	larifier bridge									
05-99-99.99	Clarifier bridge supports, structural steel, grating, handrail, allowance	MISC	2.0 LS	8,090.00	10,220.00		2,000.00	-	20,310.00 /LS	40,620
	Actiflo clarifier bridge 05 METALS	_	1.0 LS	16,180.00	20,440.00		4,000.00	-	40,620.00 /LS	40,620 40,620
11 EQUIPMENT										
03330 Slabs Ad			40.10						0.004.544.00 # 5	0.0045:-
11-00-01.00	14.2 mgd Actiflow systems - Vendor quote Slabs Actiflow tank		1.0 LS 800.0 cy	<u>4,544.80</u> 5.68	2,300,000.00 2,875.00		-		2,304,544.80 /LS 2,880.68 /cy	2,304,545 2,304,545
11999 ACTIFLO)									
	Filter units, rotating disc, complete	BC-0696	2.0 ea	8,481.33	257,500.00	_	1,200.00		267,181.33 /ea	534,363
	ACTIFLO clarifier bridge and supports allowance		2.0 ls	2, 12 1130	22,000.00	-	,0	-	22,000.00 /ls	44,000
	ACTIFLO - misc anchor bolts, mounting hardware		2.0 ls	-	10,000.00	-	-	-	10,000.00 /ls	20,000

allowance

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11999 ACTIFLO										
11-00-06.00	FRP tank, alum,7,500 gal.,UV resistant	BC-0016	2.0 ea	2,022.71	21,000.00	-	622.71		23,645.42 /ea	47,291
	Chemical metering pump, alum	BC-0001	2.0 ea	459.41	11,000.00	-	-	-	11,459.41 /ea	22,919
	Hydrocyclone installation		2.0 ea	3,347.94	-	-	747.26	-	4,095.19 /ea	8,190
11-99-99.99	ACTIFLO treatment system,14.2 MGD per train,incl in-line rapid mix,coag mixer,draft tube mix,lamella	MISC	2.0 LS	31,386.92	1,150,000.00		7,502.40	-	1,188,889.31 /LS	2,377,779
	settler,scraper,troughs,recirc pumps,hydrocyclone ACTIFLO 11 EQUIPMENT	-	1.0 LS	91,396.59	2,943,000.00		20,144.73	-	3,054,541.32 /LS	3,054,541 5,359,086
22 PLUMBING 11999 ACTIFLO										
22-07-19.10	Alum tank and pump heat trace and insulation allowance		1.0 ls	17,950.00	25,000.00	-	-	-	42,950.00 /ls	42,950
	ACTIFLO 22 PLUMBING		1.0 LS	17,950.00	25,000.00				42,950.00 /LS	42,950 42,950
26 ELECTRICAL										
	Treatment Process - E&I (#12) Electrical (This is based on a percentage of the	FACTOR	1.0 LS	-	-	1,067,541.71	-	-	1,067,541.71 /LS	1,067,542
	Total Project Costs) Tertiary Treatment Process - E&I (#12) 26 ELECTRICAL	ED _	2.0 LS		-	533,770.85		-	533,770.85 /LS	1,067,542 1,067,542
27 COMMUNICA										
	Treatment Process - E&I (#12)	E40E0D							055 047 04 # 0	055.047
27-20-00.01	Instrumentation (This is based on a percentage of the Total Project Costs)	FACTOR ED _	1.0 LS	-	-	355,847.24	-	-	355,847.24 /LS	355,847
	Tertiary Treatment Process - E&I (#12) 27 COMMUNICATIONS		2.0 LS			177,923.62			177,923.62 /LS	355,847 355,847
31 EARTHWOR										
	Rent wellpoint header pipe, 6" diameter, 400 gpm	0500	1,200.0 day	-	-	-	0.40	-	0.40 /day	480
31-23-19.20	Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction hose and 100 LF of discharge hose	1100	120.0 day	857.51	-	-	377.70	-	1,235.21 /day	148,225
31-23-19.30	Wells, for dewatering, with steel casing, 10' to 20' deep, 2' diameter, minimum	0020	150.0 vlf	9.63	23.18	-	2.25	-	35.06 /vlf	5,259
	Dewatering	=	1.0 LS	104,345.66	3,477.00	•	46,141.20	-	153,963.86 /LS	153,964
03330 Slabs Ac	etiflow tank									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	88.9 sy	1.07	-	-	0.72		1.79 /sy	159
	Slabs Actiflow tank		800.0 cy	0.12			0.08		0.20 /cy	159
03330 Slabs Co	pagulaton Tank									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	16.0 sy	1.07	-	-	0.72		1.79 /sy	29
	Slabs Coagulaton Tank		144.0 cy	0.12			0.08		0.20 /cy	29
03330 Slabs Hy										
31-22-16.10	Fine grading, fine grade for slab on grade, machine Slabs Hydrocone	1100 _	25.0 sy 8.3 cy	1.07 3.20	-		0.72 2.17		1.79 /sy 5.36 /cy	45 45
	•		-						•	
03330 Slabs Di 31-22-16.10	sc Filters Fine grading, fine grade for slab on grade, machine	1100	66.7 sy	1.07	-	-	0.72	-	1.79 /sy	119

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Slabs Disc Filters	_	25.9 cy	2.74		-	1.86		4.60 /cy	119
03330 Slabs Al	lum Storage and Pumps									
31-22-16.10	Fine grading, fine grade for slab on grade, machine Slabs Alum Storage and Pumps	1100 _	66.7 sy 26.5 cy	1.07 2.68	-		0.72 1.82	-	1.79 /sy 4.50 /cy	119 119
31250 Shoring	Systems									
-	Sheet piling, steel, 27 psf, 20' excavation, per S.F., drive, extract and salvage, excludes wales	1600	4,374.0 sf	9.83	6.37	-	7.87	-	24.07 /sf	105,281
31-41-16.10	Sheet piling, wales, connections and struts, 2/3 salvage	2500	5.9 ton	-	410.40	-	-	-	410.40 /ton	2,421
	Shoring Systems		4,374.0 unit	9.83	6.92		7.87		24.62 /unit	107,703
31315 Excavati	ion and Backfill ACTIFLO									
31-05-16.10	Aggregate for earthwork, bank run gravel, spread with 200 H.P. dozer, includes load at pit and haul, 2 miles round trip, excludes compaction	0100	100.0 lcy	2.52	22.02	-	4.71	-	29.25 /lcy	2,925
31-23-16.42	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	2,430.0 bcy	6.99	-	-	7.64	-	14.63 /bcy	35,551
31-23-23.13	Backfill, bulk, air tamped compaction, add	1400	90.0 ecy	5.30	-	-	1.50	-	6.80 /ecy	612
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng egpmnt	9498	2,196.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	18,774
	Excavation and Backfill ACTIFLO 31 EARTHWORK	=	6,230.0 cy	3.93	0.35	-	5.00		9.29 /cy	57,862 319,998
	05 Tertiary Treatment Processes		1.0 LS	398,315.55	5,393,062.74	1,423,388.95	139,408.91		7,354,176.15 /LS	7,354,176

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
08 Influent Pump	Station									
03 CONCRETE	Imp station wet well									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y.,	1050	55.6 cy	-	33.69	-	-	-	33.69 /cy	1,872
02.45.42.50	includes material only	4000	420.0 16	2.04	4.40				0.00 //4	1.042
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	130.0 If	3.61	4.42	-	-	-	8.03 /lf	1,043
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	11.0 ea	9.39	47.88	-	-	-	57.27 /ea	630
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	11.1 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	22,533
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	11.1 ton	39.87	-	-	7.51	-	47.38 /ton	526
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	11.1 ton	43.34	-	-	8.17	-	51.51 /ton	572
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	116.7 cy	-	98.01	-	-	-	98.01 /cy	11,435
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	116.7 cy	9.69	-	-	2.00	-	11.68 /cy	1,363
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	1,500.0 sf	0.38	-	-	-	-	0.38 /sf	567
03-39-13.50	Curing, sprayed membrane curing compound	0300 _	15.0 csf	9.68	10.12 219.26		3.49		19.80 /csf	297 40.839
	Slabs Pump station wet well		116.7 cy	127.29	219.26		3.49		350.04 /cy	40,839
	Imp station slab									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	37.0 cy	-	33.69	-	-	-	33.69 /cy	1,248
03-11-13.65	C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	140.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	694
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	2.8 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	5,634
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	2.8 ton	39.87	-	-	7.51	-	47.38 /ton	132
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	2.8 ton	43.34	-	-	8.17	-	51.51 /ton	143
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	38.9 cy	-	98.01	-	-	-	98.01 /cy	3,812
03-31-05.70	Structural concrete, placing, slab on grade, pumped, over 6" thick, includes vibrating, excludes material	4650	38.9 cy	20.95	-	-	4.31	-	25.26 /cy	982
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	1,000.0 sf	0.88	-	-	0.03	-	0.91 /sf	911
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	1,000.0 sf	0.70	0.29	-	-	-	0.99 /sf	994
03-39-13.50	Curing, sprayed membrane curing compound	0300 _	10.0 csf	9.68	10.12		6.20		19.80 /csf	198
	Slabs Pump station slab		38.9 cy	159.05	213.96		6.20		379.22 /cy	14,748
	e Walls wet well	0450	40.0 1/	0.00	0.00				40.00 ///	400
03-11-13.85	C.I.P. concrete forms, wall, box out for opening, to 16" thick, over 10 S.F. (use perimeter), includes erecting, bracing, stripping and cleaning	0150	16.0 lf	9.93	2.33	-	-	-	12.26 /lf	196

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls wet well									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	36.0 If	10.50	2.14	-	-	-	12.63 /lf	455
03-11-13.85	Cip concret forms, walls, steel framed plywd, over 16'20'h, based 50 us purchsd forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9460	4,680.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	36,036
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	12.5 gal	-	20.66	-	-	-	20.66 /gal	258
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	36.0 If	3.24	14.92	-	-	-	18.15 /lf	654
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	3.0 ea	9.38	35.78	-	-	-	45.17 /ea	136
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	12.9 ton	794.28	992.00	-	-	-	1,786.28 /ton	23,063
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	12.9 ton	39.87	-	-	7.51	-	47.38 /ton	612
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	12.9 ton	43.34	-	-	8.17	-	51.51 /ton	665
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	135.6 cy	-	98.01	-	-	-	98.01 /cy	13,287
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	135.6 cy	32.29	-	-	6.65	-	38.94 /cy	5,279
03-35-29.60	Finishing: break ties & patch voids (walls, cols or beams)	0010	4,648.0 sf	0.97	0.03	-	-		1.00 /sf	4,650
	Concrete Walls wet well		135.6 cy	394.32	226.66		8.14		629.12 /cy	85,290
03350 Wet well	elev slab									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	750.0 sf	4.97	1.27	-	-	-	6.24 /sf	4,678
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	140.0 lf	3.62	0.21	-	-	-	3.83 /lf	537
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	2.4 ton	821.66	992.00	-	-	-	1,813.66 /ton	4,416
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	7.00	-	47.00 /ton	1
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	114.00	-	-	21.00	-	135.00 /ton	2
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	29.2 cy	-	98.01	-	-	-	98.01 /cy	2,859
03-31-05.70	Structural concrete, placing, elevated slab, with crane and bucket, over 10" thick, includes vibrating, excludes material	1650	29.2 cy	33.71	-	-	9.53	-	43.24 /cy	1,261
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	750.0 sf	0.88	-	-	0.03	-	0.91 /sf	683
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	7.5 csf	9.68	10.12	-	-	-	19.80 /csf	149
	Wet well elev slab 03 CONCRETE	_	27.8 cy	286.26	227.96		10.82	_	525.05 /cy	14,585 155,461

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 2

Project Number: 147571-040

Estimate Issue: 2

Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
04220 Exterior	Masonry Walls Pump station									
04-05-16.30	Grout, door frames, 3' x 7' opening, 2.5 CF per opening	0800	2.0 opng	32.67	10.51	-	2.27	-	45.45 /opng	91
04-05-16.30	Grout, door frames, 6' x 7' opening, 3.5 CF per opening	0850	2.0 opng	43.56	14.70	-	3.03	-	61.28 /opng	123
04-05-16.30	Grout, for bond beams, lintels and concrete masonry unit (CMU) cores, C476, includes material only	2000	1,428.0 cf	5.60	4.20	-	0.39	-	10.19 /cf	14,555
04-05-19.26	Masonry reinforcing bars, #5 and #6 reinforcing steel bars, placed horizontally, ASTM A615	0020	1,156.0 lb	0.65	0.46	-	-	-	1.11 /lb	1,280
04-05-19.26	Masonry reinforcing bars, #5 and #6 reinforcing steel bars, placed vertically, ASTM A615	0060	2,652.0 lb	0.80	0.46	-	-	-	1.26 /lb	3,337
04-05-19.26	Masonry reinforcing bars, truss type steel joint reinforcing, mill standard galvanized, 12" wide	0250	25.5 clf	26.07	24.73	-	-	-	50.79 /clf	1,295
04-05-19.26	Allow - shoring and bracing at CMU walls (percentage wall area)	0500	1,700.0 sfwa	0.75	0.17	-	-	-	0.93 /sfwa	1,572
04-22-10.28	Concrt block,high strngt,hollow,3500 psi,12"8"16",inclds mortar and horzntl joint rnfrcng every other course,excluds scffldn,grout and verticl rnfrcng	0350	3,400.0 sf	11.33	5.95	-	-	-	17.28 /sf	58,748
04-72-10.10	Precast concrete coping, stock units, 12" wall, 14" wide, 4" tapers to 3-1/2", includes mortar, excludes scaffolding	0110	170.0 lf	14.53	24.89	-	-	-	39.42 /lf	6,700
	Exterior Masonry Walls Pump station 04 STONE & MASONRY	_	3,400.0 sf	15.88	9.75		0.17	_	25.79 /sf	87,701 87,701
06 WOOD & PL	ASTICS									
	raming -Roof, Pump Station									
	Nails, floor or roof sheathing	1025	29.3 lb	-	2.45	-	-	-	2.45 /lb	72
06-05-23.10	Nails, roof framing, sinkers, 8d to 16d, allow 20 lbs per MBF	5625	107.0 lb	-	2.33	-	-	-	2.33 /lb	249
06-05-23.60	Average cost, hold downs (HD's), 7 to 12 gauge, glulams/beams	1230	4.0 ea	-	23.28	-	-	-	23.28 /ea	93
06-05-23.60	Threaded rod for hold downs, to 1-1/4" diameter, glulams/beams	1295	40.0 If	3.08	1.03	-	0.25	-	4.36 /lf	174
06-05-23.60	Rafter anchors, 18 ga galv, 1.5" wide, 5.25" L, cost per 100	3525	0.2 c	317.30	37.25	-	-	-	354.55 /c	71
06-11-10.10	Framing, beams/girders, 6x or larger, allow average cost per MBF	3800	1.0 mbf	1,150.34	1,539.45	-	-	-	2,689.79 /mbf	2,690
06-11-10.30	Wood framing, roofs, fascia boards, 2" x 8"	6070	0.2 mbf	3,067.58	601.80	-	-	-	3,669.40 /mbf	833
06-11-10.30	Wood framing, roofs, rafters, to 4 in 12 pitch, 2" x 8"	7060	2.0 mbf	730.37	601.79	-	-	-	1,332.16 /mbf	2,611
06-11-10.30	Framing, roofs, hip and valley rafters, 2" x 10"	7365	0.0 mbf	862.90	681.20	-	-	-	1,544.00 /mbf	65
06-11-10.30	Wood framing, roofs, hip and valley rafters, to 4 in 12 pitch, 2" x 8"	7600	2.0 mbf	1,415.80	601.79	-	-	-	2,017.59 /mbf	4,067
06-11-10.30	Wood framing, roofs, rafter ties, #3, 1" x 4"	7800	0.0 mbf	3,409.00	1,306.00	-	-	-	4,714.00 /mbf	33
06-11-10.30	Framing, roofs, ridge board, #2 or better, 2" x 12"	7922	0.1 mbf	1,207.90	690.40	-	-	-	1,898.30 /mbf	190
06-11-10.42	Furring, wood, on ceilings, on wood, 1" x 3"	0850	160.0 If	1.32	0.36	-	-	-	1.68 /lf	269
06-16-36.10	Sheathing, plywood on roof, CDX, 1/2" thick, pneumatic nailed	0105	1,800.0 sf	0.54	0.56	-	-	-	1.10 /sf	1,978
06-16-36.10	Sheathing, with boards, on roof, laid horizontal, 1" x 6"	1400	150.0 sf	1.27	1.47	-	-		2.73 /sf	410
	Wood Framing -Roof, Pump Station 06 WOOD & PLASTICS		1,800.0 sf	4.37	3.29		0.01		7.67 /sf	13,805 13,805

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
04220 Exterior	Masonry Walls Pump station									
07-19-19.10	Silicone water repellants, sprayed on CMU, 2 coat Exterior Masonry Walls Pump station	0300 _	6,800.0 sf 3,400.0 sf	0.16 0.31	0.53 1.07	-	-		0.69 /sf 1.38 /sf	4,683 4,683
06120 Wood Fr	raming -Roof, Pump Station									
	Blanket insulation, for walls or ceilings, kraft faced fiberglass, 6" thick, R19, 23" wide	0180	1,800.0 sf	0.28	0.37	-	-	-	0.65 /sf	1,175
07-26-10.10	Building Paper, vapor barrier, asphalt felt sheathing paper, 15#	0400	18.0 sq	12.06	4.81	-	-	-	16.87 /sq	304
07-41-13.20	Steel roofing panels, on steel frame, flat profile, standard finish, 1-3/4" standing seams, 10" wide, 26	0710	1,800.0 sf	2.41	3.73	-	-	-	6.14 /sf	11,048
	gauge Wood Framing -Roof, Pump Station 07 THERMAL PROTECTION	_	1,800.0 sf	2.81	4.15				6.96 /sf	12,526 17,210
09 FINISHES										
	raming -Roof, Pump Station									
09-91-06.41	Coatings & paints, B & C coating system E-8 (Clear epoxy, wood)	BC-0051	1,800.0 sqft	0.26	0.44	-	-	-	0.70 /sqft	1,262
	Wood Framing -Roof, Pump Station 09 FINISHES		1,800.0 sf	0.26	0.44				0.70 /sf	1,262 1,262
11 EQUIPMENT										
11999 Influent	Coatings allowance	MISC	1.0 LS	_	_	30,000.00	_	_	30,000.00 /LS	30,000
	Hydraulic structures, slide gate, stainless stl, ab & grout,48" x 48"	BC-0106	1.0 ea	2,540.11	7,957.95	-	573.18	-	11,071.24 /ea	11,071
11-00-11.05	Wastewater, submersible,4400 GPM gpm,guide rails, base elbow,175 hp, VFD driven	BC-0011	4.0 ea	9,199.66	130,000.00	-	-	-	139,199.66 /ea	556,799
41-21-23.16	Conveyors, material handling, monorail, overhead, manual, channel type, 500 lb per LF	3900	40.0 If	26.93	20.50	-	-	-	47.43 /lf	1,897
41-21-23.16	Conveyors, material handling, monorail, overhead, manual, channel type, trolleys for, 8 wheel, 500 lb capacity	4300	1.0 ea	-	770.00	300.00	-	-	1,070.00 /ea	1,070
41-22-23.10	Hoists, material handling, electric overhead, chain, hook hung, 15' lift, 5 ton capacity	2500	1.0 ea	-	6,925.00	350.00	-	-	7,275.00 /ea	7,275
41-22-23.10	Hoists, material handling, electric overhead, chain, hook hung, 15' lift, 1 ton capacity, for lifts over 15', 5	3100	5.0 If	-	56.50	12.00	-	-	68.50 /lf	343
	ton, add Influent Pump Station 11 EQUIPMENT	-	1.0 LS	40,415.72	536,755.45	30,710.00	573.18		608,454.35 /LS	608,454 608,454
22 PLUMBING	Duna sisia									
22999 Influent	Coating systems allowance	MISC	1.0 LS	_	_	20,000.00	_	_	20,000.00 /LS	20,000
	Pump discharge piping allowance		1.0 Is	29,520.00	100,000.00	-	20,000.00	-	149,520.00 /ls	149,520
	Influent Pump piping	-	1.0 LS	29,520.00	100,000.00	20,000.00	20,000.00		169,520.00 /LS	169,520
33500 Influent	PS Yard Piping									
	Piping, pipe, Welded Steel, Welded Jt, 36" diameter	BC-1256	1,625.0 Inft	20.11	244.00	-	4.35	-	268.45 /Inft	436,237
	Pipe, steel, welding labor per joint, 36"dia	BC-1306	45.0 ea	1,979.44		-	75.78	-	2,055.22 /ea	92,485
	Pipe, steel ftngs, CI, standard weight, black, 90< elb, straight, 36"	BC-0116	5.0 ea	1,843.18	3,042.00	-	995.92	-	5,881.10 /ea	29,406
22-99-99.99	Tie into existing influent piping/structure allowance		1.0 LS	50,000.00	250,000.00		-		300,000.00 /LS	300,000
	Influent PS Yard Piping		1,625.0 LF	111.36	407.21		9.51		528.08 /LF	858,127

				Labor	Material	Sub	Equip	Other		Total Net
Phase	Estimate Breakdown	Item	Quantity	Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit	Total Cost/Unit	Amount
	22 PLUMBING									1,027,647
26 ELECTRICA	L									
26001 Influent	Pump Station - E&I									
26-00-00.02	Electrical (This is based on a percentage of the	FACTOR	1.0 LS	-	-	597,328.02	-	-	597,328.02 /LS	597,328
	Total Project Costs)	ED _			_			-		
	Influent Pump Station - E&I 26 ELECTRICAL		1.0 LS			597,328.02			597,328.02 /LS	597,328 597,328
27 COMMUNIC	ATIONS									
	Pump Station - E&I									
	Instrumentation (This is based on a percentage of	FACTOR	1.0 LS	-	-	114,870.78	-	-	114,870.78 /LS	114,871
	the Total Project Costs)	ED _			=			-		
	Influent Pump Station - E&I 27 COMMUNICATIONS		1.0 LS			114,870.78			114,870.78 /LS	114,871 114,871
31 EARTHWOR										
01999 Dewater	-	0500	000 0 -1				0.40		0.40 /da	200
	Rent wellpoint header pipe, 6" diameter, 400 gpm Dewatering, pumping 8 hours, attended 2 hrs per	0500 1100	900.0 day 90.0 day	857.51	-	-	377.70	-	0.40 /day 1,235.21 /day	360 111,169
31-23-19.20	day, 6" centrifugal pump, includes 20 LF of suction	1100	90.0 day	037.31	-	-	377.70	-	1,233.21 /uay	111,109
	hose and 100 LF of discharge hose									
31-23-19.30	Wells, for dewatering, with steel casing, 10' to 20' deep, 2' diameter, minimum	0020	100.0 vlf	76.64	184.52	-	17.92	-	279.08 /vlf	27,908
	Dewatering	_	1.0 LS	84,839.97	18,452.33	=	36,144.70	-	139,437.00 /LS	139,437
	ump station wet well Fine grading, fine grade for slab on grade, machine	1100	166.7 sy	1.07			0.72		1.79 /sy	298
31-22-10.10	Slabs Pump station wet well	1100 _	116.7 cy	1.52	-		1.03		2.55 /cy	298
	olabo i amp station wet wen		110.1 09	1.02			1.00		2.00 709	200
03330 Slabs Pt	ump station slab									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	111.1 sy	1.07	-		0.72		1.79 /sy	199
	Slabs Pump station slab		38.9 cy	3.04			2.06		5.11 /cy	199
31250 Shoring	Systems									
31-41-16.10	Sheet piling, steel, 27 psf, 20' excavation, per S.F.,	1600	3,400.0 sf	9.83	6.37	-	7.87	-	24.07 /sf	81,837
	drive, extract and salvage, excludes wales									
31-41-16.10	Sheet piling, wales, connections and struts, 2/3	2500	9.0 ton	-	410.40	-	-	-	410.40 /ton	3,698
	salvage Shoring Systems	-	3,400.0 unit	9.83	7.46	-	7.87	-	25.16 /unit	85,535
31315 Excavat	ion and Backfill pump station									
	Excavating, bulk bank measure, in sheeting or	4400	1,296.0 bcy	6.99	_	_	7.64	_	14.63 /bcy	18,961
0.20.02	cofferdam, with all other equipment, minimum		.,200.0 20)	0.00					1 1100 720)	.0,00.
31-23-23.14	Backfill, structural, common earth, 105 H.P. dozer,	3020	964.0 lcy	0.70	-	-	0.50	-	1.20 /lcy	1,159
	50' haul, from existing stockpile, excludes compaction		•						•	
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv	9498	724.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	6,189
	borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel									
	truck,cycle 20 miles,45 mph,excld ldng eqpmnt								a /	
31-23-23.23	Compaction, 3 passes, 12" lifts, riding, sheepsfoot or	5700	668.0 ecy	0.25	-	-	0.35	-	0.60 /ecy	399
	wobbly wheel roller Excavation and Backfill pump station	-	925.9 cy	13.10		-	15.74	-	28.85 /cy	26,708
	Executation and Dackini pullip station		323.3 Cy	13.10			13.74		20.00 /Cy	20,700

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Influent	PS Yard Piping									
31-23-16.13	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes sheeting or dewatering	0510	6,454.9 bcy	2.80	-	-	2.07	-	4.87 /bcy	31,434
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with sheepsfoot roller	2300	4,092.6 ecy	1.32	-	-	2.85	-	4.16 /ecy	17,043
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	1,936.8 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	46,399
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	1,936.8 ecy	5.57	-	-	0.41	-	5.98 /ecy	11,573
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	2,362.3 lcy	6.23	-	-	5.24	-	11.48 /lcy	27,109
	Influent PS Yard Piping 31 EARTHWORK		1,625.0 LF	42.75	12.98		26.46		82.19 /LF	133,557 385,733
33 UTILITIES										
33500 Influent	. •	0.400	400 1/						0.00 / 1/	4.40
33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	16.0 clf	3.34	5.56	-	-	-	8.90 /clf	142
	Influent PS Yard Piping 33 UTILITIES	_	1,625.0 LF	0.03	0.06			_	0.09 /LF	142 142
	08 Influent Pump Station		1.0 LS	601,963.90	1,485,405.99	762,908.80	159,335.54		3,009,614.23 /LS	3,009,614

COM ALTERNATIVES ANALYSIS - ALT 2

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
09 Acetate/Metha	nol									
03 CONCRETE	construct Otomores									
	nemical Storage Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	5.6 cy	-	33.69	-	-	-	33.69 /cy	187
03-11-13.65	C.I.P. concrete forms, slab on grade, slab blockouts, wood, to 12" high, 1 use, includes erecting, bracing, stripping and cleaning	4000	32.0 If	9.05	0.81	-	-	-	9.86 /lf	315
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.6 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	1,128
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.6 ton	39.87	-	-	7.52	-	47.40 /ton	26
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.6 ton	43.35	-	-	8.17	-	51.51 /ton	29
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	11.7 cy	-	98.01	-	-	=	98.01 /cy	1,144
03-31-05.70	Structural concrete, placing, slab on grade, pumped, over 6" thick, includes vibrating, excludes material	4650	11.7 cy	20.95	-	-	4.31	-	25.26 /cy	295
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	300.0 sf	0.88	-	-	0.03	-	0.91 /sf	273
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	300.0 sf	0.70	0.29	-	-	-	0.99 /sf	298
03-39-13.50	Curing, sprayed membrane curing compound Slabs Chemical Storage	0300 _	3.0 csf 300.0 cy	9.68 5.53	10.12 6.75		0.23		19.80 /csf 12.52 /cy	<u>59</u> 3,754
03330 Slabs ta 03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	14.8 cy	-	33.69	-	-	-	33.69 /cy	499
03-11-13.65	C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing,	3050	110.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	545
03-21-10.60	stripping and cleaning Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl	0600	1.4 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	2,817
03-21-10.60	material for accessories Reinforcing in place, unloading & sorting, add to	2005	1.4 ton	39.87	-	-	7.52	-	47.39 /ton	66
03-21-10.60	above - slabs Reinforcing in place, crane cost for handling, add to above, slabs	2215	1.4 ton	43.34	-	-	8.16	-	51.51 /ton	72
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	22.2 cy	-	98.01	-	-	-	98.01 /cy	2,178
03-31-05.70	Structural concrete, placing, slab on grade, pumped, over 6" thick, includes vibrating, excludes material	4650	22.2 cy	20.95	-	-	4.31	-	25.26 /cy	561
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and broom finish	0150	600.0 sf	0.82	-	-	-	-	0.82 /sf	490
	Slabs tanks	_	22.2 cy	133.56	186.42	-	5.29	-	325.27 /cy	7,228
03333 Acetate	tanks/pumps equipment Pads and containment									
	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	740.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	6,365
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.3 ton	39.90	-	-	7.50	-	47.41 /ton	13
03-21-10.60	Reinforcing in place, crane cost for handling, add to	2215	0.3 ton	43.33	-	-	8.20	-	51.50 /ton	14

above, slabs

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03333 Acetate	tanks/pumps equipment Pads and containment									
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	13.5 cy	-	98.01	-	-	-	98.01 /cy	1,325
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	13.5 cy	27.68	-	-	5.70	-	33.38 /cy	451
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	13.5 cy	46.13	-	-	13.04	-	59.17 /cy	800
	Acetate tanks/pumps equipment Pads and containment	_	13.5 cy	471.83	172.51		19.05		663.39 /cy	8,968
03333 Acetate	pumps Equipment Pads									
	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	72.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	619
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.0 ton	39.80	-	-	7.50	-	47.25 /ton	2
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.0 ton	43.30	-	-	8.30	-	51.50 /ton	2
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.0 cy	-	98.01	-	-	-	98.01 /cy	196
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	2.0 cy	27.68	-	-	5.70	-	33.38 /cy	67
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	2.0 cy	46.13	-	-	13.04	-	59.17 /cy	118
	Acetate pumps Equipment Pads	_	2.0 cy	336.15	147.01		19.05		502.20 /cy	1,004
03333 Methano	I tank/pump Equipment Pads and containment									
	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	374.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	3,217
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.3 ton	39.86	-	-	7.50	-	47.37 /ton	13
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.3 ton	43.35	-	-	8.17	-	51.50 /ton	14
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	13.9 cy	-	98.01	-	-	-	98.01 /cy	1,361
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	13.9 cy	27.68	-	-	5.70	-	33.38 /cy	464
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	13.9 cy	46.13	-	-	13.04	-	59.17 /cy	822
	Methanol tank/pump Equipment Pads and containment		13.9 cy	270.46	134.66		19.05		424.17 /cy	5,891
	03 CONCRETE									26,847
04 STONE & MA	ASONRY									
	Masonry Walls chemical storage									
04-05-16.30	Grout, door frames, 3' x 7' opening, 2.5 CF per opening	0800	2.0 opng	32.67	10.51	-	2.27	-	45.45 /opng	91
04-05-16.30	Grout, door frames, 6' x 7' opening, 3.5 CF per opening	0850	2.0 opng	43.56	14.70	-	3.03	-	61.28 /opng	123
04-05-16.30	Grout, for bond beams, lintels and concrete masonry unit (CMU) cores, C476, includes material only	2000	441.0 cf	5.60	4.20	-	0.39	-	10.19 /cf	4,495
04-05-19.26	Masonry reinforcing bars, #5 and #6 reinforcing steel bars, placed horizontally, ASTM A615	0020	1,575.0 lb	0.65	0.46	-	-	-	1.11 /lb	1,745
04-05-19.26	Masonry reinforcing bars, #5 and #6 reinforcing steel bars, placed vertically, ASTM A615	0060	819.0 lb	0.80	0.46	-	-	-	1.26 /lb	1,030

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
04220 Exterior	Masonry Walls chemical storage									
04-05-19.26	Masonry reinforcing bars, truss type steel joint reinforcing, mill standard galvanized, 12" wide	0250	7.7 clf	26.07	24.73	-	-	-	50.79 /clf	391
04-22-10.28	Concrt block,high strngt,hollow,3500 psi,12"8"16",inclds mortar and horzntl joint rnfrcng every other course,excluds scffldn,grout and verticl rnfrcng	0350	1,050.0 sf	11.33	5.95	-	-	-	17.28 /sf	18,143
	Exterior Masonry Walls chemical storage 04 STONE & MASONRY	_	1,050.0 sf	15.62	8.98		0.17	-	24.78 /sf	26,017 26,017
06 WOOD & PL	ASTICS									
	raming - Roof Chemical Storage									
	Nails, floor or roof sheathing	1025	6.0 lb	-	2.45	-	-	-	2.45 /lb	15
	Nails, roof framing, sinkers, 8d to 16d, allow 20 lbs per MBF	5625	6.0 lb	-	2.33	-	-	-	2.33 /lb	14
06-05-23.60	Average cost, hold downs (HD's), 7 to 12 gauge, glulams/beams	1230	4.0 ea	-	23.28	-	-	-	23.28 /ea	93
06-05-23.60	Threaded rod for hold downs, to 1-1/4" diameter, glulams/beams	1295	40.0 If	3.08	1.03	-	0.25	-	4.36 /lf	174
06-05-23.60	I-joist hanger (EWP), 12 to 16 ga., per 100, avg cost	1460	0.1 c	296.80	656.40	-	-	-	953.20 /c	95
06-05-23.60	Rafter anchors, 18 ga galv, 1.5" wide, 5.25" L, cost per 100	3525	0.2 c	317.30	37.25	-	-	-	354.55 /c	71
06-11-10.10	Framing, beams/girders, 6x or larger, allow average cost per MBF	3800	0.6 mbf	1,150.34	1,539.44	-	-	-	2,689.79 /mbf	1,641
06-11-10.30	I-joist (composite) rafters , 24" o.c., w/ blocking, avg cost/sf	1050	320.0 sffl	0.78	1.92	-	-	-	2.70 /sffl	865
06-11-10.30	Wood framing, roofs, fascia boards, 2" x 8"	6070	0.2 mbf	3,067.58	601.80	-	-	-	3,669.40 /mbf	833
06-11-10.30	Wood framing, roofs, rafters, to 4 in 12 pitch, 2" x 8"	7060	2.0 mbf	730.37	601.79	-	-	-	1,332.16 /mbf	2,611
06-11-10.30	Framing, roofs, hip and valley rafters, 2" x 10"	7365	0.0 mbf	862.90	681.20	-	-	_	1,544.00 /mbf	65
	Wood framing, roofs, hip and valley rafters, to 4 in 12 pitch, 2" x 8"	7600	2.0 mbf	1,415.80	601.79	-	-	-	2,017.59 /mbf	4,067
06-11-10.30	Wood framing, roofs, rafter ties, #3, 1" x 4"	7800	0.0 mbf	3,409.00	1,306.00	-	-	_	4,714.00 /mbf	33
06-11-10.30	Framing, roofs, ridge board, #2 or better, 2" x 12"	7922	0.1 mbf	1,207.90	690.40	-	-	_	1,898.30 /mbf	190
	Furring, wood, on ceilings, on wood, 1" x 3"	0850	320.0 If	1.32	0.36	-	_	-	1.68 /lf	537
	Sheathing, plywood on roof, CDX, 1/2" thick, pneumatic nailed	0105	300.0 sf	0.54	0.56	-	-	-	1.10 /sf	330
06-16-36.10	Sheathing, with boards, on roof, laid horizontal, 1" x 6"	1400	150.0 sf	1.27	1.47	-	-	-	2.73 /sf	410
	Wood Framing - Roof Chemical Storage 06 WOOD & PLASTICS	_	300.0 sf	23.68	16.44		0.03		40.15 /sf	12,044 12,044
07 THERMAL P										
	Masonry Walls chemical storage									
07-19-19.10	Silicone water repellants, sprayed on CMU, 2 coat Exterior Masonry Walls chemical storage	0300 _	2,100.0 sf 1,050.0 sf	0.16 0.31	0.53 1.07	-	-		0.69 /sf 1.38 /sf	1,446 1,446
06120 Wood Fr	raming - Roof Chemical Storage									
	Blanket insulation, for walls or ceilings, kraft faced fiberglass, 6" thick, R19, 23" wide	0180	300.0 sf	0.28	0.37	-	-	-	0.65 /sf	196
07-26-10.10	Building Paper, vapor barrier, asphalt felt sheathing paper, 15#	0400	3.0 sq	12.06	4.81	-	-	-	16.87 /sq	51
07-41-13.20	Steel roofing panels, on steel frame, flat profile, standard finish, 1-3/4" standing seams, 10" wide, 26 gauge	0710	300.0 sf	2.41	3.73	-	-	-	6.14 /sf	1,841
	Wood Framing - Roof Chemical Storage	-	300.0 sf	2.81	4.15			-	6.96 /sf	2,088

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 2

Project Number: 147571-040

Estimate Issue: 2

Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown 07 THERMAL PROTECTION	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount 3,534
	raming - Roof Chemical Storage Coatings & paints, B & C coating system E-8 (Clear epoxy, wood) Wood Framing - Roof Chemical Storage 09 FINISHES	BC-0051 —	320.0 sqft	0.26	0.44	-	-	-	0.70 /sqft 0.75 /sf	224 224 224
11-00-08.00 11-00-08.00		BC-0016 BC-0011 BC-0041 0600	1.0 ea 2.0 ea 2.0 ea 1.0 ea	2,022.71 459.41 565.42 2,722.91	21,000.00 11,000.00 11,000.00 108,000.00 173,000.00	:	622.71 - 1,150.56 - 1,773.27	- - - -	23,645.42 /ea 11,459.41 /ea 11,565.42 /ea 111,873.47 /ea 181,568.54 /LS	23,645 22,919 23,131 111,873
21 FIRE SUPPR 22999 Chemica 21-99-99.99		MISC _	1.0 LS 1.0 LS	-		20,000.00 20,000.00			20,000.00 /LS 20,000.00 /LS	20,000 20,000 20,000
	al Piping Chemical piping allowance acetate tank/pumps Chemical piping allowance methanol tank/pumps Chemical Piping 22 PLUMBING	MISC MISC _	2.0 LS 2.0 LS 1.0 LS	1,795.00 2,692.50 8,975.00	2,500.00 3,750.00 12,500.00		- -	- -,	4,295.00 /LS 6,442.50 /LS 21,475.00 /LS	8,590 12,885 21,475 21,475
	Chemical Storage - E&I (#15) Electrical (This is based on a percentage of the Total Project Costs) Aeration Chemical Storage - E&I (#15) 26 ELECTRICAL	FACTOR ED _	1.0 LS 2.0 LS	-	-	64,012.09	-	-	64,012.09 /LS 32,006.04 /LS	64,012 64,012 64,012
	ATIONS Chemical Storage - E&I (#15) Instrumentation (This is based on a percentage of the Total Project Costs) Aeration Chemical Storage - E&I (#15) 27 COMMUNICATIONS	FACTOR ED _	1.0 LS 2.0 LS	-	-	16,003.03 8,001.52	-	-	16,003.03 /LS 8,001.52 /LS	16,003 16,003 16,003
	K nemical Storage Fine grading, fine grade for slab on grade, machine Slabs Chemical Storage	1100 _	33.3 sy 300.0 cy	1.07 0.12	-		0.72 0.08		1.79 /sy 0.20 /cy	60 60
03330 Slabs ta 31-22-16.10	nks Fine grading, fine grade for slab on grade, machine Slabs tanks	1100	66.7 sy 22.2 cy	1.07 3.20	-		0.72 2.17		1.79 /sy 5.36 /cy	119 119

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 2

Project Number: 147571-040

Estimate Issue: 2

Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	31 EARTHWORK									179
33 UTILITIES 33999 Chemical	l feed yard piping									
	Chemical piping, double contained, allowance Chemical feed yard piping 33 UTILITIES 09 Acetate/Methanol		1.0 ls 1.0 LS	6,152.00 6,152.00	20,020.00	-	2,000.00 2,000.00	٠.	28,172.00 /ls 28,172.00 /LS	28,172 28,172 28,172 400,076

Phase	Estimate Breakdown	Item	Quantity	Labor	Material	Sub	Equip	Other	Total Cost/Unit	Total Net
				Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit		Amount
10 Sidestream P	Removal									
11 EQUIPMENT										
11999 Ostara F	Pearl Nutrient Removal									
11-99-99.99	Ostara Pearl nutrient removal process, quote from	MISC	1.0 LS	-	-	2,400,000.00	-	-	2,400,000.00 /LS	2,400,000
	2010 project, including all equip, conc, bldngs for									
	complete turnkey system, increased for inflation Ostara Pearl Nutrient Removal	-	1.0 LS		-	2,400,000.00			2,400,000.00 /LS	2,400,000
	11 EQUIPMENT		1.0 20			2,400,000.00			2,400,000.00 720	2,400,000
20 EL ECTRICA										
26 ELECTRICA 26001 Ostara -										
	Electrical (This is based on a percentage of the	FACTOR	1.0 LS	_	_	289,952.05	-	-	289,952.05 /LS	289,952
	Total Project Costs)	ED	==							
	Ostara - E&I (#11)		1.0 LS			289,952.05			289,952.05 /LS	289,952
	26 ELECTRICAL									289,952
27 COMMUNIC	ATIONS									
26001 Ostara -										
27-20-00.01	Instrumentation (This is based on a percentage of	FACTOR	1.0 LS	-	-	96,650.69	-	-	96,650.69 /LS	96,651
	the Total Project Costs)	ED _			_					
	Ostara - E&I (#11)		1.0 LS			96,650.69			96,650.69 /LS	96,651
	27 COMMUNICATIONS									96,651
31 EARTHWOR	K									
33500 Centrate	e Discharge									
31-23-16.13	Excavating, trench or continuous footing, common	0110	63.3 bcy	3.73	-	-	2.23	-	5.96 /bcy	377
	earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator,									
31-23-23 13	excludes sheeting or dewatering Backfill, trench, air tamped compaction, add	2000	39.3 ecy	13.60	_	_	3.85	_	17.44 /ecy	685
	Fill by borrow and utility bedding, for pipe and	0200	22.8 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	546
	conduit, sand, dead or bank, excludes compaction		,						,	
31-23-23.16	Fill by borrow and utility bedding, for pipe and	0500	22.8 ecy	5.57	-	-	0.41	-	5.98 /ecy	136
	conduit, compacting bedding in trench									
31-23-23.18	Hauling, excavated or borrow material, loose cubic	0150	24.1 lcy	6.23	-	-	5.24	-	11.48 /lcy	276
	yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading									
31-41-13.10	Trench box and jacks, cost per sfca trench wall,	2000	1,140.0 sf	_	_	6.69	-	-	6.69 /sf	7,627
	monthly rental	_								
	Centrate Discharge		100.0 unit	12.88	2.48	76.27	4.84		96.47 /unit	9,647
	31 EARTHWORK									9,647
33 UTILITIES										
33500 Centrate	e Discharge									
33-05-26.10	Utility line signs, markers, and flags, underground	0400	1.0 clf	3.34	5.56	-	-	-	8.90 /clf	9
	tape, detectable, reinforced, aluminum foil core, 2",									
22 44 42 45	excludes excavation and backfill	2000	100.0 15	47.05	44.55		2.00		00.44 //4	0.044
33-11-13.15	Water supply distribution piping,ductile iron pipe,cement lined,mechanical	2060	100.0 If	17.95	44.55	-	3.62	-	66.11 /lf	6,611
	joint,fittings,18'lengths,8"diameter,class 50,excludes									
	excavation backfill	_				_				
	Centrate Discharge		100.0 unit	17.98	44.60		3.62		66.20 /unit	6,620
	33 UTILITIES									6,620
	10 Sidestream P Removal								/LS	2,802,870

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 2

Project Number: 147571-040

Estimate Issue: 2

Due Date: 6/24/2015

Estimator: DG-NDG-FB-IK

Total Net Material Sub Equip Other Labor Phase Estimate Breakdown Total Cost/Unit Item Quantity Cost/Unit Cost/Unit Cost/Unit Cost/Unit Cost/Unit Amount 01 TOTAL AMOUNT 34,485,717

COM ALTERNATIVES ANALYSIS - ALT 2

Estimate Totals

Rate		Hours	Amount	Totals
		95,482 hrs	6,674,661	
		121.436 hrs		
			528	
			34,485,717	34,485,717
5.000	%	=	1,724,286	
			1,724,286	36,210,003
10.000	%		667,466	
8.000	%		1,339,215	
5.000	%		140,305	
8.000	%		141,494	
8.000	%		42	
2.000	%		334,804	
6.000	%	_	601,643	
			3,224,969	39,434,972
10.000	%		3,943,497	
2.000	%		788,699	
30.000	%		11,830,491	
			16,562,687	55,997,659
2.000	%		1,119,953	
1.500	%		839,965	
		_	1,959,918	57,957,577
				57,957,577
	5.000 10.000 8.000 5.000 8.000 2.000 6.000 10.000 2.000 30.000	5.000 % 10.000 % 8.000 % 5.000 % 8.000 % 6.000 % 10.000 % 2.000 % 30.000 % 1.500 %	95,482 hrs 121,436 hrs 5.000 % 10.000 % 8.000 % 8.000 % 8.000 % 6.000 % 10.000 % 2.000 % 2.000 % 30.000 %	95,482 hrs 6,674,661 16,740,183 9,301,674 121,436 hrs 1,768,671 528 34,485,717 5.000 % 667,466 8.000 % 1,339,215 5.000 % 140,305 8.000 % 141,494 8.000 % 42 2.000 % 334,804 6.000 % 601,643 3,224,969 10.000 % 3,943,497 2.000 % 788,699 30.000 % 11,830,491 16,562,687 2.000 % 1,119,953 1.500 % 1,119,953 1.500 % 839,965

Estimate Detail Report

5/28/2015 2:02 PM

Project Number: 147571-040

Estimate Issue: 1

Due Date: 5/26/2015

Estimator: DG-NDG-FB-IK

COM ALTERNATIVES ANALYSIS - ALT 3

CITY OF MERIDIAN COM ALTERNATIVES ANALYSIS - ALT 3 PRE-BODR - FACILITY PLANNING

Estimator DG-NDG-FB-IK

BC Project Manager Richard Kelly

BC Office Seattle

Estimate Issue No.
QA/QC Reviewer
QA/QC Review Date
Don Snowden
5/26/2015

Notes PROCESS LOCATION/AREA INDEX

01 Primary Clarifiers

02 Aeration Tanks

03 Secondary Clarifiers

04 Existing Aeration Tanks/RAS Tanks Retrofit

05 Tertiary Treatment Process

07 MBR Treatment

08 Influent Pump Station

09 Acetate/Methanol

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
01 Primary Clarific	ers									
03 CONCRETE										
03330 Slabs Pri	= = = = = = = = = = = = = = = = = = = =									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	210.1 cy	-	33.69	-	-	-	33.69 /cy	7,078
03-11-13.85	C.I.P. concrete forms, wall, job built, plywood, to 8' high, 2 use, includes erecting, bracing, stripping and cleaning	2050	360.0 sfca	6.39	1.76	-	-	-	8.16 /sfca	2,937
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	252.0 If	3.61	4.42	-	-	-	8.03 /lf	2,022
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	21.0 ea	9.39	47.88	-	-	-	57.27 /ea	1,203
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	31.5 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	63,905
03-21-10.60	Reinforcing in place, A615 Gr 60, walls, #8 to #18	0760	1,800.0 lb	0.30	0.48	-	-	-	0.77 /lb	1,393
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	32.4 ton	39.87	-	-	7.51	-	47.38 /ton	1,536
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	32.4 ton	43.34	-	-	8.17	-	51.51 /ton	1,669
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	455.2 cy	-	98.01	-	-	-	98.01 /cy	44,611
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	441.2 cy	9.69	-	-	2.00	-	11.68 /cy	5,154
03-31-05.70	Structural concrete, placing, walls, pumped, 8" thick, includes vibrating, excludes material	4950	14.0 cy	38.75	-	-	7.98	-	46.73 /cy	654
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	5,672.0 sf	0.88	-	-	0.03	-	0.91 /sf	5,167
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	5,672.0 sf	0.70	0.29	-	-	-	0.99 /sf	5,640
03-39-13.50	Curing, sprayed membrane curing compound Slabs Primary Clarifiers	0300 _	56.7 csf 455.2 cy	9.68	10.12 195.08		3.67		19.80 /csf 316.57 /cy	1,123 144,091
	9									
03330 Slabs Pu 03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	14.8 cy	-	33.69	-	-	-	33.69 /cy	499
03-11-13.65	to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	21.3 sfca	7.24	1.36	-	-	-	8.60 /sfca	184
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	80.0 If	3.61	4.42	-	-	-	8.03 /lf	642
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	7.0 ea	9.38	47.88	-	-	-	57.26 /ea	401
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	2.2 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	4,506
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	31.6 lb	0.52	0.48	-	-	-	0.99 /lb	31
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	2.2 ton	39.87	-	-	7.51	-	47.38 /ton	106
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	2.2 ton	43.34	-	-	8.17	-	51.51 /ton	115
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	31.9 cy	-	98.01	-	-	-	98.01 /cy	3,131

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Pu	Imp Station									
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	31.9 cy	9.69	-	-	2.00	-	11.68 /cy	373
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	400.0 sf	0.38	-	-	-	-	0.38 /sf	151
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	400.0 sf	0.70	0.29	-	-	-	0.99 /sf	398
03-39-13.50	Curing, sprayed membrane curing compound	0300 _	4.0 csf	9.68	10.12	-			19.80 /csf	79
	Slabs Pump Station		400.0 cy	9.48	16.81		0.25		26.54 /cy	10,616
03330 Slabs Sp	alitter Box									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	5.3 cy	-	33.69	-	-	-	33.69 /cy	180
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	48.0 If	3.61	4.42	-	-	-	8.03 /lf	385
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	4.0 ea	9.39	47.88	-	-	-	57.27 /ea	229
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.8 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	1,622
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.8 ton	39.88	-	-	7.51	-	47.39 /ton	38
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.8 ton	43.34	-	-	8.16	-	51.50 /ton	41
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	11.2 cy	-	98.01	-	-	-	98.01 /cy	1,098
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	11.2 cy	9.69	-	-	2.00	-	11.68 /cy	131
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	144.0 sf	0.38	-	-	-	-	0.38 /sf	54
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	144.0 sf	0.70	0.29	-	-	-	0.99 /sf	143
03-39-13.50	Curing, sprayed membrane curing compound	0300 _	1.4 csf	9.68	10.13	-			19.81 /csf	29
	Slabs Splitter Box		11.2 cy	123.57	226.00		3.12		352.69 /cy	3,950
03330 Slabs Sc	um Pump									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	1.3 cy	-	33.69	-	-	-	33.69 /cy	45
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	5.3 sfca	7.24	1.36	-	-	-	8.60 /sfca	46
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	24.0 If	3.61	4.42	-	-	-	8.03 /lf	193
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	2.0 ea	9.39	47.88	-	-	-	57.27 /ea	115
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.2 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	406
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	4.0 lb	0.52	0.48	-	-	-	1.00 /lb	4
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.2 ton	39.85	-	-	7.50	-	47.40 /ton	10
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.2 ton	43.30	-	-	8.17	-	51.50 /ton	10

Project Number: 147571-040
Estimate Issue: 1
Due Date: 5/26/2015

Estimator: DG-NDG-FB-IK

Brown AN Caldwel	
Phase	
03330 Slabs Sc	um Pur
03-31-05.35	Concr 4000

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs So	cum Pump									
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.9 cy	-	98.01	-	-	-	98.01 /cy	285
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	2.9 cy	9.69	-	-	1.99	-	11.68 /cy	34
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and hand trowel finish	0200	36.0 sf	1.20	-	-	-	-	1.20 /sf	43
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	36.0 sf	0.70	0.29	-	-	-	0.99 /sf	36
03-39-13.50	Curing, sprayed membrane curing compound	0300	0.4 csf	9.67	10.10	-	-	-	19.78 /csf	7
	Slabs Scum Pump	_	36.0 cy	13.05	20.92		0.25	•	34.22 /cy	1,232
	imary Clarifiers									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	210.1 cy	-	33.69	-	-	-	33.69 /cy	7,078
03-11-13.85	C.I.P. concrete forms, wall, job built, plywood, to 8' high, 2 use, includes erecting, bracing, stripping and cleaning	2050	360.0 sfca	6.39	1.76	-	-	-	8.16 /sfca	2,937
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	252.0 If	3.61	4.42	-	-	-	8.03 /lf	2,022
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	21.0 ea	9.39	47.88	-	-	-	57.27 /ea	1,203
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	31.5 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	63,905
03-21-10.60	Reinforcing in place, A615 Gr 60, walls, #8 to #18	0760	1,800.0 lb	0.30	0.48	-	-	-	0.77 /lb	1,393
	Reinforcing in place, unloading & sorting, add to above - slabs	2005	32.4 ton	39.87	-	-	7.51	-	47.38 /ton	1,536
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	32.4 ton	43.34	-	-	8.17	-	51.51 /ton	1,669
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	455.2 cy	-	98.01	-	-	-	98.01 /cy	44,611
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	441.2 cy	9.69	-	-	2.00	-	11.68 /cy	5,154
03-31-05.70	Structural concrete, placing, walls, pumped, 8" thick, includes vibrating, excludes material	4950	14.0 cy	38.75	-	-	7.98	-	46.73 /cy	654
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	5,672.0 sf	0.88	-	-	0.03	-	0.91 /sf	5,167
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	5,672.0 sf	0.70	0.29	-	-	-	0.99 /sf	5,640
03-39-13.50	Curing, sprayed membrane curing compound	0300 _	56.7 csf	9.68	10.12	-		-	19.80 /csf	1,123
	Slabs Primary Clarifiers		5,672.0 cy	9.46	15.66		0.29		25.40 /cy	144,091
02220 Claba Ca	Dump.									
03330 Slabs So 03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	1.3 cy	-	33.69	-	-	-	33.69 /cy	45
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing,	2050	5.3 sfca	7.24	1.36	-	-	-	8.60 /sfca	46
03-15-13.50	stripping and cleaning Waterstop, PVC, ribbed type, split, 3/8" thick x 6"	1300	24.0 If	3.61	4.42	-	-	-	8.03 /lf	193
03-15-13.50	wide Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	2.0 ea	9.39	47.88	-	-	-	57.27 /ea	115

COM ALTERNATIVES ANALYSIS - ALT 3

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs S	cum Pump									
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.2 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	406
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	4.0 lb	0.52	0.48	-	-	-	1.00 /lb	4
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.2 ton	39.85	-	-	7.50	-	47.40 /ton	10
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.2 ton	43.30	-	-	8.17	-	51.50 /ton	10
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.9 cy	-	98.01	-	-	-	98.01 /cy	285
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	2.9 cy	9.69	-	-	1.99	-	11.68 /cy	34
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and hand trowel finish	0200	36.0 sf	1.20	-	-	-	-	1.20 /sf	43
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	36.0 sf	0.70	0.29	-	-	-	0.99 /sf	36
03-39-13.50	Curing, sprayed membrane curing compound	0300 _	0.4 csf	9.67	10.10	-			19.78 /csf	7
	Slabs Scum Pump		36.0 cy	13.05	20.92		0.25		34.22 /cy	1,232
03333 Primary	sludge pump equipment Pads									
	to C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	60.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	516
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.1 ton	39.80	-	-	7.50	-	47.30 /ton	2
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.1 ton	43.30	-	-	8.00	-	51.30 /ton	3
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.6 cy	-	98.01	-	-	-	98.01 /cy	254
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	2.6 cy	27.68	-	-	5.70	-	33.38 /cy	87
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	2.6 cy	46.13	-	-	13.04	-	59.16 /cy	153
	Primary sludge pump equipment Pads		2.6 cy	243.02	129.51		19.05		391.58 /cy	1,015
03345 Concret	e Walls Primary Carifiers									
	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	7,056.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	48,881
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	18.8 gal	-	20.66	-	-	-	20.66 /gal	389
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	9.8 ton	794.28	992.00	-	-	-	1,786.28 /ton	17,506
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	9.8 ton	39.87	-	-	7.51	-	47.38 /ton	464
03-21-10.60	Reinforcing, crane cost for handling, add to above,	2225	9.8 ton	43.34	-	-	8.17	-	51.51 /ton	505

98.01

6.65

32.29

walls, cols, beams

03-31-05.35 Concrete, ready mix, regular weight,
walls/cols/beams, 4000 psi
03-31-05.70 Structural concrete, placing, walls, pumped, 15"

thick, includes vibrating, excludes material

0320

5350

137.2 cy

137.2 cy

13,447

5,343

98.01 /cy

38.94 /cy

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls Primary Carifiers									
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	7,056.0 sf	1.89	0.42	-	0.22		2.53 /sf	17,826
	Concrete Walls Primary Carifiers		137.2 cy	509.91	231.72		19.02		760.65 /cy	104,361
03345 Concrete	e Walls Pump Station									
	C.I.P. concrete forms, wall, wood bulkhead with 2	0500	20.0 If	10.50	2.14	-	-	-	12.63 /lf	253
	piece keyway, 1 use, includes erecting, bracing,									
	stripping and cleaning									
03-11-13.85	Cip concret forms,walls,steel framed plywd,over	9460	3,200.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	24,640
	16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and									
	cleaning									
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage,	3050	8.5 gal	-	20.66	-	-	-	20.66 /gal	176
	includes material only									
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615,	0700	4.4 ton	794.28	992.00	-	-	-	1,786.28 /ton	7,938
	grade 60, incl labor for accessories, excl material for accessories									
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls,	2010	4.4 ton	39.87	-	-	7.51	_	47.38 /ton	211
	cols, beams									
03-21-10.60	Reinforcing, crane cost for handling, add to above,	2225	4.4 ton	43.34	-	-	8.17	-	51.50 /ton	229
00 04 05 05	walls, cols, beams	0320	00.0	_	98.01				00.04 /	6,099
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	62.2 cy	-	98.01	-	-	-	98.01 /cy	6,099
03-31-05.70	Structural concrete, placing, walls, pumped, 15"	5350	62.2 cy	32.29	_	-	6.65	_	38.94 /cy	2,423
	thick, includes vibrating, excludes material		,						,	, -
03-35-29.60	Concrete finishing, walls, sandblast, light penetration	0700 _	3,200.0 sf	1.89	0.42	-	0.22		2.53 /sf	8,084
	Concrete Walls Pump Station		62.2 cy	553.02	232.41		19.02		804.45 /cy	50,053
03345 Concrete	e Walls Splitter Box									
	C.I.P. concrete forms, wall, wood bulkhead with 2	0500	20.0 If	10.50	2.14	-	-	-	12.63 /lf	253
	piece keyway, 1 use, includes erecting, bracing,									
00 44 40 05	stripping and cleaning	0.400	4.000.0 - (0.05	0.75				7.70 /-1	44704
03-11-13.85	Cip concret forms, walls, steel framed plywd, over 16'20'h, based 50 us purchsd forms, 4 us bracing	9460	1,920.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	14,784
	lumber,includes erecting,bracing,stripping and									
	cleaning									
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage,	3050	5.1 gal	-	20.66	-	-	-	20.66 /gal	106
02 04 40 00	includes material only	0700	4.7.4	704.00	000.00				4 700 07 /	0.007
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for	0700	4.7 ton	794.28	992.00	-	-	-	1,786.27 /ton	8,337
	accessories									
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls,	2010	4.7 ton	39.87	-	-	7.51	-	47.38 /ton	221
	cols, beams									
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	4.7 ton	43.34	-	-	8.17	-	51.51 /ton	240
03-31-05 35	Concrete, ready mix, regular weight,	0320	56.0 cy	_	98.01	_	_	_	98.01 /cy	5,489
00 01 00.00	walls/cols/beams, 4000 psi	0020	00.0 0,		00.01				55.5°. 75y	3,100
03-31-05.70	Structural concrete, placing, walls, pumped, 15"	5350	56.0 cy	32.29	-	-	6.65	-	38.94 /cy	2,181
	thick, includes vibrating, excludes material								/ 4	
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Splitter Box	0700 _	1,920.0 sf 56.0 cy	1.89 412.28	0.42 223.35	-	0.22 15.46		2.53 /sf 651.08 /cy	4,851 36,461
	Concrete Walls Splitter DUX		30.0 Cy	412.28	223.35		15.46		031.00 /Cy	30,401
03345 Concrete	e Walls scum pump									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2	0500	20.0 If	10.50	2.14	-	-	-	12.63 /lf	253
	piece keyway, 1 use, includes erecting, bracing, stripping and cleaning									
	sulphing and oleaning									

Project Number: 147571-040
Estimate Issue: 1
Due Date: 5/26/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls scum pump									
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	960.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	7,392
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	2.6 gal	-	20.66	-	-	-	20.66 /gal	53
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	20.0 If	3.24	14.92	-	-	-	18.15 /lf	363
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	2.0 ea	9.39	35.79	-	-	-	45.17 /ea	90
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	2.0 ton	794.28	992.00	-	-	-	1,786.28 /ton	3,573
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	2.0 ton	39.87	-	-	7.52	-	47.39 /ton	95
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	2.0 ton	43.34	-	-	8.17	-	51.51 /ton	103
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	28.0 cy	-	98.01	-	-	-	98.01 /cy	2,744
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	28.0 cy	32.29	-	-	6.65	-	38.94 /cy	1,090
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls scum pump	0700 _	960.0 sf 28.0 cy	1.89 408.56	0.42 225.51		0.22 15.27		2.53 /sf 649.34 /cy	2,425 18,181
03345 Concrete	e Walls Primary Carifiers									
	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	7,056.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	48,881
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	18.8 gal	-	20.66	-	-	-	20.66 /gal	389
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	9.8 ton	794.28	992.00	-	-	-	1,786.28 /ton	17,506
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	9.8 ton	39.87	-	-	7.51	-	47.38 /ton	464
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	9.8 ton	43.34	-	-	8.17	-	51.51 /ton	505
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	137.2 cy	-	98.01	-	-	-	98.01 /cy	13,447
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	137.2 cy	32.29	-	-	6.65	-	38.94 /cy	5,343
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Primary Carifiers	0700 _	7,056.0 sf 137.2 cy	1.89 509.91	0.42 231.72		0.22 19.02		2.53 /sf 760.65 /cy	17,826 104,361
03345 Concrete	e Walls scum pump									
	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	20.0 If	10.50	2.14	-	-	-	12.63 /lf	253
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	960.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	7,392
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	2.6 gal	-	20.66	-	-	-	20.66 /gal	53

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls scum pump									
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	20.0 If	3.24	14.92	-	-	-	18.15 /lf	363
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	2.0 ea	9.39	35.79	-	-	-	45.17 /ea	90
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	2.0 ton	794.28	992.00	-	-	-	1,786.28 /ton	3,573
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	2.0 ton	39.87	-	-	7.52	-	47.39 /ton	95
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	2.0 ton	43.34	-	-	8.17	-	51.51 /ton	103
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	28.0 cy	-	98.01	-	-	-	98.01 /cy	2,744
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	28.0 cy	32.29	-	-	6.65	-	38.94 /cy	1,090
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls scum pump	0700 _	960.0 sf 28.0 cy	1.89 408.56	0.42 225.51	-	0.22 15.27		2.53 /sf 649.34 /cy	2,425 18,181
02250 Flavote	I Clab Burne station									
	I Slab Pump station C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	200.0 sf	4.97	1.27	-	-	-	6.24 /sf	1,247
03-11-13.35	Cip concrete forms, elevated slab,box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	12.0 If	4.64	1.62	-	-	-	6.26 /lf	75
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	40.0 If	3.62	0.21	-	-	-	3.83 /lf	153
03-11-13.35	C.I.P. concrete forms, elevated slab, perimeter deck and rail, straight, includes shoring, erecting, bracing, stripping and cleaning	8000	40.0 If	20.11	12.55	-	-	-	32.66 /lf	1,307
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.0 ton	821.00	993.00	-	-	-	1,813.75 /ton	15
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	8.00	-	48.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	115.00	-	-	23.00	-	138.00 /ton	1
	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	7.8 cy	-	98.01	-	-	-	98.01 /cy	762
	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	7.8 cy	21.53	-	-	4.43	-	25.96 /cy	202
	Concrete finishing, floors, monolithic, screed finish	0020	200.0 sf	0.32		-	-	-	0.32 /sf	63
	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	200.0 sf	0.62	0.19	-	-	-	0.81 /sf	162
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	2.0 csf	9.68	10.12	-	-	-	19.80 /csf	40
	Elevated Slab Pump station		7.8 cy	305.79	207.31		4.45		517.55 /cy	4,027
03350 Elevated	I Slab Splitter Box									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring,	1150	144.0 sf	4.97	1.27	-	-	-	6.24 /sf	898
03-11-13.35	erecting, bracing, stripping and cleaning Cip concrete forms, elevated slab, box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	24.0 If	4.64	1.62	-	-	-	6.26 /lf	150

COM ALTERNATIVES ANALYSIS - ALT 3

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03350 Elevated	Slab Splitter Box									
	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	48.0 If	3.62	0.21	-	-	-	3.83 /lf	184
03-11-13.35	C.I.P. concrete forms, elevated slab, perimeter deck and rail, straight, includes shoring, erecting, bracing, stripping and cleaning	8000	48.0 If	20.11	12.55	-	-	-	32.66 /lf	1,568
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.4 ton	821.66	992.00	-	-	-	1,813.66 /ton	635
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	7.00	-	46.67 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	113.00	-	-	20.00	-	133.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	5.6 cy	-	98.01	-	-	-	98.01 /cy	549
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	5.6 cy	21.53	-	-	4.43	-	25.96 /cy	145
03-35-29.30	Concrete finishing, floors, monolithic, screed finish	0020	144.0 sf	0.32	-	-	-	-	0.32 /sf	45
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	144.0 sf	0.62	0.19	-	-	-	0.81 /sf	117
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	1.4 csf	9.68	10.13	-		-	19.81 /csf	29
	Elevated Slab Splitter Box		5.6 cy	450.48	316.56		4.45		771.49 /cy	4,320
02250 Elovatod	Slab Scum pump									
	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	36.0 sf	4.97	1.27	-	-	-	6.24 /sf	225
03-11-13.35	Cip concrete forms,elevated slab,box-out for shallow slab openings,over 10 sf (use perimeter),includes shoring,erecting,bracing,stripping and cleaning	5550	24.0 If	4.64	1.62	-	-	-	6.26 /lf	150
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	36.0 If	3.62	0.21	-	-	-	3.83 /lf	138
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.1 ton	821.70	992.00	-	-	-	1,813.71 /ton	127
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	10.00	-	50.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	110.00	-	-	20.00	-	130.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	1.4 cy	-	98.01	-	-	-	98.01 /cy	137
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	1.4 cy	21.53	-	-	4.44	-	25.96 /cy	36
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	36.0 sf	0.88	-	-	0.03	-	0.91 /sf	33
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	36.0 sf	0.62	0.19	-	-	-	0.81 /sf	29
03-39-13.50	Curing, sprayed membrane curing compound,	0310	0.4 csf	9.67	10.10	-	-	-	19.78 /csf	7

404.06

221.08

5.22

1.4 cy

elevated decks

Elevated Slab Scum pump

883

630.36 /cy

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	I Slab Scum pump									
03-11-13.35	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	36.0 sf	4.97	1.27	-	-	-	6.24 /sf	225
03-11-13.35	Cip concrete forms, elevated slab, box-out for shallow slab openings, over 10 sf (use perimeter), includes shoring, erecting, bracing, stripping and cleaning	5550	24.0 If	4.64	1.62	-	-	-	6.26 /lf	150
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	36.0 lf	3.62	0.21	-	-	-	3.83 /lf	138
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	0.1 ton	821.70	992.00	-	-	-	1,813.71 /ton	127
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	10.00	-	50.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	110.00	-	-	20.00	-	130.00 /ton	0
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	1.4 cy	-	98.01	-	-	-	98.01 /cy	137
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	1.4 cy	21.53	-	-	4.44	-	25.96 /cy	36
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	36.0 sf	0.88	-	-	0.03	-	0.91 /sf	33
	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	36.0 sf	0.62	0.19	-	-	-	0.81 /sf	29
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	0.4 csf	9.67	10.10	-	-	-	19.78 /csf	7
	Elevated Slab Scum pump 03 CONCRETE		1.4 cy	404.06	221.08		5.22		630.36 /cy	883 647,937
05 METALS	O. 17									
11999 Primary 05-01-10.51	Metal cleaning, steel surface treatment, 5.6 lb sand per S.F., near white blast, loose scale, fine powder rust (SSPC-SP10)	6255	3,200.0 sf	4.22	0.88	-	0.54	-	5.63 /sf	18,030
05-01-10.51	Metal cleaning, steel surface treatment, 5.6 lb sand per S.F., near white blast, loose scale, fine powder rust (SSPC-SP10)	6255	3,200.0 sf	4.22	0.88	-	0.54	-	5.63 /sf	18,030
09-91-06.41	Coatings & paints, B & C coating system E-2 (Epoxy, metal tanks, structures)	BC-0021	6,400.0 sqft	0.28	1.40	-	-		1.69 /sqft	10,797
	Primary Clarifier		1.0 LS	28,823.45	14,611.20		3,421.32		46,855.97 /LS	46,856
11999 Sludge F	Pumps and Piping									
05-58-09.50	Pump mounting base plate, complete w/ anchor bolts, 4 sf	BC-0001	2.0 ea	622.68	795.79	-	-	-	1,418.47 /ea	2,837
	Sludge Pumps and Piping 05 METALS		1.0 LS	1,245.35	1,591.58				2,836.93 /LS	2,837 49,693
07 THERMAL P										
	ructural Steel Work	1100	10.00	240.60	1 501 55				1 02/1 15 /00	4 004
01-12-33.10	Manhole cover Misc. Structural Steel Work	1100 _	1.0 ea	249.60 249.60	1,584.55 1,584.55	-	-		1,834.15 /ea 1,834.15 /LS	1,834 1,834
	07 THERMAL PROTECTION			2.5.50	.,5556				-,	1,834

275.00

3,450.00

3,450.00

25.25

25.25

228.00

9.20

57.70

57.70

45.86

280.75

1,554.30

1,554.30

6.58

6.58

212.17

Project Number: 147571-040

Estimate Issue: 1

Due Date: 5/26/2015

Estimator: DG-NDG-FB-IK

Total Net Amount

10,797

20,000 20,000 30,797

254,343

254,343

8,704 8,704 **526,094**

68,247 68,247 594,341

> 7,784 7,784 5,607 5,607 42,371

42,371

5,062

5,062

1,432

1.432

486

564.94 /lf

5,062.00 /ea

5,062.00 /ea

31.83 /Inft

31.83 /Inft

486.03 /ea

Caldwe				Estimate Due Esti						
Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	
11999 Primary	Clarifier									
09-91-06.41	Coatings & paints, B & C coating system E-2 (Epoxy, metal tanks, structures)	BC-0021	6,400.0 sqft	0.28	1.40	-	-		1.69 /sqft	
	Primary Clarifier		1.0 LS	1,811.25	8,985.60				10,796.85 /LS	
11999 Sludge F	Pumps and Piping									
_	Coatings allowance	MISC	1.0 LS	-	-	20,000.00	-	-	20,000.00 /LS	
	Sludge Pumps and Piping 09 FINISHES	-	1.0 LS		-	20,000.00		_	20,000.00 /LS	
1 EQUIPMENT										
11999 Primary	Clarifier									
11-00-01.00	Mechanical, clarifier mechanism, primary, 80' dia., 14' sidewall, w/ bridge, cage, launders, FRP weirs, & baffles	BC-1036	1.0 ea	30,631.78	215,000.00	-	8,710.92	-	254,342.70 /ea	
11-00-01.00	Mechanical, clarifier mechanism, primary, 80' dia., 14' sidewall, w/ bridge, cage, launders, FRP weirs, & baffles	BC-1036	1.0 ea	30,631.78	215,000.00	-	8,710.92	-	254,342.70 /ea	
11-00-11.05	Wastewater, submersible, 3-inch, 6.5 hp,,guide rails, base elbow, scum pump	BC-0071	1.0 ea	1,194.45	7,510.00	-	-	-	8,704.45 /ea	
11-00-11.05	Wastewater, submersible, 3-inch, 6.5 hp,,guide rails, base elbow, scum pump	BC-0071	1.0 ea	1,194.45	7,510.00	-	-	-	8,704.45 /ea	
	Primary Clarifier		1.0 LS	63,652.46	445,020.00	_	17,421.84	_	526,094.30 /LS	
11999 Sludge F	Pumps and Piping									
_	Pump, double disc diaphragm, sludge pump	BC-0176	2.0 ea	2,789.95	31,000.00	-	333.44	-	34,123.39 /ea	
	Sludge Pumps and Piping 11 EQUIPMENT		1.0 LS	5,579.90	62,000.00	-	666.88	_	68,246.78 /LS	
2 PLUMBING										
11999 Primary	Clarifier									
-	Hydraulic structures, slide gate, stainless stl, ab & grout,36" x 36"	BC-0101	1.0 ea	2,455.44	4,774.77	-	554.07	-	7,784.28 /ea	
11-00-04.00	Hydraulic structures, slide gate, stainless stl, ab & grout,36" x 36"	BC-0101	1.0 ea	2,455.44	4,774.77	-	554.07	-	7,784.28 /ea	
22-05-23.70	Valves, semi-steel, lubricated plug valve, flanged, 200 psi, 12"	7070	1.0 ea	907.31	4,700.00	-	-	-	5,607.31 /ea	
22-05-23.70	Valves, semi-steel, lubricated plug valve, flanged, 200 psi, 12"	7070	1.0 ea	907.31	4,700.00	-	-	-	5,607.31 /ea	
22-11-13.44	Pipe, steel, black, welded, 36" diameter, schedule 40, Spec. A-53, includes two rod, roll hanger & saddle, sized for covering, 10' OC	2220	75.0 lf	280.75	275.00	-	9.20	-	564.94 /lf	
00 44 40 44	Disa steel block welded OCI disasster sebedule	0000	7F 0 16	200.75	075.00		0.00		FC4 O4 //f	

22-11-13.44 Pipe, steel, black, welded, 36" diameter, schedule

saddle, sized for covering, 10' OC 22-11-13.47 Elbow, 90 Deg., steel, carbon steel, black, long

22-20-00.31 Piping, water dist, DI, 90< bend or elbow, 12" dia

jt, 12" dia

jt, 12" dia

40, Spec. A-53, includes two rod, roll hanger &

radius, butt weld, standard weight, 36" pipe size, includes 1 weld per joint and weld machine 22-11-13.47 Elbow, 90 Deg., steel, carbon steel, black, long

radius, butt weld, standard weight, 36" pipe size, includes 1 weld per joint and weld machine

22-20-00.30 Piping, water dist, DI, cement lined, 18' L, restrained BC-0001

22-20-00.30 Piping, water dist, DI, cement lined, 18' L, restrained BC-0001

2220

3194

3194

BC-0026

75.0 If

1.0 ea

1.0 ea

45.0 Inft

45.0 Inft

1.0 ea

Project Number: 147571-040
Estimate Issue: 1
Due Date: 5/26/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11999 Primary	Clarifier									
22-20-00.31	Piping, water dist, DI, 90< bend or elbow, 12" dia	BC-0026	1.0 ea	212.17	228.00	-	45.86	-	486.03 /ea	486
	Pipe, steel ftngs, sch 40, tee 54" X 36" welded	BC-2866	1.0 ea	1,843.18	13,429.84	-	995.92	-	16,268.94 /ea	16,269
22-20-01.95	Pipe, steel ftngs, sch 40, tee 54" X 36" welded	BC-2866 _	1.0 ea	1,843.18	13,429.84	-	995.92		16,268.94 /ea	16,269
	Primary Clarifier		1.0 LS	56,648.84	96,687.72		4,686.54		158,023.10 /LS	158,023
11999 Sludge P	Pumps and Piping									
22-99-99.99	Sludge piping allowance	MISC	1.0 LS	25,130.00	35,000.00		-	-	60,130.00 /LS	60,130
22-99-99.99	Scum piping allowance	MISC _	1.0 LS	7,180.00	10,000.00		-		17,180.00 /LS	17,180
	Sludge Pumps and Piping		1.0 LS	32,310.00	45,000.00				77,310.00 /LS	77,310
33500 PC Yard	Piping									
31-23-16.13	Excavating, trench or continuous footing, common earth, 1-1/2 C.Y. excavator, 10' to 14' deep, excludes sheeting or dewatering	1000	699.1 bcy	2.07	-	-	1.95	-	4.02 /bcy	2,808
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with sheepsfoot roller	2300	427.1 ecy	1.32	-	-	2.85	-	4.16 /ecy	1,779
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	213.8 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	5,122
	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	213.8 ecy	5.57	-	-	0.41	-	5.98 /ecy	1,278
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	272.0 lcy	6.23	-	-	5.24	-	11.48 /lcy	3,121
33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	1.0 clf	3.34	5.56	-	-	-	8.90 /clf	9
	PC Yard Piping	-	125.0 LF	57.32	18.67		36.94		112.93 /LF	14,117
33500 Sludge P	Piping									
22-20-00.65	Piping, DI, glass lined, CL 50, 10" dia	BC-0326	1,325.0 Inft	19.55	100.00	-	4.23	-	123.77 /Inft	164,001
	Sludge Piping 22 PLUMBING		1,325.0 LF	19.55	100.00		4.23		123.77 /LF	164,001 413,450
26 ELECTRICAL 01999 ADDITIO	- NAL COST: Service to New Primary Clarifiers									
01-99-99.99	Additional Cost associated with Primary Clarifiers - Electrical Service in Ductbank	MISC	450.0 LF	-	-	250.00	-	-	250.00 /LF	112,500
	ADDITIONAL COST: Service to New Primary Clarifiers	-	450.0 LF		-	250.00		•	250.00 /LF	112,500
	Clarifiers - E&I (#1,2,3) Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	487,902.48	-	-	487,902.48 /LS	487,902
	Primary Clarifiers - E&I (#1,2,3) 26 ELECTRICAL		1.0 LS		_	487,902.48		-	487,902.48 /LS	487,902 600,402
27 COMMUNICA	ATIONS									
-	Clarifiers - E&I (#1,2,3) Instrumentation (This is based on a percentage of	FACTOR	1.0 LS	_	_	121,975.63	_	_	121,975.63 /LS	121,976
27 20 00.01	the Total Project Costs)	ED _			_			=		
	Primary Clarifiers - E&I (#1,2,3) 27 COMMUNICATIONS		1.0 LS			121,975.63			121,975.63 /LS	121,976 121,976
31 EARTHWOR	ng									
01-54-33.70	Rent wellpoint header pipe, 6" diameter, 400 gpm	0500	1,760.0 day	-	-	-	0.40	-	0.40 /day	704

COM ALTERNATIVES ANALYSIS - ALT 3

Brown AND Caldwell

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
01999 Dewateri	ng									
31-23-19.20	Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction hose and 100 LF of discharge hose	1100	176.0 day	857.51	-	-	377.70	-	1,235.21 /day	217,397
31-23-19.30	Wells, for dewatering, with steel casing, 10' to 20' deep, 2' diameter, minimum	0020	250.0 vlf	76.64	184.52	-	17.92	-	279.08 /vlf	69,770
	Dewatering		1.0 LS	170,081.77	46,130.81		71,658.65		287,871.23 /LS	287,871
03330 Slabs Pri	mary Clarifiers									
	Fine grading, fine grade for slab on grade, machine	1100	630.2 sy	1.07	-	-	0.72	-	1.79 /sy	1,126
31-23-16.16	Strt excvtn for minor strtrs,bank measur,for spread and mat footngs,elevatr pits,and small buildng fndtns,3/4 cy bucket,machine excavtn,hydrlc backhoe	6035	22.2 bcy	12.43	-	-	7.42	-	19.86 /bcy	441
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 1 mile round trip, 2.2 loads/hour, 12 C.Y. truck, highway haulers, excludes loading	0400	22.2 lcy	2.77	-	-	3.92	-	6.69 /lcy	149
	Slabs Primary Clarifiers		455.2 cy	2.22			1.55		3.77 /cy	1,716
03330 Slabs Pu	mp Station									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	<u>44.4</u> sy	1.07	-	-	0.72		1.79 /sy	79
	Slabs Pump Station		400.0 cy	0.12			0.08		0.20 /cy	79
03330 Slabs Sp	litter Box									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	16.0 sy	1.07	-	-	0.72		1.79 /sy	29
	Slabs Splitter Box		11.2 cy	1.52			1.03		2.55 /cy	29
03330 Slabs Sc	um Pump									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	4.0 sy	1.07	-	-	0.72		1.79 /sy	7
	Slabs Scum Pump		36.0 cy	0.12			0.08		0.20 /cy	7
03330 Slabs Pri	mary Clarifiers									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	630.2 sy	1.07	-	-	0.72	-	1.79 /sy	1,126
31-23-16.16	Strt excvtn for minor strtrs,bank measur,for spread and mat footngs,elevatr pits,and small buildng fndtns,3/4 cy bucket,machine excavtn,hydrlc backhoe	6035	22.2 bcy	12.43	-	-	7.42	-	19.86 /bcy	441
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 1 mile round trip, 2.2 loads/hour, 12 C.Y. truck, highway haulers, excludes loading	0400	22.2 lcy	2.77	-	-	3.92	-	6.69 /lcy	149
	Slabs Primary Clarifiers		5,672.0 cy	0.18			0.13		0.30 /cy	1,716
03330 Slabs Sc	um Pump									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	4.0 sy	1.07	=	-	0.72		1.79 /sy	7
	Slabs Scum Pump		36.0 cy	0.12			0.08		0.20 /cy	7
31315 Excavation	on and Backfill prim Clarifier									
	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	2,106.1 bcy	6.99	-	-	7.64	-	14.63 /bcy	30,813
	Backfill, bulk, air tamped compaction, add	1400	1,062.6 ecy	5.30	-	-	1.50	-	6.80 /ecy	7,222
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt	9498	1,043.5 lcy	3.08	-	-	5.47	-	8.55 /lcy	8,921
	Excavation and Backfill prim Clarifier	_	2,106.1 cy	11.19			11.10	_	22.30 /cy	46,955
31315 Excavation	on and Backfill splitter Box									
	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	3,497.8 bcy	6.99	-	-	7.64	-	14.63 /bcy	51,173
	concraam, with an other equipment, minimum									

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	tion and Backfill splitter Box									
31-23-23.20	O Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng egpmnt	9498	106.7 lcy	3.08	-	-	5.47	-	8.55 /lcy	912
	Excavation and Backfill splitter Box		2,195.6 cy	16.33			13.86	-	30.19 /cy	66,282
31315 Excavat	tion and Backfill Pump station									
31-23-16.42	2 Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	1,814.8 bcy	6.99	-	-	7.64	-	14.63 /bcy	26,551
	B Backfill, bulk, air tamped compaction, add	1400	1,666.7 ecy	13.60	-	-	3.85	-	17.44 /ecy	29,070
31-23-23.20	O Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng egpmnt	9498	148.1 lcy	3.08	-	-	5.47	-	8.55 /lcy	1,267
	Excavation and Backfill Pump station		1,814.8 cy	19.73			11.61	-	31.35 /cy	56,888
31315 Excavat	ion and Backfill prim Clarifier									
31-23-16.42	2 Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	2,106.1 bcy	6.99	-	-	7.64	-	14.63 /bcy	30,813
	B Backfill, bulk, air tamped compaction, add	1400	1,062.6 ecy	5.30	-	-	1.50	-	6.80 /ecy	7,222
31-23-23.20	O Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng egpmnt	9498	1,043.5 lcy	3.08	-	-	5.47	-	8.55 /lcy	8,921
	Excavation and Backfill prim Clarifier		2,106.1 cy	11.19			11.10	-	22.30 /cy	46,955
33500 Sludge	Piping									
•	B Excavating, trench or continuous footing, common earth, 3/4 C.Y. excavator, 4' to 6' deep, excavator, excludes sheeting or dewatering	0110	613.4 bcy	3.73	-	-	2.23	-	5.96 /bcy	3,654
31-23-23.13	B Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	327.2 ecy	1.23	-	-	2.60	-	3.82 /ecy	1,251
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	259.5 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	6,217
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	259.5 ecy	5.57	-	-	0.41	-	5.98 /ecy	1,551
31-23-23.18	B Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	286.3 lcy	6.23	-	-	5.24	-	11.48 /lcy	3,285
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	13,250.0 sf	-	-	0.08	-	-	0.08 /sf	1,060
	Sludge Piping		1,325.0 LF	6.54	2.13	0.80	3.37	-	12.84 /LF	17,017
33500 Primary	Effluent Piping									
	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes	0510	1,115.3 bcy	2.80	-	-	2.07	-	4.87 /bcy	5,431
31-23-23.13	sheeting or dewatering Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	390.3 ecy	1.23	-	-	2.60	-	3.82 /ecy	1,492
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	477.9 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	11,449
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	477.9 ecy	5.57	-	-	0.41	-	5.98 /ecy	2,856
31-23-23.18	B Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	725.0 lcy	6.23	-	-	5.24	-	11.48 /lcy	8,320
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	8,350.0 sf	-	-	0.08	-	-	0.08 /sf	668

Brown AND Caldwell

Project Number: 147571-040

Estimate Issue: 1

Due Date: 5/26/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Primary Effluent Piping 31 EARTHWORK	_	1,225.0 LF	12.93	4.25	0.55	6.94	•	24.67 /LF	30,216 555,738
33 UTILITIES										
33500 Sludge P 33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2",	0400	13.0 clf	3.34	5.56	-	-	-	8.90 /clf	116
	excludes excavation and backfill Sludge Piping	_	1,325.0 LF	0.03	0.06				0.09 /LF	116
33500 Primary	Effluent Piping									
33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	6.0 clf	3.34	5.56	-	-	-	8.90 /clf	53
	Primary Effluent Piping 33 UTILITIES	_	1,225.0 LF	0.02	0.03				0.04 /LF	53 169
40										
33500 PC Yard	· · ·	4=44000	405.0.16		202 = 4				000 54 114	44.000
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 54 Inch (1350mm)	A541002 0000EA	125.0 lf	-	333.54	-	-	-	333.54 /lf	41,692
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	125.0 If	32.59	-	-	6.43	-	39.02 /lf	4,877
40-05-24.10	Field Other Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)	L545502 000000	3.0 ea	3,900.77	78.79	-	312.41	-	4,291.97 /ea	12,876
	Misc process/utility piping allowance		1.0 ls	7,860.00	10,010.00	-	-	-	17,870.00 /ls	17,870
40-05-24.10	Misc process/utility piping allowance PC Yard Piping		1.0 ls 125.0 LF	7,860.00 251.97	10,010.00 495.59		13.93		17,870.00 /ls 761.49 /LF	17,870
	PC Tard Piping		125.0 LF	251.97	495.59		13.93		761.49 /LF	95,186
33500 Primary	Effluent Piping									
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Std 36 Inch (900mm)	A361002 0100EA	100.0 If	-	168.69	-	-	-	168.69 /lf	16,869
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	2.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	14,247
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 54 Inch (1350mm)	A541002 0000EA	375.0 If	-	333.54	-	-	-	333.54 /lf	125,077
40-05-24.10	Fitting Butt Weld-CS A53/A106-Tee-Non-Specific 54 Inch (1350mm)	A542114 000000	1.0 ea	-	11,667.66	-	-	-	11,667.66 /ea	11,668
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	,	L365102 010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	375.0 If	32.59	-	-	6.43	-	39.02 /lf	14,632
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)	L545102 000000	10.0 ea	1,950.39	39.40	-	156.21	-	2,145.99 /ea	21,460
	Primary Effluent Piping	_	1,225.0 LF	33.63	132.37	-	4.56	-	170.55 /LF	208,924
	01 Primary Clarifiers		1.0 LS	951,957.85	1,384,549.43	744,106.11	239,834.01		3,320,447.40 /LS	304,109 3,320,447

COM ALTERNATIVES ANALYSIS - ALT 3

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
02 Aeration Tank	s									
03 CONCRETE										
03330 Slabs A		1050	426.7 av	_	33.69				33.69 /cy	14,376
03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	426.7 cy	-	33.69	-	-	-	33.69 /cy	14,376
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	840.0 If	3.61	4.42	-	-	-	8.03 /lf	6,741
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	70.0 ea	9.39	47.88	-	-	-	57.27 /ea	4,009
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	64.0 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	129,793
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	64.0 ton	39.87	-	-	7.51	-	47.38 /ton	3,033
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	64.0 ton	43.34	-	-	8.17	-	51.51 /ton	3,296
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	896.0 cy	-	98.01	-	-	-	98.01 /cy	87,819
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	896.0 cy	9.69	-	-	2.00	-	11.68 /cy	10,468
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	11,520.0 sf	0.88	-	-	0.03	-	0.91 /sf	10,493
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	11,520.0 sf	0.70	0.29	-	-	-	0.99 /sf	11,455
03-39-13.50	Curing, sprayed membrane curing compound Slabs Aeration Basins	0300	115.2 csf	9.68 8.97	10.12 15.39		0.27		19.80 /csf 24.63 /SF	2,281 283,763
			•							,
03330 Slabs Pi	•	4050	40.0		22.00				22.00 /	4.500
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	46.3 cy		33.69	-	-	-	33.69 /cy	1,560
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	32.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	275
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	140.0 If	3.61	4.42	-	-	-	8.03 /lf	1,123
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	12.0 ea	9.39	47.88	-	-	-	57.27 /ea	687
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	2.8 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	5,634
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	47.4 lb	0.52	0.48	-	-	-	0.99 /lb	47
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	2.8 ton	39.87	-	-	7.51	-	47.38 /ton	133
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	2.8 ton	43.34	-	-	8.17	-	51.51 /ton	144
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	98.5 cy	-	98.01	-	-	-	98.01 /cy	9,651
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	98.5 cy	9.69	-	-	2.00	-	11.68 /cy	1,150
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull	0100	1,250.0 sf	0.38	-	-	-	-	0.38 /sf	472

float(darby) finish

Brown AND Caldwell

Project Number: 147571-040

Estimate Issue: 1

Due Date: 5/26/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Pi	•									
	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	1,250.0 sf	0.70	0.29	-	-	-	0.99 /sf	1,243
03-39-13.50	Curing, sprayed membrane curing compound Slabs Pipe Utilidor	0300 _	12.5 csf 1,250.0 cy	9.68 5.13	10.12 12.58	-	0.19	-	19.80 /csf 17.89 /cy	248 22,368
03333 Blower E	Equipment Pads									
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	60.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	516
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.1 ton	39.90	-	-	7.60	-	47.43 /ton	4
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.1 ton	43.40	-	-	8.10	-	51.50 /ton	4
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	3.7 cy	-	98.01	-	-	-	98.01 /cy	363
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	3.7 cy	27.68	-	-	5.70	-	33.38 /cy	124
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	3.7 cy	46.13	-	-	13.04	-	59.17 /cy	219
	Blower Equipment Pads		7.4 cy	96.36	59.98		9.52		165.86 /cy	1,229
03345 Concrete	e Walls Aeration Basin									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	28.0 lf	10.50	2.14	-	-	-	12.63 /lf	354
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	19,320.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	133,840
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	51.5 gal	-	20.66	-	-	-	20.66 /gal	1,065
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	28.0 If	3.24	14.92	-	-	-	18.15 /lf	508
	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	2.0 ea	9.39	35.79	-	-	-	45.17 /ea	90
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	47.0 ton	794.28	992.00	-	-	-	1,786.28 /ton	83,880
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	47.0 ton	39.87	-	-	7.51	-	47.38 /ton	2,225
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	47.0 ton	43.34	-	-	8.17	-	51.51 /ton	2,419
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	563.5 cy	-	98.01	-	-	-	98.01 /cy	55,230
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	563.5 cy	32.29	-	-	6.65	-	38.94 /cy	21,944
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Aeration Basin	0700 _	19,320.0 sf 563.5 cy	1.89 382.76	0.42 223.55	-	0.22 15.46		2.53 /sf 621.77 /cy	48,810 350,365
02245 Camarat	a Walla Poffia walla									
	e Walls Baffle walls C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	168.0 If	10.50	2.14	-	-	-	12.63 /lf	2,122

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls Baffle walls									
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	10,752.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	74,485
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	28.7 gal	-	20.66	-	-	-	20.66 /gal	592
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	168.0 If	3.24	14.92	-	-	-	18.15 /lf	3,050
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	12.0 ea	9.39	35.78	-	-	-	45.17 /ea	542
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	22.4 ton	794.28	992.00	-	-	-	1,786.28 /ton	40,013
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	22.4 ton	39.87	-	-	7.51	-	47.38 /ton	1,061
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	22.4 ton	43.34	-	-	8.17	-	51.51 /ton	1,154
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	313.6 cy	-	98.01	-	-	-	98.01 /cy	30,737
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	313.6 cy	32.29	-	-	6.65	-	38.94 /cy	12,212
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Baffle walls	0700 _	10,752.0 sf 313.6 cy	1.89 379.31	0.42 221.28		0.22 15.27		2.53 /sf 615.86 /cy	27,164 193,132
03345 Concrete	e Walls Pipe Utilidor									
	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	4,800.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	36,960
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	12.8 gal	-	20.66	-	-	-	20.66 /gal	265
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	6.7 ton	794.28	992.00	-	-	-	1,786.27 /ton	11,909
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	6.7 ton	39.87	-	-	7.51	-	47.38 /ton	316
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	6.7 ton	43.34	-	-	8.17	-	51.50 /ton	343
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	93.3 cy	-	98.01	-	-	-	98.01 /cy	9,148
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	93.3 cy	32.29	-	-	6.65	-	38.94 /cy	3,635
03-35-29.60	Concrete finishing, walls, sandblast, light penetration Concrete Walls Pipe Utilidor	0700 _	4,800.0 sf 93.3 cy	1.89 549.66	0.42 231.73		0.22 19.02		2.53 /sf 800.41 /cy	<u>12,127</u> 74,702
00050 51	LOLder Blood Hellider									
	Slabs Pipe Utilidor C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring,	1150	1,250.0 sf	4.97	1.27	-	-	-	6.24 /sf	7,796
03-11-13.35	erecting, bracing, stripping and cleaning Cip concrete forms, elevated slab, box-out for shallow slab openings, over 10 sf (use perimeter), includes	5550	32.0 If	4.64	1.62	-	-	-	6.26 /lf	200
03-11-13.35	shoring,erecting,bracing,stripping and cleaning C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	120.0 If	3.62	0.21	-	-	-	3.83 /lf	460

Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03350 Elevated	Slabs Pipe Utilidor									
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	3.0 ton	821.66	992.00	-	-	-	1,813.66 /ton	5,510
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	7.50	-	47.50 /ton	1
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	113.80	-	-	21.70	-	135.40 /ton	3
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	48.6 cy	-	98.01	-	-	-	98.01 /cy	4,764
03-31-05.70	Structural concrete, placing, elevated slab, pumped, over 10" thick, includes vibrating, excludes material	1600	48.6 cy	21.53	-	-	4.43	-	25.96 /cy	1,262
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	1,250.0 sf	0.88	-	-	0.03	-	0.91 /sf	1,139
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	1,250.0 sf	0.62	0.19	-	-	-	0.81 /sf	1,013
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	12.5 csf	9.68	10.12	-			19.80 /csf	248
	Elevated Slabs Pipe Utilidor 03 CONCRETE		48.6 cy	253.72	201.80		5.22		460.74 /cy	22,396 947,954
05 METALS	ructural Steel Work									
	Railing, pipe, aluminum, clear finish, 3 rails, 3'-6" high, posts @ 5' O.C., 1-1/2" dia, shop fabricated	0210	880.0 If	18.34	74.00	-	1.09	-	93.43 /lf	82,218
05-53-21.50	Floor grating, steel, expanded mesh, 7.0# per S.F., field fabricated from panels	2900	960.0 sf	3.59	19.65	-	0.21	-	23.45 /sf	22,514
	Misc. Structural Steel Work 05 METALS	_	1.0 LS	19,589.04	83,984.00		1,159.57	_	104,732.61 /LS	104,733 104,733
11 EQUIPMENT										
11999 Aeration										
11-00-01.00	Aeration diffusers, fine bubble, complete with headers	BC-0031	5,216.0 ea	13.11	35.00	-	-	-	48.11 /ea	250,941
11-00-01.00	Aeration Blower, high speed turbo, (5,000 scfm at 10 psig)	BC-0336	2.0 ea	5,654.22	200,000.00	-	-	-	205,654.22 /ea	411,308
11-00-01.00	Mixer, submerged propellar type, 10 hp, Flygt, with guiderail	BC-0621	12.0 ea	2,261.69	30,000.00	-	380.00	-	32,641.69 /ea	391,700
11-00-09.00	Pump, submerged axial flow. 18" Dia., wall pump, 3-hp, 2.5 mgd, IMLR pump	BC-0316	2.0 ea	1,696.27	25,000.00	-	190.00	-	26,886.26 /ea	53,773
	Aeration Equipment 11 EQUIPMENT		1.0 LS	110,222.54	992,560.00		4,940.00		1,107,722.54 /LS	1,107,723 1,107,723
22 PLUMBING										
22999 Aeration	Pining									
	Aeration piping allowance	MISC	2.0 LS	17,950.00	75,000.00		-	_	92,950.00 /LS	185,900
	Aeration Piping 22 PLUMBING	_	1.0 LS	35,900.00	150,000.00			_	185,900.00 /LS	185,900 185,900
26 ELECTRICAL	L									
01999 ADDITIO	NAL COST: Service to New Aeration Basis									
01-99-99.99	Additional Cost associated with Aeration Basin - Electrical Service in Ductbank	MISC	750.0 LF	-	-	250.00	-	-	250.00 /LF	187,500
	ADDITIONAL COST: Service to New Aeration Basis		750.0 LF			250.00			250.00 /LF	187,500

COM ALTERNATIVES ANALYSIS - ALT 3

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	n Tanks - E&I (#4, #5, #6) ! Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	560,615.20	-	-	560,615.20 /LS	560,615
	Aeration Tanks - E&I (#4, #5, #6) 26 ELECTRICAL	ED _	1.0 LS		-	560,615.20			560,615.20 /LS	560,615 748,115
27 COMMUNIC	ATIONS									
26001 Aeration	n Tanks - E&I (#4, #5, #6)									
27-20-00.01	Instrumentation (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	140,153.81	-	-	140,153.81 /LS	140,154
	Aeration Tanks - E&I (#4, #5, #6) 27 COMMUNICATIONS	_	1.0 LS		-	140,153.81			140,153.81 /LS	140,154 140,154
31 EARTHWOR	кк									
01999 Dewater	•									
	Rent wellpoint header pipe, 6" diameter, 400 gpm	0500	900.0 day	-	-	-	0.40	-	0.40 /day	360
31-23-19.20	Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction hose and 100 LF of discharge hose	1100	90.0 day	857.51	-	-	377.70	-	1,235.21 /day	111,169
31-23-19.30	Wells, for dewatering, with steel casing, 10' to 20' deep, 2' diameter, minimum	0020	60.0 vlf	76.64	184.52	-	17.92	-	279.08 /vlf	16,745
	Dewatering	_	1.0 LS	81,774.45	11,071.39	-	35,427.87	•	128,273.71 /LS	128,274
03330 Slabs A	eration Basins									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	1,280.0 sy	1.07	-	-	0.72	-	1.79 /sy	2,287
	Slabs Aeration Basins	=	11,520.0 SF	0.12		=	0.08	•	0.20 /SF	2,287
03330 Slabs Pi	ipe Utilidor									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	138.9 sy	1.07	-		0.72	-	1.79 /sy	248
	Slabs Pipe Utilidor		1,250.0 cy	0.12			0.08		0.20 /cy	248
31315 Excavat	ion and Backfill Aeration Basin									
31-23-16.42	2 Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	4,814.8 bcy	6.99	-	-	7.64	-	14.63 /bcy	70,441
31-23-23.13	B Backfill, bulk, air tamped compaction, add	1400	5,814.8 ecy	5.30	-	-	1.50	-	6.80 /ecy	39,520
31-23-23.20	O Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng egpmnt	9498	3,333.3 lcy	3.08	-	-	5.47	-	8.55 /lcy	28,497
	Excavation and Backfill Aeration Basin 31 EARTHWORK	_	4,814.8 cy	15.52		-	13.23	-	28.76 /cy	138,457 269,266

832,471.76 1,657,863.77

888,269.01

125,240.43

3,503,844.97 /LS

3,503,845

1.0 LS

02 Aeration Tanks

Project Number: 147571-040

Estimate Issue: 1

Due Date: 5/26/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	on Tanks/RAS Tank Retrofit									
01 GENERAL C	ONDITIONS tank demolition									
	Pressure Washer 7 gpm, 3000 psi	5460	16.0 day	-	-	-	87.60	-	87.60 /day	1,402
01-54-33.40	Rent trash pump self-prime 4" diameter, diesel drive	5600 _	16.0 day	-	-	-	126.20		126.20 /day	2,019
	Aeration tank demolition 01 GENERAL CONDITIONS		1.0 LS				3,420.80		3,420.80 /LS	3,421 3,421
02 SITEWORK 8 02225 Demo Ba										
	Rubbish handling, loading & trucking, machine	3080	93.3 cy	17.39	-	-	6.59	-	23.98 /cy	2,239
	loading truck, includes 2 mile haul, cost to be added to demolition cost.		•						·	,
02-41-19.25	Sawcutting, concrete walls, rod reinforcing, per inch of depth	0820	2,016.0 If	7.17	0.05	-	5.84	-	13.06 /lf	26,328
03-05-05.10	whole pieces, incl loading, excludes shoring, bracing,	0160	96.0 ea	106.31	-	-	32.26	-	138.57 /ea	13,303
	saw or torch cutting, hauling, dumping Demo Baffle walls	-	6,720.0 sf	3.91	0.02		2.30	_	6.23 /sf	41,870
	Sellio Sallio Wallo		0,720.0 01	0.51	0.02		2.00		0.20 751	41,010
	tank demolition	DO 0000	40.0 45.5					00.00	00.00 #	500
02-22-03.30	Dump Charge, typical urban city, fees only, bldg constr mat'ls	BC-0006	16.0 ton	-	-	-	-	33.00	33.00 /ton	528
02-22-04.50	Demo fine bubble aeration discs, piping, headers, laterals and drop legs, in basin only	BC-0071	16.0 days	2,284.78	-	-	967.88	-	3,252.66 /days	52,043
	Aeration tank demolition 02 SITEWORK & DEMOLITION		1.0 LS	36,556.52			15,486.08	528.00	52,570.60 /LS	52,571 94,440
03 CONCRETE										
03345 Baffle wa										
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	35.0 ton	794.28	992.00	-	-	-	1,786.28 /ton	62,520
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	35.0 ton	39.87	-	-	7.51	-	47.38 /ton	1,658
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	35.0 ton	43.34	-	-	8.17	-	51.51 /ton	1,803
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	588.0 cy	-	98.01	-	-	-	98.01 /cy	57,631
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	588.0 cy	32.29	-	-	6.65	-	38.94 /cy	22,898
	Concrete finishing, walls, sandblast, light penetration	0700	20,160.0 sf	1.89	0.42	-	0.22	-	2.53 /sf	50,932
04-05-19.16	Masonry anchors, wall tie dowels, plain, 3/4" diameter x 6" long	6150	28.0 c		313.83	-			313.83 /c	8,787
	Baffle walls 03 CONCRETE		588.0 cy	149.21	186.44		15.08		350.73 /cy	206,230 206,230
05 METALS	nna									
11999 RAS Pur 05-58-09.50	nps Pump mounting base plate, complete w/ anchor bolts, 4 sf	BC-0001	5.0 ea	622.68	795.79	-	-	-	1,418.47 /ea	7,092
	RAS Pumps 05 METALS	-	1.0 LS	3,113.38	3,978.95			_	7,092.33 /LS	7,092 7,092

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11 EQUIPMENT										
11999 Aeration	Aeration diffusers, fine bubble, complete with headers	BC-0031	10,432.0 ea	13.11	35.00			_	48.11 /ea	501,883
	Mixer, submerged propellar type, 10 hp, Flygt, with guiderail	BC-0621	24.0 ea	2,261.69	30,000.00	-	380.00	-	32,641.69 /ea	783,401
11-00-09.00	Pump, submerged axial flow. 18" Dia., wall pump, 3-hp, 2.5 mgd, IMLR pump	BC-0316	4.0 ea	1,696.27	25,000.00	-	190.00	-	26,886.26 /ea	107,545
	Aeration Equipment		1.0 LS	197,828.19	1,185,120.00		9,880.00		1,392,828.19 /LS	1,392,828
11999 RAS Pui	mns									
	Pump,vertical turbine, solids handling, can type, 150hp, VFD driven	BC-0791	5.0 ea	3,957.95	100,000.00	-	532.00	-	104,489.95 /ea	522,450
	RAS Pumps 11 EQUIPMENT		1.0 LS	19,789.77	500,000.00		2,660.00		522,449.77 /LS	522,450 1,915,278
22 PLUMBING										
22999 RAS Pip	ing RAS above grade piping allowance		5.0 ls	15,000.00	15,000.00	_	_	_	30,000.00 /ls	150,000
22 00 00.00	RAS Piping		1.0 LS	75,000.00	75,000.00				150,000.00 /LS	150,000
33500 RAS Pui	mp Discharge									
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 48 Inch (1200mm)	A481002 0000EA	600.0 If	-	238.89	-	-	-	238.89 /lf	143,332
	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 48 Inch (1200mm)	A482112 000000	15.0 ea	-	7,320.51	-	-	-	7,320.51 /ea	109,808
	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 48 Inch (1200mm)	L484002 0000P1	600.0 If	28.49	-	-	5.63	-	34.12 /lf	20,473
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 48 Inch (1200mm)	L485102 000000	3.0 ea	1,772.49	35.02	-	141.96	-	1,949.47 /ea	5,848
	RAS Pump Discharge 22 PLUMBING		600.0 LF	37.36	422.08		6.34		465.77 /LF	279,461 429,461
26 ELECTRICA										
_	Aeration Tanks/RAS Tank Retrofit - E&I (#13, #14) Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	440,286.27	-	-	440,286.27 /LS	440,286
	Existing Aeration Tanks/RAS Tank Retrofit - E&I (#13, #14)	LD	1.0 LS		-	440,286.27			440,286.27 /LS	440,286
	26 ELECTRICAL									440,286
27 COMMUNIC										
_	Aeration Tanks/RAS Tank Retrofit - E&I (#13, #14) Instrumentation (This is based on a percentage of	FACTOR	1.0 LS	-	-	73,381.05	-	-	73,381.05 /LS	73,381
	the Total Project Costs) Existing Aeration Tanks/RAS Tank Retrofit - E&I (#13, #14)	ED	1.0 LS		-	73,381.05			73,381.05 /LS	73,381
	27 COMMUNICATIONS									73,381
31 EARTHWOR										
	n tank demolition	0.400	040.0 1	0.00					0.55 #	0.050
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt	9498	240.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	2,052

Brown AND Caldwell

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Aeration tank demolition	-	1.0 LS	738.66		-	1,313.09	_	2,051.75 /LS	2,052
33500 RAS Pur	np Discharge									
31-23-16.13	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes sheeting or dewatering	0510	1,322.2 bcy	2.80	-	-	2.07	-	4.87 /bcy	6,439
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	466.7 ecy	1.23	-	-	2.60	-	3.82 /ecy	1,784
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	576.3 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	13,806
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	576.3 ecy	5.57	-	-	0.41	-	5.98 /ecy	3,444
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	855.6 lcy	6.23	-	-	5.24	-	11.48 /lcy	9,818
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	10,200.0 sf	-	-	0.08	-	-	0.08 /sf	816
	RAS Pump Discharge 31 EARTHWORK		600.0 LF	31.52	10.46	1.36	16.84		60.18 /LF	36,107 38,158
33 UTILITIES 33500 RAS Pur	np Discharge									
33-05-26.10	Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0400	6.0 clf	3.34	5.56	-	-	-	8.90 /clf	53
	RAS Pump Discharge 33 UTILITIES	-	600.0 LF	0.03	0.06			_	0.09 /LF	53 53
	04 Existing aeration Tanks/RAS Tank Retrofit		1.0 LS	488,393.99	2,133,381.35	514,483.32	71,014.61	528.00	3,207,801.27 /LS	3,207,801

Phone	Fatimata Danakdanın	14	Overstitus	Labor	Material	Sub	Equip	Other	Total Cost/Unit	Total Net
Phase	Estimate Breakdown	Item	Quantity	Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit	Total Cost/Unit	Amount
05 Tertiary Treatn	nent Processes									
03 CONCRETE										
	um Storage and Pumps									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	14.8 cy	-	33.69	-	-	-	33.69 /cy	499
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	56.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	482
03-11-13.65	C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	110.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	545
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	1.7 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	3,381
03-21-10.60	Reinforcing in place, A615 Gr 60, slab on grade, #3 to #7	0610	170.4 lb	0.52	0.48	-	-	-	0.99 /lb	169
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	1.8 ton	39.87	-	-	7.51	-	47.38 /ton	83
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	27.8 cy	-	98.01	-	-	-	98.01 /cy	2,725
03-31-05.70	Structural concrete, placing, slab on grade, direct chute, over 6" thick, includes vibrating, excludes material	4600	27.8 cy	17.32	-	-	0.39	-	17.71 /cy	492
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and broom finish	0150	600.0 sf	0.82	-	-	-	-	0.82 /sf	490
03-39-13.50	Curing, sprayed membrane curing compound	0300	6.0 csf	9.68	10.12	-			19.80 /csf	119
	Slabs Alum Storage and Pumps		26.5 cy	142.68	195.75		0.90		339.33 /cy	8,986
00000 41 1	Advanced Barbaran Laurentein and									
	nk/pump equipment Pads and containment C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	740.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	6,365
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.3 ton	39.90	-	-	7.50	-	47.41 /ton	13
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.3 ton	43.33	-	-	8.20	-	51.50 /ton	14
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	13.5 cy	-	98.01	-	-	-	98.01 /cy	1,325
	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	13.5 cy	27.68	-	-	5.70	-	33.38 /cy	451
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460 —	13.5 cy	46.13	-	-	13.04	-	59.17 /cy	800
	Alum tank/pump equipment Pads and containment		13.5 cy	471.83	172.51		19.05		663.39 /cy	8,968
03333 Alum pu	mps Equipment Pads									
•	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	72.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	619
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.0 ton	39.80	-	-	7.50	-	47.25 /ton	2
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.0 ton	43.30	-	-	8.30	-	51.50 /ton	2
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.0 cy	-	98.01	-	-	-	98.01 /cy	196

136,789.63 /LS

136,790

COM ALTERNATIVES ANALYSIS - ALT 3

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03333 Alum p	umps Equipment Pads									
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	2.0 cy	27.68	-	-	5.70	-	33.38 /cy	67
03-31-05.70	9 Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	2.0 cy	46.13	-	-	13.04	-	59.17 /cy	118
	Alum pumps Equipment Pads 03 CONCRETE	_	2.0 cy	336.15	147.01		19.05		502.20 /cy	1,004 18,959
11 EQUIPMENT										
	0 FRP tank, alum,7,500 gal.,UV resistant	BC-0016	2.0 ea	1,733.90	21,000.00	_	924.95		23,658.85 /ea	47,318
	O Chemical metering pump, alum	BC-0001	2.0 ea	459.41	11,000.00	-	-	_	11,459.41 /ea	22,919
	Heat trace and insulate alum tank and piping allowance		1.0 ls	2,500.00	12,500.00	-	-	-	15,000.00 /ls	15,000
22-11-13.74	4 Chemical piping allowance		1.0 ls	3,000.00	3,000.00	-	-	-	6,000.00 /ls	6,000
	P Removal 11 EQUIPMENT								/LS	91,237 91,237
26 ELECTRICA										
	/ Treatment Process - E&I (#12)	540T05	40.10			40.000.00			40.050.57 # 0	40.057
26-00-00.02	Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED _	1.0 LS	-	-	19,856.57	-	-	19,856.57 /LS	19,857
	Tertiary Treatment Process - E&I (#12) 26 ELECTRICAL		1.0 LS			19,856.57			19,856.57 /LS	19,857 19,857
27 COMMUNIC										
	7 Treatment Process - E&I (#12) 1 Instrumentation (This is based on a percentage of	FACTOR	1.0 LS	-	-	6,618.86	-	-	6,618.86 /LS	6,619
	the Total Project Costs) Tertiary Treatment Process - E&I (#12)	ED _	1.0 LS		-	6,618.86		-	6,618.86 /LS	6,619
	27 COMMUNICATIONS		1.0 20			0,010.00			0,010.00 723	6,619
31 EARTHWOF										
	Num Storage and Pumps	1100	66.7 04	1.07			0.72		1.70 /01	110
31-22-16.10	Fine grading, fine grade for slab on grade, machine Slabs Alum Storage and Pumps 31 EARTHWORK	1100 _	66.7 sy 26.5 cy	2.68	-	₹.	0.72 1.82		1.79 /sy 4.50 /cy	119 119 119
	J. 2									113

20,786.71

87,309.94

26,475.43

2,217.55

1.0 LS

05 Tertiary Treatment Processes

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
07 MBR Treatmen	nt									
02 SITEWORK 8										
	ry Clafifier Demo Dump Charge, typical urban city, fees only, bldg constr mat'ls	BC-0006	240.0 ton	-	-	-	-	33.00	33.00 /ton	7,920
02-22-04.50		BC-0071	14.0 days	1,968.35	-	-	960.00	-	2,928.35 /days	40,997
02-22-04.50	Selective demolition, RAS pumps, 50hp, including discharge piping and valves, 3 each	BC-0071	3.0 days	1,968.35	-	-	760.00	-	2,728.35 /days	8,185
31-23-23.19	Loading Trucks, F.E. Loader, 3 C.Y.	BC-0006	240.0 cuyd	0.88	-	-	1.24	-	2.12 /cuyd	509
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt	9498	240.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	2,052
	Secondary Clafifier Demo 02 SITEWORK & DEMOLITION								/LS	59,663 59,663
03 CONCRETE 03330 Slabs Fir	na Seroane									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	17.8 cy	-	33.69	-	-	-	33.69 /cy	599
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	92.0 If	3.61	4.42	-	-	-	8.03 /lf	738
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	8.0 ea	9.39	47.88	-	-	-	57.27 /ea	458
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	3.1 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	6,309
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	3.1 ton	39.87	-	-	7.51	-	47.38 /ton	147
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	3.1 ton	43.34	-	-	8.17	-	51.50 /ton	160
	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	37.3 cy	-	98.01	-	-	-	98.01 /cy	3,659
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	37.3 cy	9.69	-	-	2.00	-	11.68 /cy	436
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	480.0 sf	0.38	-	-	-	-	0.38 /sf	181
03-39-13.50	Curing, sprayed membrane curing compound	0300 _	4.8 csf	9.68	10.12				19.80 /csf	95
	Slabs Fine Screens		480.0 cy	9.33	17.05		0.26		26.63 /cy	12,784
03330 Slabs Fir										
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	29.6 cy	-	33.69	-	-	-	33.69 /cy	998
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	2.6 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	5,259
	Reinforcing in place, unloading & sorting, add to above - slabs	2005	2.6 ton	39.87	-	-	7.51	-	47.38 /ton	123
	Reinforcing in place, crane cost for handling, add to above, slabs	2215	2.6 ton	43.34	-	-	8.17	-	51.51 /ton	134
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 3500 psi	0205	31.1 cy	-	95.26	-	-	-	95.26 /cy	2,964

COM ALTERNATIVES ANALYSIS - ALT 3

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 Slabs Fi	ne Screens									
	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	31.1 cy	9.69	-	-	2.00	-	11.68 /cy	363
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	800.0 sf	0.38	-	-	-	-	0.38 /sf	302
03-39-13.50	Curing, sprayed membrane curing compound Slabs Fine Screens	0300 _	8.0 csf 800.0 cy	9.68	10.12 8.27	-	0.13	-	19.80 /csf 12.88 /cy	158 10,301
02220 CDC A	- 61' X 75' X 24"									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	169.4 cy	-	33.69	-	-	-	33.69 /cy	5,709
03-11-13.65	C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	272.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	1,348
03-11-13.85	C.I.P. concrete forms, wall, job built, plywood, to 8' high, 2 use, includes erecting, bracing, stripping and cleaning	2050	5,984.0 sfca	6.39	1.76	-	-	-	8.16 /sfca	48,819
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	708.0 If	3.61	4.42	-	-	-	8.03 /lf	5,681
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	59.0 ea	9.39	47.88	-	-	-	57.27 /ea	3,379
03-21-10.60		0600	3.4 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	6,958
03-21-10.60	Reinforcing, a615 60, sog, thickened edge, allow 28 lbs/cy, #3 to #7	0605	1.7 ton	1,036.01	962.24	-	-	-	1,998.25 /ton	3,381
03-21-10.60	Reinforcing in place, A615 Gr 60, walls, #8 to #18	0760	14,960.0 lb	0.30	0.48	-		-	0.77 /lb	11,577
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	12.6 ton	39.87	-	-	7.51	-	47.38 /ton	597
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	12.6 ton	43.34	-	-	8.17	-	51.51 /ton	649
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 5000 psi	0405	587.7 cy	-	103.51	-	-	-	103.51 /cy	60,833
	Structural concrete, placing, slab on grade, pumped, over 6" thick, includes vibrating, excludes material	4650	473.6 cy	20.95	-	-	4.31	-	25.26 /cy	11,963
	Structural concrete, placing, walls, pumped, 8" thick, includes vibrating, excludes material	4950	114.1 cy	38.75	-	-	7.98	-	46.73 /cy	5,334
	Concrete finishing, floors, monolithic, screed, float and broom finish	0150	4,575.0 sf	0.82	-	-	-	-	0.82 /sf	3,737
	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	4,575.0 sf	0.70	0.29	-	-	-	0.99 /sf	4,549
03-39-13.50	Curing, sprayed membrane curing compound SBG - A - 61' X 75' X 24"	0300 _	45.8 csf 4,575.0 SQFT	9.68 16.40	10.12 21.25	-	0.69	-	19.80 /csf 38.34 /SQFT	906 175,420
02220 SOC-DE	R AG - 01 -(B + C + CC AREA)- BLOWER BUILDING - 50' X	95 6 V 12"								
	to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	270.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	1,338
03-11-13.85	C.I.P. concrete forms, wall, job built, plywood, to 8' high, 2 use, includes erecting, bracing, stripping and	2050	1,350.0 sfca	6.39	1.76	-	-	-	8.16 /sfca	11,014
03-21-10.60	cleaning Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl	0600	3.2 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	6,502

material for accessories

COM ALTERNATIVES ANALYSIS - ALT 3

Brown AND Caldwell

Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 SOG-PE	R AG - 01 -(B + C + CC AREA)- BLOWER BUILDING - 50' X	(85.6 X 12"								
03-21-10.60	Reinforcing, a615 60, sog, thickened edge, allow 28 lbs/cy, #3 to #7	0605	0.8 ton	1,036.01	962.24	-	-	-	1,998.25 /ton	1,679
03-21-10.60	Reinforcing in place, A615 Gr 60, walls, #8 to #18	0760	6,750.0 lb	0.30	0.48	-	-	-	0.77 /lb	5,224
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	7.4 ton	39.87	-	-	7.51	-	47.38 /ton	352
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	7.4 ton	43.34	-	-	8.17	-	51.51 /ton	382
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 5000 psi	0405	276.4 cy	-	103.51	-	-	-	103.51 /cy	28,608
03-31-05.70	Structural concrete, placing, slab on grade, pumped, over 6" thick, includes vibrating, excludes material	4650	224.9 cy	20.95	-	-	4.31	-	25.26 /cy	5,681
03-31-05.70	Structural concrete, placing, walls, pumped, 8" thick, includes vibrating, excludes material	4950	51.5 cy	38.75	-	-	7.98	-	46.73 /cy	2,407
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and broom finish	0150	4,275.0 sf	0.82	-	-	-	-	0.82 /sf	3,492
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	4,275.0 sf	0.70	0.29	-	-	-	0.99 /sf	4,251
03-39-13.50	Curing, sprayed membrane curing compound	0300	42.8 csf	9.68	10.12	-	_	-	19.80 /csf	846
	SOG-PER AG - 01 -(B + C + CC AREA)- BLOWER BUILDING - 50' X 85.6 X 12"	_	4,275.0 SQFT	7.06	9.38		0.35	_	16.79 /SQFT	71,774
03330 SBG - MI	IXED LIQUOR CHANNEL- 61' X 10' X 18"									
03-05-13.25	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	22.6 cy	-	33.69	-	-	-	33.69 /cy	761
03-11-13.65	C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	142.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	704
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	140.0 If	3.61	4.42	-	-	-	8.03 /lf	1,123
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	12.0 ea	9.39	47.88	-	-	-	57.27 /ea	687
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.5 ton	1,036.00	992.00	-	-	-	2,028.01 /ton	929
03-21-10.60	Reinforcing, a615 60, sog, thickened edge, allow 28 lbs/cy, #3 to #7	0605	0.4 ton	1,036.02	962.24	-	-	-	1,998.26 /ton	883
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.9 ton	39.87	-	-	7.51	-	47.38 /ton	43
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.9 ton	43.34	-	-	8.17	-	51.50 /ton	46
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 5000 psi	0405	67.4 cy	-	103.51	-	-	-	103.51 /cy	6,977
03-31-05.70	Structural concrete, placing, slab on grade, pumped, over 6" thick, includes vibrating, excludes material	4650	67.4 cy	20.95	-	-	4.31	-	25.26 /cy	1,703
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and broom finish	0150	610.0 sf	0.82	-	-	-	-	0.82 /sf	498
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	610.0 sf	0.70	0.29	-	-	-	0.99 /sf	607
03-39-13.50	Curing, sprayed membrane curing compound	0300	6.1 csf	9.68	10.12	-	-	-	19.80 /csf	121
	SBG - MIXED LIQUOR CHANNEL- 61' X 10' X 18"	_	610.0 SQFT	7.56	16.66		0.50	=	24.73 /SQFT	15,082
03345 Concrete	e Walls Fine Screens									
	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	15.0 If	10.50	2.14	-	-	-	12.63 /lf	190

COM ALTERNATIVES ANALYSIS - ALT 3

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	Walls Fine Screens									
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purched forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	3,180.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	22,030
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	8.5 gal	-	20.66	-	-	-	20.66 /gal	175
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	5.2 ton	794.28	992.00	-	-	-	1,786.28 /ton	9,205
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	5.2 ton	39.87	-	-	7.51	-	47.38 /ton	244
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	5.2 ton	43.34	-	-	8.17	-	51.50 /ton	265
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	61.8 cy	-	98.01	-	-	-	98.01 /cy	6,060
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	61.8 cy	32.29	-	-	6.65	-	38.94 /cy	2,408
03-35-29.60	Finishing: break ties & patch voids (walls, cols or beams)	0010	3,180.0 sf	0.97	0.03	-	-	-	1.00 /sf	3,182
	Concrete Walls Fine Screens	_	61.8 cy	475.96	223.80		7.96		707.72 /cy	43,758
03345 MIXED L	IQUOR CHANNEL WALLS - 61' X 11' X 18" (2 TYP)									
	C.I.P. concrete forms, wall, box out for opening, to 16" thick, over 10 S.F. (use perimeter), includes erecting, bracing, stripping and cleaning	0150	20.0 lf	9.94	2.33	-	-	-	12.26 /lf	245
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	44.0 If	10.50	2.14	-	-	-	12.63 /lf	556
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	2,684.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	18,594
03-15-05.12	Chamfer strip, polyvinyl chloride, 3/4" wide with leg	2200	40.0 If	0.89	0.69	-	-	-	1.58 /lf	63
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	7.2 gal	-	20.66	-	-	-	20.66 /gal	148
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	44.0 If	3.24	14.92	-	-	-	18.15 /lf	799
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	4.0 ea	9.39	35.79	-	-	-	45.17 /ea	181
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	4.0 ton	794.28	992.00	-	-	-	1,786.27 /ton	7,192
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	4.0 ton	39.87	-	-	7.51	-	47.39 /ton	191
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	4.0 ton	43.34	-	-	8.17	-	51.51 /ton	207
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 5000 psi	0407	69.9 cy	-	103.51	-	-	-	103.51 /cy	7,238
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	69.9 cy	32.29	-	-	6.65	-	38.94 /cy	2,723
03-35-29.60	Finishing: break ties & patch voids (walls, cols or beams)	0010	2,444.0 sf	0.97	0.03	-		-	1.00 /sf	2,445
	MIXED LIQUOR CHANNEL WALLS - 61' X 11' X 18" (2	_	2.0 EACH	12,818.74	7,207.68		264.09	_	20,290.49 /EACH	40,581

TYP)

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 MIXED L	IQUOR CHANNEL END WALLS - 10' X 11' X 18" (2 TYP)									
03-11-13.85	C.I.P. concrete forms, wall, box out for opening, to 16" thick, over 10 S.F. (use perimeter), includes erecting, bracing, stripping and cleaning	0150	10.0 If	9.93	2.33	-	-	-	12.26 /lf	123
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	44.0 If	10.50	2.14	-	-	-	12.63 /lf	556
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	440.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	3,048
03-15-05.12	Chamfer strip, polyvinyl chloride, 3/4" wide with leg	2200	20.0 If	0.89	0.69	-	-	-	1.58 /lf	32
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	1.2 gal	-	20.67	-	-	-	20.67 /gal	24
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	44.0 If	3.24	14.92	-	-	-	18.15 /lf	799
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	4.0 ea	9.39	35.79	-	-	-	45.17 /ea	181
	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	0.7 ton	794.27	992.00	-	-	-	1,786.27 /ton	1,179
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	0.7 ton	39.86	-	-	7.52	-	47.38 /ton	31
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	0.7 ton	43.33	-	-	8.17	-	51.50 /ton	34
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 5000 psi	0407	11.4 cy	-	103.51	-	-	-	103.51 /cy	1,185
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	11.4 cy	32.29	-	-	6.65	-	38.94 /cy	446
03-35-29.60	Finishing: break ties & patch voids (walls, cols or beams)	0010	400.0 sf	0.97	0.03	-	-		1.00 /sf	400
	MIXED LIQUOR CHANNEL END WALLS - 10' X 11' X 18" (2 TYP)		2.0 EACH	2,408.47	1,566.55		43.23		4,018.25 /EACH	8,036
03345 MEMBR	ANE TANK EXTRIOR WALLS - 75' X 11' X 18" (2 TYP)									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	44.0 If	10.50	2.14	-	-	-	12.63 /lf	556
	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	3,300.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	22,861
	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	8.8 gal	-	20.66	-	-	-	20.66 /gal	182
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	44.0 lf	3.24	14.92	-	-	-	18.15 /lf	799
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	4.0 ea	9.39	35.79	-	-	-	45.17 /ea	181
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	5.0 ton	794.28	992.00	-	-	-	1,786.28 /ton	8,842
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	5.0 ton	39.87	-	-	7.51	-	47.38 /ton	235
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	5.0 ton	43.34	-	-	8.17	-	51.51 /ton	255
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 5000 psi	0407	94.4 cy	-	103.51	-	-	-	103.51 /cy	9,773

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 MEMBR	ANE TANK EXTRIOR WALLS - 75' X 11' X 18" (2 TYP)									
	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	94.4 cy	32.29	-	-	6.65	-	38.94 /cy	3,677
03-35-29.60	Finishing: break ties & patch voids (walls, cols or beams)	0010	3,300.0 sf	0.97	0.03	-	-	-	1.00 /sf	3,302
	MEMBRANE TANK EXTRIOR WALLS - 75' X 11' X 18" (2 TYP)	_	2.0 EACH	15,822.91	9,154.81		352.77	_	25,330.47 /EACH	50,661
03345 MEMBR	ANE TANK INTERIOR WALLS - 75' X 11' X 12" (5 TYP)									
	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	110.0 lf	10.50	2.14	-	-	-	12.63 /lf	1,390
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	8,250.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	57,152
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	22.0 gal	-	20.66	-	-	-	20.66 /gal	455
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	110.0 If	3.24	14.92	-	-	-	18.15 /lf	1,997
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	10.0 ea	9.39	35.78	-	-	-	45.17 /ea	452
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	12.4 ton	794.28	992.00	-	-	-	1,786.28 /ton	22,105
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	12.4 ton	39.87	-	-	7.51	-	47.38 /ton	586
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	12.4 ton	43.34	-	-	8.17	-	51.51 /ton	637
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 5000 psi	0407	157.4 cy	-	103.51	-	-	-	103.51 /cy	16,288
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	157.4 cy	32.29	-	-	6.65	-	38.94 /cy	6,128
03-35-29.60	Finishing: break ties & patch voids (walls, cols or beams)	0010	8,250.0 sf	0.97	0.03	-		-	1.00 /sf	8,254
	MEMBRANE TANK INTERIOR WALLS - 75' X 11' X 12" (5 TYP)		5.0 EACH	15,314.74	7,525.97		248.11		23,088.83 /EACH	115,444
03345 COLLEC	TOR CHANNEL WALLS - 61' X 11' X 18" (2 TYP)									
	C.I.P. concrete forms, wall, box out for opening, to 16" thick, over 10 S.F. (use perimeter), includes erecting, bracing, stripping and cleaning	0150	20.0 If	9.94	2.33	-	-	-	12.26 /lf	245
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	44.0 If	10.50	2.14	-	-	-	12.63 /lf	556
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 8'16'hg,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9260	2,684.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	18,594
	Chamfer strip, polyvinyl chloride, 3/4" wide with leg	2200	40.0 If	0.89	0.69	-	-	-	1.58 /lf	63
	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	7.2 gal	-	20.66	-	-	-	20.66 /gal	148
	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	44.0 If	3.24	14.92	-	-	-	18.15 /lf	799
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	4.0 ea	9.39	35.79	-	-	-	45.17 /ea	181

Brown AND Caldwell

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 COLLEC	TOR CHANNEL WALLS - 61' X 11' X 18" (2 TYP)									
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	4.0 ton	794.28	992.00	-	-	-	1,786.27 /ton	7,192
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	4.0 ton	39.87	-	-	7.51	-	47.39 /ton	191
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	4.0 ton	43.34	-	-	8.17	-	51.51 /ton	207
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 5000 psi	0407	69.9 cy	-	103.51	-	-	-	103.51 /cy	7,238
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	69.9 cy	32.29	-	-	6.65	-	38.94 /cy	2,723
03-35-29.60	Finishing: break ties & patch voids (walls, cols or beams)	0010	2,444.0 sf	0.97	0.03	-	-		1.00 /sf	2,445
	COLLECTOR CHANNEL WALLS - 61' X 11' X 18" (2 TYP)		2.0 EACH	12,818.74	7,207.68		264.09		20,290.49 /EACH	40,581
03345 COLLEC	TOR CHANNEL END WALLS - 10' X 11' X 18" (2 TYP)									
	C.I.P. concrete forms, wall, box out for opening, to 16" thick, over 10 S.F. (use perimeter), includes erecting, bracing, stripping and cleaning	0150	10.0 If	9.93	2.33	-	-	-	12.26 /lf	123
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	44.0 If	10.50	2.14	-	-	-	12.63 /lf	556
03-11-13.85	Cip concret forms, walls, steel framed plywd, over 8'16'hg, based 50 us purched forms, 4 us bracing lumber, includes erecting, bracing, stripping and cleaning	9260	440.0 sfca	6.18	0.75	-	-	-	6.93 /sfca	3,048
03-15-05.12	Chamfer strip, polyvinyl chloride, 3/4" wide with leg	2200	20.0 If	0.89	0.69	_	_	_	1.58 /lf	32
	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	1.2 gal	-	20.67	-	-	-	20.67 /gal	24
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	44.0 If	3.24	14.92	-	-	-	18.15 /lf	799
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	4.0 ea	9.39	35.79	-	-	-	45.17 /ea	181
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	0.7 ton	794.27	992.00	-	-	-	1,786.27 /ton	1,179
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	0.7 ton	39.86	-	-	7.52	-	47.38 /ton	31
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	0.7 ton	43.33	-	-	8.17	-	51.50 /ton	34
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 5000 psi	0407	11.4 cy	-	103.51	-	-	-	103.51 /cy	1,185
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	11.4 cy	32.29	-	-	6.65	-	38.94 /cy	446
03-35-29.60	Finishing: break ties & patch voids (walls, cols or beams)	0010	400.0 sf	0.97	0.03	-	-	-	1.00 /sf	400
	COLLECTOR CHANNEL END WALLS - 10' X 11' X 18" (2 TYP)		2.0 EACH	2,408.47	1,566.55		43.23		4,018.25 /EACH	8,036
	CTOR CHANNEL - Elevated Slab - 9' X 61' X 12" C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring,	1150	549.0 sf	4.97	1.27	-	-	-	6.24 /sf	3,424
03-15-05.70	erecting, bracing, stripping and cleaning Shores, reshoring at elevated decks, allow	1550	549.0 sf	0.67	0.59	-	-	-	1.26 /sf	689

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03350 COLLEC	TOR CHANNEL - Elevated Slab - 9' X 61' X 12"									
03-15-05.75	Accessories, can and sleeve elev deck penetrations, avg. 12" diameter	0275	2.0 ea	7.82	31.75	-	-	-	39.57 /ea	79
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	1.3 ton	821.67	992.00	-	-	-	1,813.67 /ton	2,374
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.2 ton	39.87	-	-	7.50	-	47.40 /ton	11
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.2 ton	113.90	-	-	21.48	-	135.40 /ton	31
03-23-05.50	Prestressing steel, ungrouted single strand, 100' elevated slab, 35 kip, post-tensioned in field	2250	439.2 lb	1.64	0.63	-	0.02	-	2.28 /lb	1,002
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 5000 psi	0402	20.9 cy	-	103.51	-	-	-	103.51 /cy	2,168
03-31-05.70	Structural concrete, placing, elevated slab, with crane and bucket, over 10" thick, includes vibrating, excludes material	1650	20.9 cy	33.71	-	-	9.53	-	43.24 /cy	906
03-35-29.30	Finishing elev slab, manual screed, bull float, manual float & steel trowel	0225	549.0 sf	1.20	-	-	-	-	1.20 /sf	656
	Concrete finishing, floor, hardener, non-metallic, light service, 0.50 psf, add	2300	549.0 sf	0.62	0.19	-	-	-	0.81 /sf	445
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	5.5 csf	9.68	10.12	-	-	-	19.80 /csf	109
	COLLECTOR CHANNEL - Elevated Slab - 9' X 61' X 12"		549.0 SQFT	12.19	9.08		0.39		21.67 /SQFT	11,894
	03 CONCRETE									604,354
09 FINISHES 09999 MBR Tan 09-91-06.41	nk Coating Coatings & Paint, Sauereisen Sewergard 2T	BC-0181	14,719.0 sqft	3.11	12.38	-	-	-	15.49 /sqft	228,026
	MBR Tank Coating 09 FINISHES								/LS	228,026 228,026
11 EQUIPMENT 11999 Fine Scre										
11-00-01.00	Fine Screen, traveling belt, from previous project, allowance	BC-0311	2.0 ls	19,789.77	500,000.00	-	3,360.00		523,149.77 /ls	1,046,300
	Fine Screens		1.0 LS	39,579.54	1,000,000.00		6,720.00		1,046,299.54 /LS	1,046,300
11999 GE MBR	Package - Intallation Labor, Equipment and Vendor Testi	ng								
	Mixer, propellar type, 5 hp,submerged, misc equipment - install labor only	BC-0616	1.0 ls	8,481.33		-	-		8,481.33 /ls	8,481
11-00-08.00	CHEMICAL - CITRIC ACID FEED PUMPS - install labor only - included installation of all " required valves and instrumentation"	BC-0006	2.0 ea	1,413.56		-	-	400.00	1,813.56 /ea	3,627
11-00-08.00	CHEMICAL - SODIUM HYPOCHLORITE FEED PUMPS - install labor only - included installation of all "required valves and instrumentation"	BC-0056	2.0 ea	1,413.56		-	-	400.00	1,813.56 /ea	3,627
11-99-99.99	BACKPULSE CIP TANK - install labor only	MISC	1.0 ea	3,000.00	=		300.00	-	3,300.00 /ea	3,300
11-99-99.99	MEBRANE AERATION BLOWERS INSTALL - includes all ancialry vendor supplied items, vendor Testing and inspection(other)		7.0 Each	9,000.00	-	-	300.00	500.00	9,800.00 /Each	68,600
11-99-99.99	PERMEATE PUMPS INSTALL - includes all ancialry vendor supplied items, vendor Testing and inspection(other)		6.0 Each	5,000.00	-	-	150.00	500.00	5,650.00 /Each	33,900

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
11999 GE MBR	Package - Intallation Labor, Equipment and Vendor Test	ing								
11-99-99.99	BACKPULSE PUMPS INSTALL - includes all ancialry vendor supplied items, vendor Testing and inspection(other)		2.0 Each	4,400.00	-	-	150.00	400.00	4,950.00 /Each	9,900
11-99-99.99	DRAIN PUMPS INSTALL - includes all ancialry vendor supplied items, vendor Testing and inspection(other)		2.0 Each	4,000.00	-	-	150.00	300.00	4,450.00 /Each	8,900
11-99-99.99	AIR COMPRESSOR AND REFRIGIRATED AIR DRYER INSTALL - includes all ancialry vendor supplied items, vendor Testing and inspection(other)		2.0 Each	3,000.00	-	-	100.00	150.00	3,250.00 /Each	6,500
11-99-99.99	MBR CASSETTE INSTALL - includes all ancialry vendor supplied items, vendor Testing and inspection(other)		60.0 Each	1,500.00	-	-	500.00	350.00	2,350.00 /Each	141,000
27-20-02.00	PERMEATE - MEMBRANE PRESSURE TRANSMITTERS - install labor only	BC-0026	6.0 ea	258.75		-	-	100.00	358.75 /ea	2,152
27-20-03.00	PERMEATE - TRUBIDIMETERS - install labor only	BC-0016	6.0 ea	1,101.49		-	-	200.00	1,301.49 /ea	7,809
27-20-03.00	PERMEATE FLOW METERS - install labor only	BC-0021	6.0 ea	137.69		-	-	200.00	337.69 /ea	2,026
27-20-05.00	LEVEL SWITCHES - Install Labor Only	BC-0006	12.0 ea	129.37		_	-	100.00	229.37 /ea	2,752
27-20-07.00	LEVEL TRANSIMITTERS - Install Labor Only	BC-0006	6.0 ea	129.38		-	-	100.00	229.38 /ea	1,376
	GE MBR Package - Intallation Labor, Equipment and Vendor Testing		6.0 Each	39,041.98			5,683.33	5,933.33	50,658.64 /Each	303,952
11999 GE - ZEE	WEED MEBRAIN FILTRATION SYSTEM									
05-05-23.20	Wedge anchor, carbon steel, 5/8" dia x 3-1/2" L, in concrete, brick or stone, excl layout & drilling	8350	108.8 ea	3.77	1.90	-	-	-	5.67 /ea	617
	Railing, pipe, aluminum, clear finish, 3 rails, 3'-6" high, posts @ 5' O.C., 1-1/2" dia, shop fabricated	0210	272.0 If	18.34	74.00	-	1.09	-	93.43 /lf	25,413
	Aluminum MBR Tank Covers - Supported by Cassettes	BC-0046	4,575.0 sqft	9.34	33.95	-	-	-	43.29 /sqft	198,052
06-52-10.30	Fiberglass grating, pultruded, green (for moderate corrosive environment), 1-1/2" O.C. bar spacing, 1" thick	3120	1,000.0 sf	3.06	12.76	-	-	-	15.81 /sf	15,813
11-99-99.99	GE ZEEWEED MBR PACKAGE - BUDGETARY PROPOSAL - #163962 -R1 -4/17/2015		6.0 SETS		1,033,333.33	-		-	1,033,333.33 /SETS	6,200,000
	GE - ZEEWEED MEBRAIN FILTRATION SYSTEM 11 EQUIPMENT		1.0 LS	51,188.74	6,388,411.08		295.34		6,439,895.16 /LS	6,439,895 7,790,147
13 SPECIAL CO	NSTRUCTION									
05999 DuroBEA	AM - PREFABRICATED INSULATED METAL BUILDING 50	X 85								
08-99-99.99	Misc. Doors and Windows, skylights, misc architectural items allowance	MISC	1.0 LS	20,000.00	20,000.00		-	-	40,000.00 /LS	40,000
13-34-19.50	Pre-egineered steel building complete -50 X 60 X 18 - DuroBEAM Steel Building (Factory direct pricing plus installation)	2410	4,250.0 SF	4.94	5.99	-	1.65	-	12.58 /SF	53,461
13-34-19.50	Pre-engineered steel building - insulation, metalized polyester/scrim/kraft (PSK) faced, rated .6 lb density, R-30, 10" thick	7320	6,680.0 SF	0.46	1.18	-	-	-	1.64 /SF	10,962
23-05-00 00	Allowance - HVAC \$15.00/sf Minimum	BC-0001	4,250.0 SF	_	_	15.00	_	_	15.00 /SF	63,750
20 00 00.00	DuroBEAM - PREFABRICATED INSULATED METAL BUILDING 50 X 85	20 0001 _	4,250.0 SQFT	10.37	12.55	15.00	1.65	_	39.57 /SQFT	168,173
	AM - PREFABRICATED INSULATED METAL BUILDING 6' Misc. Doors and Windows, skylights, misc architectural items allowance	MISC	1.0 LS	25,000.00	25,000.00		-	-	50,000.00 /LS	50,000

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
05999 DuroBE	AM - PREFABRICATED INSULATED METAL BUILDING 6	1 X 75								
13-34-19.50	Pre-egineered steel building complete -50 X 60 X 18 - DuroBEAM Steel Building (Factory direct pricing plus installation)	2410	4,575.0 SF	4.94	5.99	-	1.65	-	12.58 /SF	57,550
13-34-19.50	Pre-engineered steel building - insulation, metalized polyester/scrim/kraft (PSK) faced, rated .6 lb density, R-30. 10" thick	7320	10,000.0 SF	0.46	1.18	-	-	-	1.64 /SF	16,410
23-05-00.00	Allowance - HVAC \$15.00/sf Minimum	BC-0001	4,575.0 SF	_	_	15.00	_	_	15.00 /SF	68,625
	DuroBEAM - PREFABRICATED INSULATED METAL BUILDING 61 X 75	_	4,575.0 SQFT	11.41	14.03	15.00	1.65		42.10 /SQFT	192,584
13999 Fine Scr	een Building									
13-34-19.50	Pre-engn stl bldn,clr span rigid frame,30 psf roof and 20 psf wind load,50'100' x 20'v h,incl 26ga colrd ribbd rfng&sidng,excl ftngs,slab,anchr bolts	1000	2,000.0 sffl	9.43	7.15	-	3.15	-	19.72 /sffl	39,447
13-34-19.50	Pre-engineered steel building accessory items, eave overhang, with soffit, 26 gauge, 2' W	5250	100.0 If	12.83	31.50	-	4.28	-	48.61 /lf	4,861
13-34-19.50	Pre-engineered steel building accessory items, entrance canopy, 4' x 8', incl. frame	5550	1.0 ea	243.12	550.00	-	81.12	-	874.24 /ea	874
	Pre-engineered steel building accessory items, end wall roof overhang, with soffit, 4' w	5650	80.0 If	9.24	28.00	-	3.08	-	40.32 /lf	3,226
13-34-19.50	Pre-engineered steel building accessory items, doors, hollow metal self framing, single leaf, deluxe, 3' x 7', incl. butts, lockset & trim	5800	1.0 opng	352.08	640.00	-	-	-	992.08 /opng	992
13-34-19.50	Pre-engineered steel building accessory items, pre-engineered steel doors, double leaf, glazed, 6' x 7'	6000	1.0 opng	704.16	1,400.00	-	-	-	2,104.16 /opng	2,104
13-34-19.50	Pre-engineered steel building accessory items, framing only, for openings, 3' x 7'	6050	1.0 opng	352.08	185.00	-	-	-	537.08 /opng	537
13-34-19.50	Pre-engineered steel building accessory items, gutter, eave type, painted, 26 gauge	6550	180.0 lf	4.40	6.95	-	-	-	11.35 /lf	2,043
13-34-19.50	Pre-engineered steel building accessory items, insulation, poly/scrim/foil faced, rated .6 lb density, 9 1/2" thick, R-30	6780	2,000.0 sf	0.46	0.98	-	-	-	1.44 /sf	2,882
13-34-19.50	Pre-engineered steel building accessory items, insulation, vinyl faced, rated .6 lb density, R19, 6" thick	6920	3,600.0 sf	0.46	0.55	-	-	-	1.01 /sf	3,640
	Fine Screen Building 13 SPECIAL CONSTRUCTION	_	1.0 LS	25,901.82	27,656.00	-	7,047.84	-	60,605.66 /LS	60,606 421,363
26 ELECTRICAL										
26001 Option #										
26-00-00.02	Primary Effluent Fine Screen Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	2,122,796.18	-	-	2,122,796.18 /LS	2,122,796
	Option #3 Only 26 ELECTRICAL		1.0 LS			2,122,796.18			2,122,796.18 /LS	2,122,796 2,122,796
27 COMMUNICA	ATIONS									
26001 Option #	3 Only									
27-20-00.01	Primary Effluent Fine Screen Instrumentation (This is based on a percentage of the Total Project Costs)	FACTOR ED _	1.0 LS	-	-	530,699.05	-	-	530,699.05 /LS	530,699
	Option #3 Only 27 COMMUNICATIONS		1.0 LS			530,699.05			530,699.05 /LS	530,699 530,699

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
01999 Dewater	ing									
	Rent wellpoint header pipe, 6" diameter, 400 gpm	0500	900.0 day	-	-	-	0.40	-	0.40 /day	360
31-23-19.20	Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction hose and 100 LF of discharge hose	1100	90.0 day	857.51	-	-	377.70	-	1,235.21 /day	111,169
31-23-19.30	Wells, for dewatering, with steel casing, 10' to 20' deep, 2' diameter, minimum	0020	175.0 vlf	9.63	23.18	-	2.25	-	35.06 /vlf	6,135
	Dewatering		1.0 LS	78,860.95	4,056.50		34,746.60		117,664.05 /LS	117,664
03330 Slabs Fir	ne Screens									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100 _	53.3 sy	1.07	-	-	0.72		1.79 /sy	95
	Slabs Fine Screens		480.0 cy	0.12			0.08		0.20 /cy	95
03330 Slabs Fir	ne Screens									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	88.9 sy	1.07	-	-	0.72	-	1.79 /sy	159
	Slabs Fine Screens	_	800.0 cy	0.12			0.08	-	0.20 /cy	159
03330 SBG - A	- 61' X 75' X 24"									
31-05-16.10	Aggregate for earthwork, select structural fill, spread with 200 H.P. dozer, includes load at pit and haul, 2	0600	508.0 lcy	2.52	21.02	-	4.71	-	28.25 /lcy	14,352
21 22 16 10	miles round trip, excludes compaction Fine grading, fine grade for slab on grade, machine	1100	508.3 sy	1.07			0.72		1.79 /sy	908
	Strt excvtn for minor strtrs, bank measur, for spread	6035	1,806.5 bcy	12.43	_	_	7.42	_	19.86 /bcy	35,869
31 23 10.10	and mat footngs,elevatr pits,and small building fndtns,3/4 cy bucket,machine excavtn,hydrlc backhoe	0000	1,000.5 bcy	12.40			1.72		10.00 /bcy	33,003
31-23-23.13	Backfill, trench, to 300' haul, dozer backfilling, excludes compaction	1900	360.3 lcy	0.95	-	-	1.57	-	2.53 /lcy	910
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 1 mile round trip, 2.2 loads/hour, 12 C.Y. truck, highway haulers, excludes loading	0400	1,446.2 lcy	2.77	-	-	3.92	-	6.69 /lcy	9,668
31-23-23.24	Compaction, structural, common fill, 8" lifts, vibratory plate	0600	360.3 ecy	2.50	-	-	0.19	-	2.69 /ecy	969
31-23-23.24	Compaction, structural, select fill, 8" lifts, vibratory plate	0700	508.0 ecy	2.32	-	-	0.17	-	2.49 /ecy	1,265
	SBG - A - 61' X 75' X 24"		4,575.0 SQFT	6.71	2.33		4.93		13.98 /SQFT	63,940
03330 SOG-PE	R AG - 01 -(B + C + CC AREA)- BLOWER BUILDING - 50' X	85.6 X 12"								
31-05-16.10	Aggregate for earthwork, select structural fill, spread with 200 H.P. dozer, includes load at pit and haul, 2 miles round trip, excludes compaction	0600	335.3 lcy	2.52	21.02	-	4.71	-	28.25 /lcy	9,472
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	475.0 sy	1.07	-	-	0.72	-	1.79 /sy	849
31-23-16.16	Strt excvtn for minor strtrs,bank measur,for spread and mat footngs,elevatr pits,and small buildng fndtns,3/4 cy bucket,machine excavtn,hydrlc backhoe	6035	737.8 bcy	12.43	-	-	7.42	-	19.86 /bcy	14,649
31-23-23.18	Hauling, s/4 by ducket, machine execution, flyant backnow Hauling, excavated or borrow material, loose cubic yards, 1 mile round trip, 2.2 loads/hour, 12 C.Y. truck, highway haulers, excludes loading	0400	737.8 lcy	2.77	-	-	3.92	-	6.69 /lcy	4,932
31-23-23.24	Compaction, structural, select fill, 8" lifts, vibratory plate	0700	335.3 ecy	2.32	-	-	0.17	-	2.49 /ecy	835
	SOG-PER AG - 01 -(B + C + CC AREA)- BLOWER BUILDING - 50' X 85.6 X 12"	_	4,275.0 SQFT	3.12	1.65		2.42	-	7.19 /SQFT	30,737
	IXED LIQUOR CHANNEL- 61' X 10' X 18"									
31-22-16.10	Fine grading, fine grade for slab on grade, machine	1100	67.8 sy	1.07	-	-	0.72	-	1.79 /sy	121

		Estimate Detail Report											
Brown AN Caldwel			C	OM ALTERNAT	TIVES ANALYS	SIS - ALT 3				Project Number: 147571-040 Estimate Issue: 1 Due Date: 5/26/2015 Estimator: DG-NDG-FB-			
Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount			
03330 SBG - MI)	XED LIQUOR CHANNEL- 61' X 10' X 18"												
31-23-16.16	Strt excvtn for minor strtrs,bank measur,for spread and mat footngs,elevatr pits,and small buildng fndtns,3/4 cy bucket,machine excavtn,hydrlc backhoe	6035	21.0 bcy	12.43	-	-	7.42	-	19.86 /bcy	418			
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 1 mile round trip, 2.2 loads/hour, 12 C.Y. truck, highway haulers, excludes loading	0400	21.0 lcy	2.77	-	-	3.92	-	6.69 /lcy	141			
	SBG - MIXED LIQUOR CHANNEL- 61' X 10' X 18"	_	610.0 SQFT	0.64		-	0.47	-	1.11 /SQF	FT 679			
31315 Excavation	on and Backfill Fine Screens												
	Excavating, bulk bank measure, in sheeting or cofferdam, with all other equipment, minimum	4400	1,691.7 bcy	6.99	-	-	7.64	-	14.63 /bcy	24,749			
	Backfill, bulk, air tamped compaction, add Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv	1400 9498	1,402.8 ecy 250.0 lcy	5.30 3.08	-	-	1.50 5.47	-	6.80 /ecy 8.55 /lcy	9,534 2,137			
31-23-23.20	borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel truck,cycle 20 miles,45 mph,excld ldng eqpmnt	9490	230.0 icy			_	J.47	_	0.33 /icy				
	Excavation and Backfill Fine Screens		1,652.8 cy	12.12			9.92		22.04 /cy	36,420			
33500 MBR Influ	uent/Effluent Piping												
31-23-16.13	Excavating, trench or continuous footing, common earth, 1 C.Y. excavator, 6' to 10' deep, excludes sheeting or dewatering	0510	1,168.1 bcy	2.80	-	-	2.07	-	4.87 /bcy	5,688			
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling, compaction with vibrating roller	2200	426.4 ecy	1.23	-	-	2.60	-	3.82 /ecy	1,630			
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, sand, dead or bank, excludes compaction	0200	497.9 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	11,927			
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	497.9 ecy	5.57	-	-	0.41	-	5.98 /ecy	2,975			
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	741.7 lcy	6.23	-	-	5.24	-	11.48 /lcy	8,511			
31-41-13.10	Trench box and jacks, cost per sfca trench wall, monthly rental	2000	9,050.0 sf	-	-	0.08	-	-	0.08 /sf	724			
	MBR Influent/Effluent Piping 31 EARTHWORK	_	525.0 LF	31.35	10.33	1.38	16.87	_	59.91 /LF	31,455 281,150			
33 UTILITIES													
	uent/Effluent Piping Utility line signs, markers, and flags, underground tape, detectable, reinforced, aluminum foil core, 2",	0400	5.0 clf	3.34	5.56	-	-	-	8.90 /clf	44			
	excludes excavation and backfill	_						_					
	MBR Influent/Effluent Piping 33 UTILITIES		525.0 LF	0.03	0.05				0.09 /LF	44 44			
40													
	Package - Intallation Labor, Equipment and Vendor Testin PERMEATE - VACUUM EJECTORS- install labor only	ng A10633D 006100	6.0 ea	428.66		-	-	100.00	528.66 /ea	3,172			
	GE MBR Package - Intallation Labor, Equipment and Vendor Testing	_	6.0 Each	428.66			-	100.00	528.66 /Eac	h 3,172			

168.69

168.69

100.0 If

100.0 If

A361002

0100EA

A361002

0100EA

33500 MBR Influent/Effluent Piping

36 Inch (900mm)

36 Inch (900mm)

40-05-24.10 Pipe Plain End-CS A53/A106-ERW Grade A-Std

40-05-24.10 Pipe Plain End-CS A53/A106-ERW Grade A-Std

16,869

16,869

168.69 /lf

168.69 /lf

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 MBR Infl	uent/Effluent Piping									
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	1.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	7,123
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std 36 Inch (900mm)	A362112 010000	1.0 ea	2,580.88	4,053.57	-	488.91	-	7,123.36 /ea	7,123
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade A-Non-Specific 54 Inch (1350mm)	A541002 0000EA	327.0 If	-	333.54	-	-	-	333.54 /lf	109,068
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Non-Specific 54 Inch (1350mm)	A542112 000000	4.0 ea	-	9,273.91	-	-	-	9,273.91 /ea	37,096
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 36 Inch (900mm)	L364002 0100P1	100.0 If	24.46	-	-	4.83	-	29.29 /lf	2,929
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Field Butt Weld-CS A53/A106-Std 36 Inch (900mm)	L365102 010000	2.0 ea	929.47	17.51	-	74.44	-	1,021.42 /ea	2,043
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Non-Specific 54 Inch (1350mm)	L544002 0000P1	327.0 If	32.59	-	-	6.43	-	39.02 /lf	12,759
40-05-24.10	Field Butt Weld-CS A53/A106-Non-Specific 54 Inch (1350mm)	L545102 000000	11.0 ea	1,950.39	39.40	-	156.21	-	2,145.99 /ea	23,606
	MBR Influent/Effluent Piping	_	525.0 LF	87.40	359.07		11.55	_	458.01 /LF	240,455
40150 1" Air an	d Instument Systems									
	Pipe Erection-Make Threaded Joint-Non-Specific 1 Inch (25mm)	L063467 000000	100.0 ea	13.59	-	-	-	-	13.59 /ea	1,359
40-05-05.00	Field Fabrication-Cut & Thread-Std 1 Inch (25mm)	L066065 010000	100.0 ea	13.95	-	-	-	-	13.95 /ea	1,395
40-05-05.00	Field Testing-Hydrotest-Non-Specific 1 Inch (25mm)	L069048 000000	828.0 If	0.59	-	-	-	-	0.59 /lf	485
40-05-07.00	Hangers & Supports-Anchor 1 Inch (25mm)	A066043 000000	100.0 ea	14.65	20.00	-	-	-	34.65 /ea	3,465
40-05-07.00	Hangers & Supports-Support 1 Inch (25mm)	A066044 000000	100.0 ea	14.65	20.00	-	-	-	34.65 /ea	3,465
40-05-07.00	Hangers & Supports-Hanger 1 Inch (25mm)	A066045 000000	100.0 ea	14.65	20.00	-	-	-	34.65 /ea	3,465
40-05-19.50	Fitting Threaded-Galv Malleable Iron-Ell90-Non-Specific 1 Inch (25mm)	A062312 000000	112.5 ea	-	14.44	-	-	-	14.44 /ea	1,625
40-05-19.50	Fitting Threaded-Galv Malleable Iron-Tee-Non-Specific 1 Inch (25mm)	A062314 000000	75.0 ea	-	14.44	-	-	-	14.44 /ea	1,083
40-05-19.50	Fitting Threaded-Galv Malleable Iron-Reducer 1 Dia-Non-Specific 1 Inch (25mm)	A062316 000000	75.0 ea	-	14.44	-	-	-	14.44 /ea	1,083
40-05-19.50	Fitting Threaded-Galv Malleable Iron-Cap-Non-Specific 1 Inch (25mm)	A062317 000000	75.0 ea	-	14.44	-	-	-	14.44 /ea	1,083
40-05-24.40	Pipe Threaded & Coupled-Steel Galv A120-Welded (ERW/CW)-Std/Sch 40 1 Inch (25mm)	A061303 0100W	825.0 If	-	1.67	-	-	-	1.67 /lf	1,377
40-05-24.40	Pipe Erection-Straight Run-Steel Galv A120-Std/Sch 40 1 Inch (25mm)	L064002 0100P1	825.0 If	6.45	-	-	-	-	6.45 /lf	5,318
40-05-51.00	Pipe Erection-Handle Valves-Metal-Cls 900 (PN150) 1 Inch (25mm)	L064062 006800	105.0 ea	28.13	-	-	-	-	28.13 /ea	2,953
40-05-62.00	Valve Threaded-Cast Steel-Plug-Cls 900 (PN150) 1 Inch (25mm)	A066337 016800	30.0 ea	58.60	1.20	-	-	-	59.80 /ea	1,794
40-05-63.00	Valve Threaded-Cast Steel-Ball-Cls 900 (PN150) 1 Inch (25mm)	A066333 016800	60.0 ea	58.60	31.22	-	-	-	89.82 /ea	5,389
40-05-65.23	Valve Threaded-Cast Steel-Check-Cls 900 (PN150) 1 Inch (25mm)	A066335 016800	15.0 ea	58.60	31.24	-	-	-	89.84 /ea	1,348

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 3

Project Number: 147571-040

Estimate Issue: 1

Due Date: 5/26/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	1" Air and Instument Systems	_	825.0 If	26.74	17.73				44.47 /lf	36,687
40150 Reuse - 1	3W - From Permeate to MBR - 3/4"									
	Hose station,complete,hose,valve,stand	BC-0026	5.0 ea	181.65	344.84	_	_	_	526.49 /ea	2,632
	Pipe Erection-Handle Fittings-Metal-Std 3/4 Inch	L053466	60.0 ea	8.03	-	-	-	-	8.03 /ea	482
	(19mm)	010000								
	Pipe Erection-Make Threaded Joint-Non-Specific 3/4 Inch (19mm)	L053467 000000	190.0 ea	12.01	-	-	-	-	12.01 /ea	2,282
40-05-05.00	Field Fabrication-Cut & Thread-Std 3/4 Inch (19mm)	L056065 010000	190.0 ea	10.78	-	-	-	-	10.78 /ea	2,049
40-05-05.00	Field Testing-Hydrotest-Non-Specific 3/4 Inch (19mm)	L059048 000000	650.0 If	0.65	-	-	-	-	0.65 /lf	419
40-05-07.00	Hangers & Supports-Anchor 3/4 Inch (19mm)	A056043 000000	65.0 ea	79.11	20.00	-	-	-	99.11 /ea	6,442
40-05-07.00	Hangers & Supports-Support 3/4 Inch (19mm)	A056044 000000	65.0 ea	70.32	20.00	-	-	-	90.32 /ea	5,871
40-05-19.50	Fitting Threaded-Galv Malleable Iron-Ell90-Cls 150-Std/Sch 40 3/4 Inch (19mm)	A052312 016200	40.0 ea	40.43	6.03	-	-	-	46.46 /ea	1,858
40-05-19.50	Fitting Threaded-Galv Malleable Iron-Tee-Cls 150-Std/Sch 40 3/4 Inch (19mm)	A052314 016200	20.0 ea	14.65	10.47	-	-	-	25.12 /ea	502
40-05-24.40	Pipe Threaded & Coupled-Steel Galv A120-Welded (ERW/CW)-Std/Sch 40 3/4 Inch (19mm)	A051303 0100W	641.2 If	-	1.12	-	-	-	1.12 /lf	721
40-05-24.40	Pipe Erection-Straight Run-Steel Galv A120-Std/Sch 40 3/4 Inch (19mm)	L054002 0100P1	650.0 If	5.27	-	-	-	-	5.27 /lf	3,428
40-05-51.00	Pipe Erection-Handle Valves-Metal-Cls 150 (PN20) 3/4 Inch (19mm)	L054062 006200	25.0 ea	18.17	-	-	-	-	18.17 /ea	454
40-05-62.00	Valve Threaded-Cast Steel-Plug-Cls 150 (PN20) 3/4 Inch (19mm)	A056337 016200	10.0 ea	58.60	99.10	-	-	-	157.70 /ea	1,577
40-05-63.00	Valve Threaded-Cast Steel-Ball-Cls 150 (PN20) 3/4 Inch (19mm)	A056333 016200	10.0 ea	58.60	183.80	-	-	-	242.40 /ea	2,424
40-05-65.23	Valve Threaded-Cast Steel-Check-Cls 150 (PN20) 3/4 Inch (19mm)	A056335 016200	5.0 ea	58.60	120.93	-	-	-	179.53 /ea	898
40-42-13.00	Insulation-Calcium Silicate Aluminum Jacket 3/4 Inch (19mm) Dia 1 Inch (25mm) Thk	A050091 1406	650.0 If	9.96	3.68	-	-	-	13.64 /lf	8,865
	Reuse - 3W - From Permeate to MBR - 3/4"	1400 _	650.0 If	45.52	17.41				62.93 /lf	40,903
404E0 Bourse 1	2W Brosses Building hass Books 2/4"									
	3W - Proccess Building hose Racks - 3/4" Hose station,complete,hose,valve,stand	BC-0026	5.0 ea	181.65	344.84				526.49 /ea	2,632
	Pipe Erection-Handle Fittings-Metal-Std 3/4 Inch	L053466	60.0 ea	8.03	344.04	-	_	-	8.03 /ea	482
.0 00 00.00	(19mm)	010000	00.0 00	0.00					0.00 700	.02
40-05-05.00	Pipe Erection-Make Threaded Joint-Non-Specific 3/4 Inch (19mm)	L053467 000000	190.0 ea	12.01	-	-	-	-	12.01 /ea	2,282
40-05-05.00	Field Fabrication-Cut & Thread-Std 3/4 Inch (19mm)	L056065 010000	190.0 ea	10.78	-	-	-	-	10.78 /ea	2,049
40-05-05.00	Field Testing-Hydrotest-Non-Specific 3/4 Inch (19mm)	L059048 000000	400.0 If	0.65	-	-	-	-	0.65 /lf	258
40-05-07.00	Hangers & Supports-Anchor 3/4 Inch (19mm)	A056043 000000	40.0 ea	79.11	20.00	-	-	-	99.11 /ea	3,964
40-05-07.00	Hangers & Supports-Support 3/4 Inch (19mm)	A056044 000000	40.0 ea	70.32	20.00	-	-	-	90.32 /ea	3,613
40-05-19.50	Fitting Threaded-Galv Malleable Iron-Ell90-Cls 150-Std/Sch 40 3/4 Inch (19mm)	A052312 016200	40.0 ea	40.43	6.03	-	-	-	46.46 /ea	1,858
40-05-19.50	Fitting Threaded-Galv Malleable Iron-Tee-Cls 150-Std/Sch 40 3/4 Inch (19mm)	A052314 016200	20.0 ea	14.65	10.47	-	-	-	25.12 /ea	502
40-05-24.40	Pipe Threaded & Coupled-Steel Galv A120-Welded (ERW/CW)-Std/Sch 40 3/4 Inch (19mm)	A051303 0100W	391.2 If	-	1.12	-	-	-	1.12 /lf	440

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
40150 Reuse - 3	BW - Proccess Building hose Racks - 3/4"									
	Pipe Erection-Straight Run-Steel Galv A120-Std/Sch 40 3/4 Inch (19mm)	L054002 0100P1	400.0 If	5.27	-	-	-	-	5.27 /lf	2,109
40-05-51.00	Pipe Erection-Handle Valves-Metal-Cls 150 (PN20) 3/4 Inch (19mm)	L054062 006200	25.0 ea	18.17	-	-	-	-	18.17 /ea	454
40-05-62.00	Valve Threaded-Cast Steel-Plug-Cls 150 (PN20) 3/4 Inch (19mm)	A056337 016200	10.0 ea	58.60	99.10	-	-	-	157.70 /ea	1,577
40-05-63.00	Valve Threaded-Cast Steel-Ball-Cls 150 (PN20) 3/4 Inch (19mm)	A056333 016200	10.0 ea	58.60	183.80	-	-	-	242.40 /ea	2,424
40-05-65.23	Valve Threaded-Cast Steel-Check-Cls 150 (PN20) 3/4 Inch (19mm)	A056335 016200	5.0 ea	58.60	120.93	-	-	-	179.53 /ea	898
	Reuse - 3W - Proccess Building hose Racks - 3/4"	_	500.0 If	35.79	15.30				51.09 /lf	25,542
40160 BACKPU	LSE PUMP PIPING TO MBR 4"									
	Make Up Bolted Joint incl B-7 Nuts, Bolts, 1/16 Inch	A113400	8.0 ea	49.22	2.12	-	-	-	51.34 /ea	411
	Rubber Gasket-Cls 150 (PN20) 3 Inch (80mm)	006200								
	Field Testing-Hydrotest-Non-Specific 3 Inch (80mm)	000000	300.0 If	1.23	-	-	-	-	1.23 /lf	369
	Field Welds-Radiographic Inspection-Non-Specific 3 Inch (80mm)	L119063 000000	2.5 ea	10.00	0.00	-		-	10.00 /ea	25
40-05-07.00	Hangers & Supports-Anchor 3 Inch (80mm)	A116043 000000	20.0 ea	53.47	50.00	-	-	-	103.47 /ea	2,069
40-05-07.00	Hangers & Supports-Support 3 Inch (80mm)	A116044 000000	20.0 ea	88.05	150.00	-	-	-	238.05 /ea	4,761
40-05-24.10	Pipe Plain End-CS A53/A106-ERW Grade B-Std/Sch 40 3 Inch (80mm)	A111002 0100EB	300.0 If	-	14.15	-	-	-	14.15 /lf	4,246
40-05-24.10	Fitting Butt Weld-CS A53/A106-Ell90-Std/Sch 40 3 Inch (80mm)	A112112 010000	9.0 ea	227.35	25.71	-	-	-	253.06 /ea	2,278
40-05-24.10	Shop Butt Weld-CS A53/A106-Std/Sch 40 3 Inch (80mm)	L113102 010000	32.0 ea	-	72.75	-	-	-	72.75 /ea	2,328
40-05-24.10	Pipe Erection-Spools-CS A53/A106-Std/Sch 40 3 Inch (80mm)	L114002 0100P2	300.0 If	15.24	-	-	-	-	15.24 /lf	4,571
40-05-24.10	Field Butt Weld-CS A53/A106-Std/Sch 40 3 Inch (80mm)	L115102 010000	10.0 ea	81.45	0.00	-	7.95	-	89.40 /ea	894
40-46-16.00	Coatings Shop-Misc-Non-Specific 3 Inch (80mm)	A110092 0100	300.0 If	1.00	2.28	-		-	3.28 /lf	983
	BACKPULSE PUMP PIPING TO MBR 4"		300.0 If	37.83	38.35		0.27		76.45 /lf	22,934
40200 Scour Ai	r Piping -GRV-FTG A53 CS SCH 40 8",12"									
	Pipe Erection-Make Up Clamped Joint-Non-Specific 8 Inch (200mm)	L163447 000000	28.0 ea	27.66	-	-	-	-	27.66 /ea	774
40-05-05.00	Pipe Erection-Handle Fittings-Metal-Std 8 Inch (200mm)	L163466 010000	21.0 ea	51.39	-	-	-	-	51.39 /ea	1,079
40-05-05.00	Field Welds-Cut & Bevel-Std 8 Inch (200mm)	L166064 010000	28.0 ea	102.84	-	-	-	-	102.84 /ea	2,880
40-05-05.00	Field Testing-Hydrotest-Non-Specific 8 Inch (200mm)	L169048 000000	52.5 If	4.51	-	-	-	-	4.51 /lf	237
40-05-05.00	Pipe Erection-Make Up Clamped Joint-Non-Specific 12 Inch (300mm)	L183447 000000	28.0 ea	53.50	-	-	-	-	53.50 /ea	1,498
40-05-05.00	Pipe Erection-Handle Fittings-Metal-Std 12 Inch (300mm)	L183466 010000	8.8 ea	78.00	-	-	-	-	78.00 /ea	682
40-05-05.00	Field Welds-Cut & Bevel-Std 12 Inch (300mm)	L186064 010000	7.0 ea	156.05	-	-	-	-	156.05 /ea	1,092
40-05-05.00	Field Testing-Hydrotest-Non-Specific 12 Inch (300mm)	L189048 000000	210.0 If	9.14	-	-	-	-	9.14 /lf	1,920

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
40200 Scour Ai	r Piping -GRV-FTG A53 CS SCH 40 8",12"									
40-05-07.00	Hangers & Supports-Anchor 8 Inch (200mm)	A166043 000000	7.0 ea	155.88	591.54	-	-	-	747.41 /ea	5,232
40-05-07.00	Hangers & Supports-Support 8 Inch (200mm)	A166044 000000	7.0 ea	97.28	219.09	-	-	-	316.36 /ea	2,215
40-05-07.00	Hangers & Supports-Anchor 12 Inch (300mm)	A186043 000000	14.0 ea	161.74	300.00	-	-	-	461.74 /ea	6,464
40-05-07.00	Hangers & Supports-Support 12 Inch (300mm)	A186044 000000	14.0 ea	113.10	372.45	-	-	-	485.55 /ea	6,798
40-05-24.10	Pipe Grooved & Clamped-CS A53/A106-ERW Grade B-Std/Sch 40 8 Inch (200mm)	A161504 0100EB	38.5 If	-	63.16	-	-	-	63.16 /lf	2,432
40-05-24.10	Fitting Grooved & Clamped-CS A53/A106-Ell90-Std/Sch 40 8 Inch (200mm)	A162512 010000	7.0 ea	302.96	155.08	-	-	-	458.05 /ea	3,206
40-05-24.10	* *	A162516 010000	7.0 ea	174.63	118.13	-	-	-	292.76 /ea	2,049
40-05-24.10	Fitting Grooved & Clamped-CS A53/A106-Coupling-Std/Sch 40 8 Inch (200mm)	A162519 010000	7.0 ea	15.82	61.12	-	-	-	76.95 /ea	539
40-05-24.10		A181504 0100EB	197.2 If	-	121.93	-	-	-	121.93 /lf	24,041
40-05-24.10	Fitting Grooved & Clamped-CS A53/A106-Tee-Std 12 Inch (300mm)	A182514 010000	7.0 ea	452.39	708.85	-	-	-	1,161.24 /ea	8,129
40-05-24.10	Fitting Grooved & Clamped-CS A53/A106-Cap-Std 12 Inch (300mm)	A182517 010000	2.0 ea	28.13	160.25	-	-	-	188.38 /ea	377
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std/Sch 40 8 Inch (200mm)		52.5 If	31.06	-	-	-	-	31.06 /lf	1,631
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std 12 Inch (300mm)	L184002 0100P1	210.0 If	45.12	-	-	-	-	45.12 /lf	9,476
40-46-16.00	FBEpoxy Coating 40 mil-Factory-8 Inch (200mm)	A160088 010000	52.5 If	1.00	3.30	-	-	-	4.30 /lf	226
40-46-16.00	FBEpoxy Coating 40 mil-Factory-12 Inch (300mm)	A180088 010000	210.0 If	1.00	4.86	-	-	-	5.86 /lf	1,231
	Scour Air Piping -GRV-FTG A53 CS SCH 40 8",12"	_	150.0 If	225.52	335.86			-	561.38 /lf	84,207
40200 WAS DR	AIN- GRV-FTG A53 CS SCH 40 - 4"									
40-05-05.00	Pipe Erection-Make Up Clamped Joint-Non-Specific 4 Inch (100mm)	L133447 000000	40.0 ea	11.78	-	-	-	-	11.78 /ea	471
40-05-05.00	Pipe Erection-Handle Fittings-Metal-Std 4 Inch (100mm)	L133466 010000	23.0 ea	26.37	-	-	-	-	26.37 /ea	607
40-05-05.00	Field Welds-Cut & Bevel-Std 4 Inch (100mm)	L136064 010000	40.0 ea	52.80	-	-	-	-	52.80 /ea	2,112
40-05-05.00	Field Testing-Hydrotest-Non-Specific 4 Inch (100mm)	L139048 000000	150.0 If	1.64	-	-	-	-	1.64 /lf	246
40-05-07.00	Hangers & Supports-Anchor 4 Inch (100mm)	A136043 000000	2.0 ea	119.55	160.00	-	-	-	279.55 /ea	559
40-05-07.00	Hangers & Supports-Support 4 Inch (100mm)	A136044 000000	6.0 ea	61.53	113.93	-	-	-	175.46 /ea	1,053
40-05-24.10	Pipe Grooved & Clamped-CS A53/A106-ERW Grade B-Std/Sch 40 4 Inch (100mm)	A131504 0100EB	145.4 If	-	21.06	-	-	-	21.06 /lf	3,063
40-05-24.10	Fitting Grooved & Clamped-CS A53/A106-Ell90-Std/Sch 40 4 Inch (100mm)	A132512 010000	5.0 ea	100.79	114.64	-	-	-	215.43 /ea	1,077
40-05-24.10	Fitting Grooved & Clamped-CS A53/A106-Tee-Std/Sch 40 4 Inch (100mm)	A132514 010000	2.0 ea	128.92	109.05	-	-	-	237.97 /ea	476
40-05-24.10	Fitting Grooved & Clamped-CS A53/A106-Coupling-Std/Sch 40 4 Inch (100mm)	A132519 010000	16.0 ea	7.03	24.51	-	-	-	31.54 /ea	505
40-05-24.10	Pipe Erection-Straight Run-CS A53/A106-Std/Sch 40 4 Inch (100mm)		150.0 If	19.34	-	-	-	-	19.34 /lf	2,901

Brown AND Caldwell

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
40200 WAS DR	AIN- GRV-FTG A53 CS SCH 40 - 4"									
40-05-62.00	Valve Threaded-Iron Body-Plug-Cls 150 (PN20) 4 Inch (100mm)	A136337 026200	3.0 ea	152.36	1,263.29	-	-	-	1,415.65 /ea	4,247
40-46-16.00	FBEpoxy Coating 40 mil-Factory-4 Inch (100mm)	A130088 010000	150.0 If	1.00	2.11	-	-	-	3.11 /lf	466
	WAS DRAIN- GRV-FTG A53 CS SCH 40 - 4"		198.0 If	42.56	47.25			_	89.81 /lf	17,782
40300 Aeration	Piping _ Prefab Shop installed 24" Main to Headers									
	Shop Testing-NDT Testing-Non-Specific 24 Inch (600mm)	A249049 000000	200.0 If	-	35.71	-	-	-	35.71 /lf	7,142
40-05-05.00	Field Testing-Hydrotest-Non-Specific 24 Inch (600mm)	L249048 000000	217.0 If	14.65	-	-	-	-	14.65 /lf	3,179
40-05-05.00	Field Welds-Radiographic Inspection-Non-Specific 24 Inch (600mm)	L249063 000000	1.0 ea	50.00	0.00	-		-	50.00 /ea	50
40-05-07.00	Hangers & Supports-Anchor 24 Inch (600mm)	A246043 000000	14.0 ea	146.49	500.00	-	18.60	-	665.09 /ea	9,311
40-05-07.00	Hangers & Supports-Support 24 Inch (600mm)	A246044 000000	14.0 ea	201.57	650.00	-	-	-	851.57 /ea	11,922
40-05-07.00	Hangers & Supports-Hanger 24 Inch (600mm)	A246045 000000	14.0 ea	103.13	650.00	-	-	-	753.13 /ea	10,544
40-05-23.10	Pipe Plain End-Stainless 304/304L-Seamless-Sch 10S 24 Inch (600mm)	A241005 1600S	200.0 If	58.60	654.02	-	-	-	712.62 /lf	142,524
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Ell90-Sch 10S 24 Inch (600mm)	A242112 160000	1.0 ea	146.49	3,080.40	-	-	-	3,226.89 /ea	3,227
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Tee-Sch 10S 24 Inch (600mm)	A242114 160000	3.0 ea	175.79	2,570.40	-	-	-	2,746.19 /ea	8,239
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Reducer 1 Dia-Sch 10S 24 Inch (600mm)	A242116 160000	3.0 ea	146.49	1,560.60	-	-	-	1,707.09 /ea	5,121
40-05-23.10	Shop Butt Weld-Stainless 304/304L-Sch 10S 24 Inch (600mm)	L243102 160000	25.0 ea	58.60	42.90	-	-	-	101.50 /ea	2,537
40-05-23.10	Pipe Erection-Spools-Stainless 304/304L-Sch 10S 24 Inch (600mm)	L244002 1600P2	200.0 If	86.14	-	-	24.10	-	110.24 /lf	22,047
40-05-23.10	Field Butt Weld-Stainless 304/304L-Sch 10S 24 Inch (600mm)	L245102 160000	4.0 ea	146.49	49.54	-	68.26	-	264.30 /ea	1,057
	Aeration Piping _ Prefab Shop installed 24" Main to Headers	100000 _	200.0 If	208.28	899.45	=	26.77	-	1,134.50 /lf	226,901
	ricauci S									
40300 Aeration	Piping - Prefab Shop - Field installed 12" Headers									
	Field Testing-Hydrotest-Non-Specific 12 Inch (300mm)	L189048 000000	600.0 If	9.14	-	-	-	-	9.14 /lf	5,485
40-05-05.00	Field Welds-Radiographic Inspection-Non-Specific 12 Inch (300mm)	L189063 000000	3.0 ea	30.00	0.00	-		-	30.00 /ea	90
40-05-07.00	Hangers & Supports-Anchor 12 Inch (300mm)	A186043 000000	40.0 ea	87.90	300.00	-	-	-	387.90 /ea	15,516
40-05-07.00	Hangers & Supports-Support 12 Inch (300mm)	A186044 000000	40.0 ea	113.10	372.45	-	-	-	485.55 /ea	19,422
40-05-07.00	Hangers & Supports-Hanger 12 Inch (300mm)	A186045 000000	40.0 ea	68.56	339.58	-	-	-	408.14 /ea	16,326
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Fitting Weldolet-Cls 2000-Std/Sch 40 3 Inch (80mm)	A112171 017000	60.0 ea	87.90	165.33	-	-	-	253.22 /ea	15,193
40-05-23.10	Pipe Plain End-Stainless 304/304L-Seamless-Sch 10S 12 Inch (300mm)	A181005 1600S	600.0 If	-	39.51	-	-	-	39.51 /lf	23,705
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Ell90-Sch 10S 12 Inch (300mm)	A182112 160000	6.0 ea	117.19	938.44	-	-	-	1,055.63 /ea	6,334
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Cap-Sch 10S 12 Inch (300mm)	A182117 160000	6.0 ea	117.19	390.39	-	-	-	507.58 /ea	3,046

COM ALTERNATIVES ANALYSIS - ALT 3

Brown AND Caldwell

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
40300 Aeration	Piping - Prefab Shop - Field installed 12" Headers									
40-05-23.10	Shop OLet Weld-Stainless 304/304L-Cls 2000 (135 Bar)-Std/Sch 40 3 Inch (80mm)	L113602 017000	60.0 ea	29.30	5.10	-	-	-	34.40 /ea	2,064
40-05-23.10	Shop Butt Weld-Stainless 304/304L-Sch 10S 12 Inch (300mm)	L183102 160000	48.0 ea	55.34	10.20	-	-	-	65.54 /ea	3,146
40-05-23.10	Pipe Erection-Spools-Stainless 304/304L-Sch 10S 12 Inch (300mm)	L184002 1600P2	600.0 If	29.30	10.20	-	12.05	-	51.55 /lf	30,929
40-05-23.10	Field Butt Weld-Stainless 304/304L-Sch 10S 12 Inch (300mm)	L185102 160000	12.0 ea	205.09	12.59	-	20.03	-	237.71 /ea	2,852
	Aeration Piping - Prefab Shop - Field installed 12" Headers		600.0 If	79.15	148.58		12.45		240.18 /lf	144,108
40300 Promost	e Piping - Prefab Shop - Field installed 8",10",12",14" 30	466								
	Make Up Bolted Joint incl B-7 Nuts, Bolts, 1/16 Inch	A163400	30.0 ea	88.48	6.35	_	_	_	94.83 /ea	2,845
	Rubber Gasket-Cls 150 (PN20) 8 Inch (200mm)	006200								_,,
40-05-05.00	Make Up Bolted Joint incl B-7 Nuts, Bolts, 1/16 Inch	A173400	8.0 ea	118.37	12.35	-	-	-	130.72 /ea	1,046
	Rubber Gasket-Cls 150 (PN20) 10 Inch (250mm)	006200								
40-05-05.00	Make Up Bolted Joint incl B-7 Nuts, Bolts, 1/16 Inch	A193400	6.0 ea	134.77	21.43	-	-	-	156.20 /ea	937
40.05.05.00	Rubber Gasket-Cls 150 (PN20) 14 Inch (350mm) Field Testing-Hydrotest-Non-Specific 8 Inch	006200 L169048	100.0 If	4.51					4.51 /lf	451
40-03-03.00	(200mm)	000000	100.0 11	4.51	_	_	_	_	4.51 /11	451
40-05-05.00	Field Testing-Hydrotest-Non-Specific 10 Inch (250mm)	L179048 000000	140.0 If	6.68	-	-	-	-	6.68 /lf	935
40-05-05.00	Field Welds-Radiographic Inspection-Non-Specific 10 Inch (250mm)	L179063 000000	2.0 ea	24.00	0.00	-		-	24.00 /ea	48
40-05-05.00	Field Testing-Hydrotest-Non-Specific 12 Inch (300mm)	L189048 000000	170.0 If	9.14	-	-	-	-	9.14 /lf	1,554
40-05-05.00	Field Welds-Radiographic Inspection-Non-Specific 12 Inch (300mm)	L189063 000000	2.0 ea	30.00	0.00	-		-	30.00 /ea	60
40-05-05.00	Field Testing-Hydrotest-Non-Specific 14 Inch (350mm)	L199048 000000	40.0 If	10.90	-	-	-	-	10.90 /lf	436
40-05-05.00	Field Welds-Radiographic Inspection-Non-Specific 14 Inch (350mm)	L199063 000000	2.0 ea	34.00	0.00	-		-	34.00 /ea	68
40-05-07.00	Hangers & Supports-Anchor 8 Inch (200mm)	A166043 000000	6.0 ea	155.88	591.54	-	-	-	747.41 /ea	4,484
40-05-07.00	Hangers & Supports-Support 8 Inch (200mm)	A166044 000000	6.0 ea	97.28	219.09	-	-	-	316.36 /ea	1,898
	Hangers & Supports-Anchor 10 Inch (250mm)	A176043 000000	10.0 ea	155.87	801.86	-	-	-	957.73 /ea	9,577
	Hangers & Supports-Support 10 Inch (250mm)	A176044 000000	10.0 ea	103.13	293.58	-	-	-	396.71 /ea	3,967
	Hangers & Supports-Anchor 12 Inch (300mm)	A186043 000000	12.0 ea	87.90	300.00	-	-	-	387.90 /ea	4,655
	Hangers & Supports-Support 12 Inch (300mm)	A186044 000000	12.0 ea	113.10	372.45	-	-	-	485.55 /ea	5,827
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Fitting Weldolet-Cls 3000-XH/Sch 80 1 Inch (25mm)	A062171 027200	12.0 ea	298.84	30.91	-	-	-	329.75 /ea	3,957
	Pipe Plain End-Stainless 304/304L-Seamless-Sch 10S 8 Inch (200mm)	A161005 1600S	68.0 If	-	22.88	-	-	-	22.88 /lf	1,556
	Fitting Butt Weld-Stainless 304/304L-Ell90-Sch 10S 8 Inch (200mm)	A162112 160000	12.0 ea	683.82	427.93	-	-	-	1,111.75 /ea	13,341
	Fitting Butt Weld-Stainless 304/304L-Tee-Sch 10S 8 Inch (200mm)	A162114 160000	8.0 ea	1,023.10	510.51	-	-	-	1,533.61 /ea	12,269
40-05-23.10	Fitting Flanged & Bolted-Stainless 304/304L-Flange SO-Cls 150 8 Inch (200mm)	A162422 006200	30.0 ea	515.06	306.00	-	-	-	821.06 /ea	24,632

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
40300 Premeate	e Piping - Prefab Shop - Field installed 8",10",12",14" 304	4SS								
40-05-23.10	Pipe Plain End-Stainless 304/304L-Seamless-Sch 10S 10 Inch (250mm)	A171005 1600S	119.0 If	-	28.38	-	-	-	28.38 /lf	3,377
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Ell90-Sch 10S 10 Inch (250mm)	A172112 160000	2.0 ea	866.06	660.66	-	-	-	1,526.72 /ea	3,053
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Tee-Sch 10S 10 Inch (250mm)	A172114 160000	8.0 ea	1,292.64	825.83	-	-	-	2,118.47 /ea	16,948
40-05-23.10	Fitting Flanged & Bolted-Stainless 304/304L-Flange SO-Cls 150 10 Inch (250mm)	A172422 006200	8.0 ea	664.49	428.40	-	-	-	1,092.89 /ea	8,743
40-05-23.10	Fitting Flanged & Bolted-Stainless 304/304L-Flange Blind-Cls 150 10 Inch (250mm)	A172424 006200	2.0 ea	142.98	714.00	-	-	-	856.98 /ea	1,714
40-05-23.10	Pipe Plain End-Stainless 304/304L-Seamless-Sch 10S 12 Inch (300mm)	A181005 1600S	152.0 lf	-	39.51	-	-	-	39.51 /lf	6,005
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Ell90-Sch 10S 12 Inch (300mm)	A182112 160000	6.0 ea	117.19	938.44	-	-	-	1,055.63 /ea	6,334
40-05-23.10	Pipe Plain End-Stainless 304/304L-Seamless-Sch 10S 14 Inch (350mm)	A191005 1600S	9.2 If	-	290.99	-	-	-	290.99 /lf	2,682
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Ell90-Sch 10S 14 Inch (350mm)	A192112 160000	4.0 ea	1,379.95	2,477.48	-	-	-	3,857.43 /ea	15,430
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Tee-Sch 10S 14 Inch (350mm)	A192114 160000	2.0 ea	2,056.74	2,972.97	-	-	-	5,029.71 /ea	10,059
40-05-23.10	Fitting Butt Weld-Stainless 304/304L-Reducer 1 Dia-Sch 10S 14 Inch (350mm)	A192116 160000	6.0 ea	1,246.94	841.59	-	-	-	2,088.53 /ea	12,531
40-05-23.10	Fitting Flanged & Bolted-Stainless 304/304L-Flange SO-Cls 150 14 Inch (350mm)	A192422 006200	6.0 ea	927.00	1,607.18	-	-	-	2,534.18 /ea	15,205
40-05-23.10	Shop OLet Weld-Stainless 304/304L-Cls 3000 (200 Bar)-XH/Sch 80 1 Inch (25mm)	L063602 027200	12.0 ea	58.60	13.60	-	-	-	72.20 /ea	866
40-05-23.10	Shop Butt Weld-Stainless 304/304L-Sch 10S 8 Inch (200mm)	L163102 160000	54.0 ea	58.60	42.17	-	-	-	100.77 /ea	5,441
40-05-23.10	Shop Flange Weld-Stainless 304/304L-Cls 150 (PN20) 8 Inch (200mm)	L163402 006200	30.0 ea	58.60	42.17	-	-	-	100.77 /ea	3,023
40-05-23.10	Pipe Erection-Spools-Stainless 304/304L-Sch 10S 8 Inch (200mm)	L164002 1600P2	100.0 If	30.47	10.20	-	-	-	40.67 /lf	4,067
40-05-23.10	Shop Butt Weld-Stainless 304/304L-Sch 10S 10 Inch (250mm)	L173102 160000	36.0 ea	58.60	10.20	-	-	-	68.80 /ea	2,477
40-05-23.10	Shop Flange Weld-Stainless 304/304L-Cls 150 (PN20) 10 Inch (250mm)	L173402 006200	8.0 ea	58.60	10.20	-	-	-	68.80 /ea	550
40-05-23.10	Pipe Erection-Spools-Stainless 304/304L-Sch 10S 10 Inch (250mm)	L174002 1600P2	140.0 lf	36.92	10.20	-	-	-	47.12 /lf	6,596
40-05-23.10	Field Butt Weld-Stainless 304/304L-Sch 10S 10 Inch (250mm)	L175102 160000	2.0 ea	162.90	9.55	-	15.91	-	188.35 /ea	377
40-05-23.10	Shop Butt Weld-Stainless 304/304L-Sch 10S 12 Inch (300mm)	L183102 160000	22.0 ea	55.34	10.20	-	-	-	65.54 /ea	1,442
40-05-23.10	Pipe Erection-Spools-Stainless 304/304L-Sch 10S 12 Inch (300mm)	L184002 1600P2	170.0 lf	29.30	10.20	-	12.05	-	51.55 /lf	8,763
40-05-23.10	Field Butt Weld-Stainless 304/304L-Sch 10S 12 Inch (300mm)	L185102 160000	6.0 ea	205.09	12.59	-	20.03	-	237.71 /ea	1,426
40-05-23.10	Shop Butt Weld-Stainless 304/304L-Sch 10S 14 Inch (350mm)	L193102 160000	20.0 ea	58.60	42.90	-	-	-	101.50 /ea	2,030
40-05-23.10	Shop Flange Weld-Stainless 304/304L-Cls 150 (PN20) 14 Inch (350mm)	L193402 006200	6.0 ea	58.60	42.90	-	-	-	101.50 /ea	609
40-05-23.10	Pipe Erection-Spools-Stainless 304/304L-Sch 10S 14 Inch (350mm)	L194002 1600P2	40.0 If	52.74	-	-	-	-	52.74 /lf	2,109
40-05-23.10	Field Butt Weld-Stainless 304/304L-Sch 10S 14 Inch (350mm)	L195102 160000	2.0 ea	232.63	14.60	-	22.72	-	269.94 /ea	540

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
40300 Premeate	Piping - Prefab Shop - Field installed 8",10",12",14" 304	ss								
40-05-51.00	Pipe Erection-Handle Valves-Metal-Cls 150 (PN20) 14 Inch (350mm)	L194062 006200	2.0 ea	321.70	-	-	-	-	321.70 /ea	643
40-05-64.00	Valve Flanged & Bolted-Stainless Steel-Butterfly-Cls 150 (PN20) 14 Inch (350mm)	A196434 206200 _	2.0 ea	457.64	23,794.02	-		-	24,251.66 /ea	48,503
	Premeate Piping - Prefab Shop - Field installed 8",10",12",14" 304SS		348.2 If	346.90	468.23		6.45		821.58 /lf	286,090
40510 SODIUM	HYPOCHLORITE SYSTEM									
	Pipe Erection-Make Up Cemented Plastic Socket	L043461	52.0 ea	6.09	-	-	-	-	6.09 /ea	317
40-05-05 00	Joint-Non-Specific 1/2 Inch (13mm) Pipe Erection-Handle Fittings-Plastic-Sch 80 1/2	000000 L043466	24.0 ea	3.52					3.52 /ea	84
	Inch (13mm)	100001			-	-	-	-		
40-05-05.00	Field Welds-Cut & Bevel-Std 1/2 Inch (13mm)	L046064 010000	52.0 ea	14.94	-	-	-	-	14.94 /ea	777
40-05-05.00	Field Testing-Hydrotest-Non-Specific 1/2 Inch (13mm)	L049048 000000	40.0 If	0.65	-	-	-	-	0.65 /lf	26
40-05-05.00	Pipe Erection-Make Up Cemented Plastic Socket	L063461	77.0 ea	6.39	-	-	-	-	6.39 /ea	492
40-05-05.00	Joint-Non-Specific 1 Inch (25mm) Pipe Erection-Handle Fittings-Plastic-Sch 80 1 Inch	000000 L063466	48.0 ea	4.63	-	-	-	-	4.63 /ea	222
40-05-05.00	(25mm) Field Welds-Cut & Bevel-Std 1 Inch (25mm)	100001 L066064	77.0 ea	19.69	_	-	-	-	19.69 /ea	1,516
	Field Testing-Hydrotest-Non-Specific 1 Inch (25mm)	010000	400.0 If	0.70					0.70 /lf	281
	, ,	000000			-	-	-	-		
40-05-05.00	Pipe Erection-Make Up Cemented Plastic Socket Joint-Non-Specific 1-1/2 Inch (40mm)	L083461 000000	52.0 ea	6.92	-	-	-	-	6.92 /ea	360
40-05-05.00	Pipe Erection-Handle Fittings-Plastic-Sch 80 1-1/2 Inch (40mm)	L083466 100001	24.0 ea	5.68	-	-	-	-	5.68 /ea	136
40-05-05.00	Field Welds-Cut & Bevel-Std 1-1/2 Inch (40mm)	L086064 010000	52.0 ea	23.44	-	-	-	-	23.44 /ea	1,219
40-05-05.00	Field Testing-Hydrotest-Non-Specific 1-1/2 Inch (40mm)	L089048 000000	40.0 If	0.76	-	-	-	-	0.76 /lf	30
40-05-07.00	Hangers & Supports-Support 1/2 Inch (13mm)	A046044 000000	2.0 ea	58.60	20.00	-	-	-	78.60 /ea	157
40-05-07.00	Hangers & Supports-Hanger 1/2 Inch (13mm)	A046045 000000	2.0 ea	54.50	20.00	-	-	-	74.50 /ea	149
40-05-07.00	Hangers & Supports-Anchor 1 Inch (25mm)	A066043 000000	2.0 ea	79.11	20.00	-	-	-	99.11 /ea	198
40-05-07.00	Hangers & Supports-Support 1 Inch (25mm)	A066044 000000	8.0 ea	70.32	20.00	-	-	-	90.32 /ea	723
40-05-07.00	Hangers & Supports-Hanger 1 Inch (25mm)	A066045 000000	18.0 ea	54.50	20.00	-	-	-	74.50 /ea	1,341
40-05-07.00	Hangers & Supports-Support 1-1/2 Inch (40mm)	A086044 000000	2.0 ea	70.32	40.00	-	-	-	110.32 /ea	221
40-05-07.00	Hangers & Supports-Hanger 1-1/2 Inch (40mm)	A086045 000000	2.0 ea	54.50	40.00	-	-	-	94.50 /ea	189
40-05-31.23	Pipe Plain End-CPVCSch 80 1/2 Inch (13mm)	A041002 100000	39.1 If	-	0.82	-	-	-	0.82 /lf	32
40-05-31.23	Fitting Socket Weld-CPVC-Ell90-Non-Specific 1/2 Inch (13mm)	A042212 000000	10.0 ea	-	5.09	-	-	-	5.09 /ea	51
40-05-31.23	Fitting Socket Weld-CPVC-Tee-Non-Specific 1/2 Inch (13mm)	A042214 000000	4.0 ea	-	6.79	-	-	-	6.79 /ea	27
40-05-31.23	Fitting Socket Weld-CPVC-Coupling-Non-Specific 1/2 Inch (13mm)	A042219 000000	10.0 ea	-	3.82	-	-	-	3.82 /ea	38

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
40510 SODIUM	HYPOCHLORITE SYSTEM									
40-05-31.23	Pipe Plain End-CPVCSch 80 1 Inch (25mm)	A061002 100000	250.0 If	-	1.64	-	-	-	1.64 /lf	411
40-05-31.23	Fitting Socket Weld-CPVC-Ell90-Sch 80 1 Inch (25mm)	A062212 100000	20.0 ea	11.13	7.71	-	-	-	18.84 /ea	377
40-05-31.23	Fitting Socket Weld-CPVC-Tee-Sch 80 1 Inch (25mm)	A062214 100000	8.0 ea	15.24	11.13	-	-	-	26.37 /ea	211
40-05-31.23	Fitting Socket Weld-CPVC-Coupling-Sch 80 1 Inch (25mm)	A062219 100000	20.0 ea	11.13	7.58	-	-	-	18.71 /ea	374
40-05-31.23	Pipe Plain End-CPVCSch 80 1-1/2 Inch (40mm)	A081002 100000	37.3 lf	-	2.75	-	-	-	2.75 /lf	103
40-05-31.23	Fitting Socket Weld-CPVC-Ell90-Sch 80 1-1/2 Inch (40mm)	A082212 100000	10.0 ea	15.24	18.62	-	-	-	33.86 /ea	339
40-05-31.23	Fitting Socket Weld-CPVC-Tee-Sch 80 1-1/2 Inch (40mm)	A082214 100000	4.0 ea	21.10	26.89	-	-	-	47.98 /ea	192
40-05-31.23	Fitting Socket Weld-CPVC-Coupling-Sch 80 1-1/2 Inch (40mm)	A082219 100000	10.0 ea	15.24	14.27	-	-	-	29.51 /ea	295
40-05-31.23		L044002 1000P1	40.0 If	2.93	-	-	-	-	2.93 /lf	117
40-05-31.23	Pipe Erection-Straight Run-CPVC-Sch 80 1 Inch (25mm)	L064002 1000P1	400.0 If	3.52	-	-	-	-	3.52 /lf	1,406
40-05-31.23	Pipe Erection-Straight Run-CPVC-Sch 80 1-1/2 Inch (40mm)	L084002 1000P1	40.0 If	3.52	-	-	-	-	3.52 /lf	141
	SODIUM HYPOCHLORITE SYSTEM	10001 1 _	340.0 If	30.17	6.74			_	36.92 /lf	12,552
40510 CITRIC A	CID SYSTEM									
	Pipe Erection-Make Up Cemented Plastic Socket Joint-Non-Specific 1/2 Inch (13mm)	L043461 000000	52.0 ea	6.09	-	-	-	-	6.09 /ea	317
40-05-05.00	Pipe Erection-Handle Fittings-Plastic-Sch 80 1/2 Inch (13mm)	L043466 100001	24.0 ea	3.52	-	-	-	-	3.52 /ea	84
40-05-05.00	Field Welds-Cut & Bevel-Std 1/2 Inch (13mm)	L046064 010000	52.0 ea	14.94	-	-	-	-	14.94 /ea	777
40-05-05.00	Field Testing-Hydrotest-Non-Specific 1/2 Inch (13mm)	L049048 000000	40.0 If	0.65	-	-	-	-	0.65 /lf	26
40-05-05.00	Pipe Erection-Make Up Cemented Plastic Socket Joint-Non-Specific 1 Inch (25mm)	L063461 000000	77.0 ea	6.39	-	-	-	-	6.39 /ea	492
40-05-05.00		L063466 100001	48.0 ea	4.63	-	-	-	-	4.63 /ea	222
40-05-05.00	Field Welds-Cut & Bevel-Std 1 Inch (25mm)	L066064 010000	77.0 ea	19.69	-	-	-	-	19.69 /ea	1,516
40-05-05.00	Field Testing-Hydrotest-Non-Specific 1 Inch (25mm)		400.0 If	0.70	-	-	-	-	0.70 /lf	281
40-05-05.00	Pipe Erection-Make Up Cemented Plastic Socket Joint-Non-Specific 1-1/2 Inch (40mm)	L083461 000000	52.0 ea	6.92	-	-	-	-	6.92 /ea	360
40-05-05.00		L083466 100001	24.0 ea	5.68	-	-	-	-	5.68 /ea	136
40-05-05.00	Field Welds-Cut & Bevel-Std 1-1/2 Inch (40mm)	L086064 010000	52.0 ea	23.44	-	-	-	-	23.44 /ea	1,219
40-05-05.00	Field Testing-Hydrotest-Non-Specific 1-1/2 Inch (40mm)	L089048 000000	40.0 lf	0.76	-	-	-	-	0.76 /lf	30
40-05-07.00	Hangers & Supports-Support 1/2 Inch (13mm)	A046044 000000	2.0 ea	58.60	20.00	-	-	-	78.60 /ea	157
40-05-07.00	Hangers & Supports-Hanger 1/2 Inch (13mm)	A046045 000000	2.0 ea	54.50	20.00	-	-	-	74.50 /ea	149
40-05-07.00	Hangers & Supports-Anchor 1 Inch (25mm)	A066043 000000	2.0 ea	79.11	20.00	-	-	-	99.11 /ea	198

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 3

Project Number: 147571-040

Estimate Issue: 1

Due Date: 5/26/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
40510 CITRIC A	CID SYSTEM									
40-05-07.00	Hangers & Supports-Support 1 Inch (25mm)	A066044 000000	8.0 ea	70.32	20.00	-	-	-	90.32 /ea	723
40-05-07.00	Hangers & Supports-Hanger 1 Inch (25mm)	A066045 000000	18.0 ea	54.50	20.00	-	-	-	74.50 /ea	1,341
40-05-07.00	Hangers & Supports-Support 1-1/2 Inch (40mm)	A086044 000000	2.0 ea	70.32	40.00	-	-	-	110.32 /ea	221
40-05-07.00	Hangers & Supports-Hanger 1-1/2 Inch (40mm)	A086045 000000	2.0 ea	54.50	40.00	-	-	-	94.50 /ea	189
40-05-31.23	Pipe Plain End-CPVCSch 80 1/2 Inch (13mm)	A041002 100000	39.1 If	-	0.82	-	-	-	0.82 /lf	32
40-05-31.23	Fitting Socket Weld-CPVC-Ell90-Non-Specific 1/2 Inch (13mm)	A042212 000000	10.0 ea	-	5.09	-	-	-	5.09 /ea	51
40-05-31.23	Fitting Socket Weld-CPVC-Tee-Non-Specific 1/2 Inch (13mm)	A042214 000000	4.0 ea	-	6.79	-	-	-	6.79 /ea	27
40-05-31.23	Fitting Socket Weld-CPVC-Coupling-Non-Specific 1/2 Inch (13mm)	A042219 000000	10.0 ea	-	3.82	-	-	-	3.82 /ea	38
40-05-31.23	Pipe Plain End-CPVCSch 80 1 Inch (25mm)	A061002 100000	250.0 If	-	1.64	-	-	-	1.64 /lf	411
40-05-31.23	Fitting Socket Weld-CPVC-Ell90-Sch 80 1 Inch (25mm)	A062212 100000	20.0 ea	11.13	7.71	-	-	-	18.84 /ea	377
40-05-31.23	Fitting Socket Weld-CPVC-Tee-Sch 80 1 Inch (25mm)	A062214 100000	8.0 ea	15.24	11.13	-	-	-	26.37 /ea	211
40-05-31.23	Fitting Socket Weld-CPVC-Coupling-Sch 80 1 Inch (25mm)	A062219 100000	20.0 ea	11.13	7.58	-	-	-	18.71 /ea	374
40-05-31.23	Pipe Plain End-CPVCSch 80 1-1/2 Inch (40mm)	A081002 100000	37.3 If	-	2.75	-	-	-	2.75 /lf	103
40-05-31.23	Fitting Socket Weld-CPVC-Ell90-Sch 80 1-1/2 Inch (40mm)	A082212 100000	10.0 ea	15.24	18.62	-	-	-	33.86 /ea	339
40-05-31.23	Fitting Socket Weld-CPVC-Tee-Sch 80 1-1/2 Inch (40mm)	A082214 100000	4.0 ea	21.10	26.89	-	-	-	47.98 /ea	192
40-05-31.23	Fitting Socket Weld-CPVC-Coupling-Sch 80 1-1/2 Inch (40mm)	A082219 100000	10.0 ea	15.24	14.27	-	-	-	29.51 /ea	295
40-05-31.23	Pipe Erection-Straight Run-CPVC-Sch 80 1/2 Inch (13mm)	L044002 1000P1	40.0 If	2.93	-	-	-	-	2.93 /lf	117
40-05-31.23	Pipe Erection-Straight Run-CPVC-Sch 80 1 Inch (25mm)	L064002 1000P1	400.0 If	3.52	-	-	-	-	3.52 /lf	1,406
40-05-31.23	Pipe Erection-Straight Run-CPVC-Sch 80 1-1/2 Inch (40mm)	L084002 1000P1	40.0 If	3.52	-	-	-		3.52 /lf	141
	CITRIC ACID SYSTEM 40		340.0 If	30.17	6.74				36.92 /lf	12,552 1,153,885
	ROCESSING AND HANDLING EQUIPMENT									
	Package - Intallation Labor, Equipment and Vendor Testi Bridge crane supports and rail allowance	ng BC-0001	1.0 ls	10,000.00	30,000.00	0.01	10,000.00		50,000.01 /ls	50,000
	Overhead bridge crane, under hung hoist, electric operating, 2 girder, 7.5 ton, 50' span	0550	1.0 is 1.0 ea	5,710.84	55,500.00	-	358.53	-	61,569.37 /ea	61,569
41-22-23.10	Cranes, material handling, movable gantry type, 2,000 lb. capacity, 12' to 15' range	1800	2.0 ea	-	3,950.00	-	-	-	3,950.00 /ea	7,900
	GE MBR Package - Intallation Labor, Equipment and Vendor Testing	_	6.0 Each	2,618.47	15,566.67	0.00	1,726.42	-	19,911.56 /Each	119,469
	41 MATERIAL PROCESSING AND HANDLING EQUIPMENT									119,469
	07 MBR Treatment		1.0 LS	1,428,264.69	8,838,670.34	2,786,594.24	213,946.82	44,120.00	13,311,596.09 /LS	13,311,596

Brown AND Caldwell

COM ALTERNATIVES ANALYSIS - ALT 3

Project Number: 147571-040

Estimate Issue: 1

Due Date: 5/26/2015

Estimator: DG-NDG-FB-IK

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
08 Influent Pump	Station									
03 CONCRETE										
	ump station wet well Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	27.8 cy	-	33.69	-	-	-	33.69 /cy	936
03-15-13.50	Waterstop, PVC, ribbed type, split, 3/8" thick x 6" wide	1300	65.0 If	3.61	4.42	-	-	-	8.03 /lf	522
03-15-13.50	Waterstop, fittings, rubber, flat, dumbbell or center bulb, field union, 3/8" thick x 9" wide	5250	5.0 ea	9.38	47.88	-	-	-	57.26 /ea	286
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	5.6 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	11,268
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	5.6 ton	39.87	-	-	7.51	-	47.38 /ton	263
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	5.6 ton	43.34	-	-	8.17	-	51.51 /ton	286
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	58.3 cy	-	98.01	-	-	-	98.01 /cy	5,717
03-31-05.70	Structural concrete, placing, foundation mat, pumped, over 20 C.Y., includes vibrating, excludes material	2950	58.3 cy	9.69	-	-	2.00	-	11.68 /cy	682
03-35-29.30	Concrete finishing, floors, monolithic, screed and bull float(darby) finish	0100	750.0 sf	0.38	-	-	-	-	0.38 /sf	283
03-39-13.50	Curing, sprayed membrane curing compound Slabs Pump station wet well	0300	7.5 csf 58.3 cy	9.68 127.23	10.12 218.88		3.49		19.80 /csf 349.59 /cy	149 20,392
03330 Slahs Pi	ump station slab									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	18.5 cy	-	33.69	-	-	-	33.69 /cy	624
03-11-13.65	C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	70.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	347
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	1.4 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	2,817
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	1.4 ton	39.87	-	-	7.52	-	47.39 /ton	66
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	1.4 ton	43.34	-	-	8.16	-	51.51 /ton	72
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	19.4 cy	-	98.01	-	-	-	98.01 /cy	1,906
03-31-05.70	Structural concrete, placing, slab on grade, pumped, over 6" thick, includes vibrating, excludes material	4650	19.4 cy	20.95	-	-	4.31	-	25.26 /cy	491
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	500.0 sf	0.88	-	-	0.03	-	0.91 /sf	455
03-35-29.30	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	500.0 sf	0.70	0.29	-	-	-	0.99 /sf	497
03-39-13.50	Curing, sprayed membrane curing compound Slabs Pump station slab	0300	5.0 csf 20.4 cy	9.68 151.81	10.12 204.22		5.92		19.80 /csf 361.96 /cy	<u>99</u> 7,374
03345 Concrete	e Walls wet well									
	C.I.P. concrete forms, wall, box out for opening, to 16" thick, over 10 S.F. (use perimeter), includes erecting, bracing, stripping and cleaning	0150	16.0 If	9.93	2.33	-	-	-	12.26 /lf	196

COM ALTERNATIVES ANALYSIS - ALT 3

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03345 Concrete	e Walls wet well									
03-11-13.85	C.I.P. concrete forms, wall, wood bulkhead with 2 piece keyway, 1 use, includes erecting, bracing, stripping and cleaning	0500	36.0 lf	10.50	2.14	-	-	-	12.63 /lf	455
03-11-13.85	Cip concret forms,walls,steel framed plywd,over 16'20'h,based 50 us purchsd forms,4 us bracing lumber,includes erecting,bracing,stripping and cleaning	9460	2,880.0 sfca	6.95	0.75	-	-	-	7.70 /sfca	22,176
03-15-05.95	Form oil, up to 800 S.F. per gallon, coverage, includes material only	3050	7.7 gal	-	20.66	-	-	-	20.66 /gal	159
03-15-13.50	Waterstop, rubber, center bulb, split, 3/8" thick x 6" wide	3500	36.0 If	3.24	14.92	-	-	-	18.15 /lf	654
03-15-13.50	Waterstop, rubber, field union, 3/8" x 6" wide, walls	5205	3.0 ea	9.38	35.78	-	-	-	45.17 /ea	136
03-21-10.60	Reinforcing steel, in place, walls, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0700	7.9 ton	794.28	992.00	-	-	-	1,786.28 /ton	14,131
03-21-10.60	Reinforcing in place, unloading & sorting, add - walls, cols, beams	2010	7.9 ton	39.87	-	-	7.51	-	47.39 /ton	375
03-21-10.60	Reinforcing, crane cost for handling, add to above, walls, cols, beams	2225	7.9 ton	43.34	-	-	8.17	-	51.51 /ton	407
03-31-05.35	Concrete, ready mix, regular weight, walls/cols/beams, 4000 psi	0320	83.1 cy	-	98.01	-	-	-	98.01 /cy	8,142
03-31-05.70	Structural concrete, placing, walls, pumped, 15" thick, includes vibrating, excludes material	5350	83.1 cy	32.29	-	-	6.65	-	38.94 /cy	3,235
03-35-29.60	Finishing: break ties & patch voids (walls, cols or beams)	0010	2,848.0 sf	0.97	0.03	-	-	-	1.00 /sf	2,849
	Concrete Walls wet well	_	85.6 cy	386.88	223.58	-	7.91	_	618.37 /cy	52,914
03350 Wet well	elev slab									
03-11-13.35	C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	1150	375.0 sf	4.97	1.27	-	-	-	6.24 /sf	2,339
03-11-13.35	C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, erecting, bracing, stripping and cleaning	7000	65.0 If	3.62	0.21	-	-	-	3.83 /lf	249
03-21-10.60	Reinforcing steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0400	1.2 ton	821.67	992.00	-	-	-	1,813.67 /ton	2,209
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - decks	2050	0.0 ton	40.00	-	-	7.00	-	47.00 /ton	0
03-21-10.60	Reinforcing steel, crane cost for handling, maximum, add	2220	0.0 ton	114.00	-	-	21.00	-	135.71 /ton	1
03-31-05.35	Concrete, ready mix, regular weight, elevated decks, 4000 psi	0325	14.6 cy	-	98.01	-	-	-	98.01 /cy	1,429
03-31-05.70	Structural concrete, placing, elevated slab, with crane and bucket, over 10" thick, includes vibrating, excludes material	1650	14.6 cy	33.71	-	-	9.53	-	43.24 /cy	631
03-35-29.30	Finishing elev slab, manual screed, bull float, machine float & trowel	0275	375.0 sf	0.88	-	-	0.03	-	0.91 /sf	342
03-39-13.50	Curing, sprayed membrane curing compound, elevated decks	0310	3.8 csf	9.68	10.12	-	-	-	19.80 /csf	74
	Wet well elev slab	_	14.6 cy	271.47	217.12	-	10.31	_	498.90 /cy	7,274

03 CONCRETE

87,954

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
04220 Exterior	Masonry Walls Pump station									
04-05-16.30	Grout, door frames, 3' x 7' opening, 2.5 CF per opening	0800	2.0 opng	32.67	10.51	-	2.27	-	45.45 /opng	91
04-05-16.30	Grout, door frames, 6' x 7' opening, 3.5 CF per opening	0850	2.0 opng	43.56	14.70	-	3.03	-	61.28 /opng	123
04-05-16.30	Grout, for bond beams, lintels and concrete masonry unit (CMU) cores, C476, includes material only	2000	840.0 cf	5.60	4.20	-	0.39	-	10.19 /cf	8,562
04-05-19.26	Masonry reinforcing bars, #5 and #6 reinforcing steel bars, placed horizontally, ASTM A615	0020	680.0 lb	0.65	0.46	-	-	-	1.11 /lb	753
04-05-19.26	Masonry reinforcing bars, #5 and #6 reinforcing steel bars, placed vertically, ASTM A615	0060	1,560.0 lb	0.80	0.46	-	-	-	1.26 /lb	1,963
04-05-19.26	Masonry reinforcing bars, truss type steel joint reinforcing, mill standard galvanized, 12" wide	0250	15.0 clf	26.07	24.73	-	-	-	50.79 /clf	762
04-05-19.26	Allow - shoring and bracing at CMU walls (percentage wall area)	0500	1,000.0 sfwa	0.75	0.17	-	-	-	0.93 /sfwa	925
04-22-10.28	Concrt block,high strngt,hollow,3500 psi,12"8"16",inclds mortar and horzntl joint rnfrcng every other course,excluds scffldn,grout and verticl rnfrcng	0350	2,000.0 sf	11.33	5.95	-	-	-	17.28 /sf	34,557
04-72-10.10	Precast concrete coping, stock units, 12" wall, 14" wide, 4" tapers to 3-1/2", includes mortar, excludes scaffolding	0110	100.0 If	14.53	24.89	-	-	-	39.42 /lf	3,941
	Exterior Masonry Walls Pump station 04 STONE & MASONRY	_	2,000.0 sf	15.91	9.76		0.17	_	25.84 /sf	51,677 51,677
06 WOOD & PL	ASTICS									
06120 Wood Fr	raming -Roof, Pump Station									
	Nails, floor or roof sheathing	1025	14.6 lb	-	2.45	-	-	=	2.45 /lb	36
	Nails, roof framing, sinkers, 8d to 16d, allow 20 lbs per MBF	5625	643.6 lb	-	2.33	-	-	-	2.33 /lb	1,498
06-05-23.60	Average cost, hold downs (HD's), 7 to 12 gauge, glulams/beams	1230	4.0 ea	-	23.28	-	-	-	23.28 /ea	93
06-05-23.60	Threaded rod for hold downs, to 1-1/4" diameter, glulams/beams	1295	40.0 lf	3.08	1.03	-	0.25	-	4.36 /lf	174
06-11-10.10	Framing, beams/girders, 6x or larger, allow average cost per MBF	3800	0.5 mbf	1,150.34	1,539.46	-	-	-	2,689.80 /mbf	1,345
	Wood framing, roofs, fascia boards, 2" x 8"	6070	0.1 mbf	3,067.60	601.80	-	-	-	3,669.40 /mbf	415
	Wood framing, roofs, rafters, to 4 in 12 pitch, 2" x 8"	7060	1.0 mbf	730.38	601.79	-	-	-	1,332.16 /mbf	1,306
	Framing, roofs, hip and valley rafters, 2" x 10"	7365	0.0 mbf	863.00	681.00	-	-	-	1,544.00 /mbf	32
	Wood framing, roofs, hip and valley rafters, to 4 in 12 pitch, 2" x 8"	7600	1.0 mbf	1,415.80	601.79	-	-	-	2,017.59 /mbf	2,034
	Wood framing, roofs, rafter ties, #3, 1" x 4"	7800	0.0 mbf	3,409.00	1,306.00	-	-	-	4,714.00 /mbf	33
	Framing, roofs, ridge board, #2 or better, 2" x 12"	7922	0.1 mbf	1,207.80	690.40	-	-	-	1,898.20 /mbf	95
	Furring, wood, on ceilings, on wood, 1" x 3"	0850	80.0 If	1.32	0.36	-	-	-	1.68 /lf	134
	Sheathing, plywood on roof, CDX, 1/2" thick, pneumatic nailed	0105	900.0 sf	0.54	0.56	-	-	-	1.10 /sf	989
06-16-36.10	Sheathing, with boards, on roof, laid horizontal, 1" x 6"	1400	75.0 sf	1.27	1.47	-		-	2.74 /sf	205
	Wood Framing -Roof, Pump Station 06 WOOD & PLASTICS		1,775.0 sf	2.24	2.48		0.01		4.73 /sf	8,389 8,389
07 THERMAL P										
	Masonry Walls Pump station	0000	4.000.0 -4	0.40	0.50				0.00 /-4	0.755
07-19-19.10	Silicone water repellants, sprayed on CMU, 2 coat	0300	4,000.0 sf	0.16	0.53	-	-	-	0.69 /sf	2,755

Brown AN Caldwel				Estima	te Detail Report	IS - ALT 3				Project Number: Estimate Issue: Due Date: Estimator:	1 5/26/2015
Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Uni	t	al Net ount
	Exterior Masonry Walls Pump station	_	2,000.0 sf	0.31	1.07			-	1.38 /sf		2,755
	aming -Roof, Pump Station	0400	1. 0.000	0.00	0.07				0.05 //		500
	Blanket insulation, for walls or ceilings, kraft faced fiberglass, 6" thick, R19, 23" wide	0180	900.0 sf	0.28	0.37	-	-	-	0.65 /sf		588
07-26-10.10	Building Paper, vapor barrier, asphalt felt sheathing paper, 15#	0400	9.0 sq	12.06	4.81	-	-	-	16.87 /sq		152
07-41-13.20	Steel roofing panels, on steel frame, flat profile, standard finish, 1-3/4" standing seams, 10" wide, 26 gauge	0710	900.0 sf	2.41	3.73	-	-	-	6.14 /sf		5,524
	Wood Framing -Roof, Pump Station 07 THERMAL PROTECTION	=	1,775.0 sf	1.42	2.11			-	3.53 /sf		6,263 9,018
1 EQUIPMENT											
11999 Influent F	•	MICO	40.10			45,000,00			45.000.00 # 0		45.00/
	Coatings allowance Hydraulic structures, slide gate, stainless stl, ab &	MISC BC-0106	1.0 LS 1.0 ea	2,540.11	7,957.95	15,000.00	573.18	-	15,000.00 /LS 11,071.24 /ea		15,000 11,071
11-00-11.05	grout,48" x 48" Wastewater, submersible,4400 GPM gpm,guide	BC-0011	2.0 ea	9,199.66	130,000.00	-	-	-	139,199.66 /ea		278,399
41-21-23.16	rails, base elbow,175 hp, VFD driven Conveyors, material handling, monorail, overhead,	3900	20.0 If	26.93	20.50	-	-	-	47.43 /lf		948
41-21-23.16	manual, channel type, 500 lb per LF Conveyors, material handling, monorail, overhead, manual, channel type, trolleys for, 8 wheel, 500 lb capacity	4300	1.0 ea	-	770.00	300.00	-	-	1,070.00 /ea		1,070
41-22-23.10	Hoists, material handling, electric overhead, chain, hook hung, 15' lift, 5 ton capacity	2500	1.0 ea	-	6,925.00	350.00	-	-	7,275.00 /ea		7,275
41-22-23.10	Hoists, material handling, electric overhead, chain, hook hung, 15' lift, 1 ton capacity, for lifts over 15', 5 ton, add	3100	5.0 If	-	56.50	12.00	-	-	68.50 /lf		343
	Influent Pump Station 11 EQUIPMENT	_	1.0 LS	21,477.91	276,345.45	15,710.00	573.18	-	314,106.54 /LS		314,107 314,107
2 PLUMBING											
22999 Influent F	Pump piping Coating systems allowance	MISC	1.0 LS		_	10,000.00			10,000.00 /LS		10,000
	Pump discharge piping allowance		1.0 L3	14,760.00	50,000.00	10,000.00	10,000.00	-	74,760.00 /ls		74,760
	Influent Pump piping	-	1.0 LS	14,760.00	50,000.00	10,000.00	10,000.00	-	84,760.00 /LS		84,76
33500 Influent F	PS Yard Piping										
	Pipe, steel, black, welded, 24" diameter, schedule 40, Spec. A-53, includes two rod, roll hanger & saddle, sized for covering, 10' OC	2220	1,625.0 If	21.14	183.00	-	0.44	-	204.58 /lf		332,44
22-11-13.44	Pipe, steel, Welding labor per joint, 24" pipe size, schedule 40, welding	9420	45.0 ea	684.72	-	-	39.24	-	723.95 /ea		32,57
22-11-13.47	Elbow, 90 Deg., steel, carbon steel, black, long radius, butt weld, standard weight, 24" pipe size, includes 1 weld per joint and weld machine	3194	5.0 ea	1,554.30	3,450.00	-	57.70	-	5,062.00 /ea		25,310
22-99-99.99	Tie into existing influent piping/structure allowance Influent PS Yard Piping 22 PLUMBING		1.0 ls 1,625.0 LF	35,900.00 66.98	250,000.00 347.46		1.71		285,900.00 /ls 416.14 /LF		285,900 676,230 760,990

383,779.99

26001 Influent Pump Station - E&I

26-00-00.02 Electrical (This is based on a percentage of the

Total Project Costs)

FACTOR

ED

1.0 LS

383,780

383,779.99 /LS

Phase	Estimate Breakdown	ltem_	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	Influent Pump Station - E&I 26 ELECTRICAL		1.0 LS			383,779.99			383,779.99 /LS	383,780 383,780
27 COMMUNICA	ATIONS									
	Pump Station - E&I	FAOTOR	40.10			70 000 05			70 000 05 # 0	70.004
27-20-00.01	Instrumentation (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	73,803.85	-	-	73,803.85 /LS	73,804
	Influent Pump Station - E&I 27 COMMUNICATIONS	_	1.0 LS		-	73,803.85		,	73,803.85 /LS	73,804 73,804
31 EARTHWOR	K									
01999 Dewateri										
	Rent wellpoint header pipe, 6" diameter, 400 gpm	0500	600.0 day	-	-	-	0.40	-	0.40 /day	240
31-23-19.20	Dewatering, pumping 8 hours, attended 2 hrs per day, 6" centrifugal pump, includes 20 LF of suction hose and 100 LF of discharge hose	1100	60.0 day	857.51	-	-	377.70	-	1,235.21 /day	74,113
31-23-19.30	Wells, for dewatering, with steel casing, 10' to 20' deep, 2' diameter, minimum	0020	75.0 vlf	76.64	184.52	-	17.92	-	279.08 /vlf	20,931
	Dewatering	-	1.0 LS	57,198.63	13,839.25	-	24,245.80		95,283.68 /LS	95,284
02220 Claba Bu	ump station wat well									
	ump station wet well Fine grading, fine grade for slab on grade, machine	1100	83.3 sy	1.07	_	_	0.72	_	1.79 /sy	149
	Slabs Pump station wet well		58.3 cy	1.52		=	1.03	•	2.55 /cy	149
02220 Slabe Bu	ump station slab									
	Fine grading, fine grade for slab on grade, machine	1100	55.6 sy	1.07	_	-	0.72	-	1.79 /sy	99
	Slabs Pump station slab	_	20.4 cy	2.90		-	1.97		4.87 /cy	99
31250 Shoring	Systems									
	Sheet piling, steel, 27 psf, 20' excavation, per S.F., drive, extract and salvage, excludes wales	1600	1,800.0 sf	9.83	6.37	-	7.87	-	24.07 /sf	43,326
31-41-16.10	Sheet piling, wales, connections and struts, 2/3 salvage	2500	1.6 ton	-	410.40	-	-	-	410.40 /ton	653
	Shoring Systems	_	1,800.0 sf	9.83	6.73	-	7.87		24.43 /sf	43,978
04045 5	to and Bookell access station									
	ion and Backfill pump station Excavating, bulk bank measure, in sheeting or	4400	648.0 bcy	6.99	_	_	7.64	_	14.63 /bcy	9,480
0. 20 .02	cofferdam, with all other equipment, minimum		0.0.0 20,	0.00			7.01		1 1100 7209	0, 100
31-23-23.14	Backfill, structural, common earth, 105 H.P. dozer, 50' haul, from existing stockpile, excludes compaction	3020	482.0 lcy	0.70	-	-	0.50	-	1.20 /lcy	579
31-23-23.20	Cycl hln(,load,trvl,unld dump&rtr) time per cycl,excv borrw,loose cubic yards,25 min ld/w/,18 cy 8 wheel	9498	362.0 lcy	3.08	-	-	5.47	-	8.55 /lcy	3,095
31-23-23.23	truck,cycle 20 miles,45 mph,excld ldng eqpmnt Compaction, 3 passes, 12" lifts, riding, sheepsfoot or	5700	334.0 ecy	0.25	-	-	0.35	-	0.60 /ecy	199
	wobbly wheel roller Excavation and Backfill pump station	-	925.9 cy	6.55		-	7.87		14.42 /cy	13,354
005001.0	DO Vand Dinia									
33500 Influent I	PS Yard Piping Excavating, trench or continuous footing, common	0510	4,799.8 bcy	2.80	_	_	2.07	_	4.87 /bcy	23,374
31-23-10.13	earth, 1 C.Y. excavator, 6' to 10' deep, excludes sheeting or dewatering	0310	4,799.0 DCy	2.00			2.07		4.07 /bcy	20,074
31-23-23.13	Backfill, trench, 6" to 12" lifts, dozer backfilling,	2300	3,370.4 ecy	1.32	-	-	2.85	-	4.16 /ecy	14,036
31-23-23.16	compaction with sheepsfoot roller Fill by borrow and utility bedding, for pipe and	0200	1,240.3 lcy	10.59	10.89	-	2.48	-	23.96 /lcy	29,713

Brown AND Caldwell

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
33500 Influent	PS Yard Piping									
31-23-23.16	Fill by borrow and utility bedding, for pipe and conduit, compacting bedding in trench	0500	1,240.3 ecy	5.57	-	-	0.41	-	5.98 /ecy	7,411
31-23-23.18	Hauling, excavated or borrow material, loose cubic yards, 3 mile round trip, 2.1 loads/hour, 6 C.Y. dump truck, highway haulers, excludes loading	0150	1,429.4 lcy	6.23	-	-	5.24	-	11.48 /lcy	16,403
	Influent PS Yard Piping 31 EARTHWORK		1,625.0 LF	28.81	8.31		18.84		55.96 /LF	90,937 243,801
33 UTILITIES										
	PS Yard Piping Utility line signs, markers, and flags, underground	0400	16.0 clf	3.34	5.56	_	_	_	8.90 /clf	142
00 00 20.10	tape, detectable, reinforced, aluminum foil core, 2", excludes excavation and backfill	0100	10.0 011	0.01	0.00				0.00 7011	172
	Influent PS Yard Piping	_	1,625.0 LF	0.03	0.06				0.09 /LF	142
	33 UTILITIES									142
	08 Influent Pump Station		1.0 LS	359,558.19	999,552.34	483,293.84	91,256.30		1,933,660.67 /LS	1,933,661

COM ALTERNATIVES ANALYSIS - ALT 3

				COM ALTERNAT	TIVES ANALYS	SIS - ALT 3				Estimator: DG-NDG-FB-IK
Phase	Estimate Breakdown	ltem	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
09 Acetate/Metha	nol									
03 CONCRETE	nemical Storage									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	5.6 cy	-	33.69	-	-	-	33.69 /cy	187
03-11-13.65	C.I.P. concrete forms, slab on grade, slab blockouts, wood, to 12" high, 1 use, includes erecting, bracing, stripping and cleaning	4000	32.0 lf	9.05	0.81	-	-	-	9.86 /lf	315
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	0.6 ton	1,036.00	992.00	-	-	-	2,028.00 /ton	1,128
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.6 ton	39.87	-	-	7.52	-	47.40 /ton	26
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.6 ton	43.35	-	-	8.17	-	51.51 /ton	29
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	11.7 cy	-	98.01	-	-	-	98.01 /cy	1,144
03-31-05.70	Structural concrete, placing, slab on grade, pumped, over 6" thick, includes vibrating, excludes material	4650	11.7 cy	20.95	-	-	4.31	-	25.26 /cy	295
03-35-29.30	Concrete finishing, floors, monolithic, machine trowel finish	0250	300.0 sf	0.88	-	-	0.03	-	0.91 /sf	273
	Concrete finishing, floor, hardener, non-metallic, medium service, 0.75 psf, add	2350	300.0 sf	0.70	0.29	-	-	-	0.99 /sf	298
03-39-13.50	Curing, sprayed membrane curing compound Slabs Chemical Storage	0300 _	3.0 csf 300.0 cy	9.68 5.53	10.12 6.75	-	0.23		19.80 /csf 12.52 /cy	<u>59</u> 3,754
03330 Slabs ta	nks									
	Aggregate, stone, 3/4" to 1-1/2", prices per C.Y., includes material only	1050	14.8 cy	-	33.69	-	-	-	33.69 /cy	499
03-11-13.65	C.I.P. concrete forms, slab on grade, edge, wood, 7" to 12" high, 4 use, includes erecting, bracing, stripping and cleaning	3050	110.0 sfca	4.16	0.80	-	-	-	4.96 /sfca	545
03-21-10.60	Reinforcing steel, in place, slab on grade, #3 to #7, A615, grade 60, incl labor for accessories, excl material for accessories	0600	1.4 ton	1,036.01	992.00	-	-	-	2,028.01 /ton	2,817
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	1.4 ton	39.87	-	-	7.52	-	47.39 /ton	66
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	1.4 ton	43.34	-	-	8.16	-	51.51 /ton	72
	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	22.2 cy	-	98.01	-	-	-	98.01 /cy	2,178
	Structural concrete, placing, slab on grade, pumped, over 6" thick, includes vibrating, excludes material	4650	22.2 cy	20.95	-	-	4.31	-	25.26 /cy	561
03-35-29.30	Concrete finishing, floors, monolithic, screed, float and broom finish	0150 —	600.0 sf	0.82	-	-		-	0.82 /sf	490
	Slabs tanks		22.2 cy	133.56	186.42		5.29		325.27 /cy	7,228
	tanks/pumps equipment Pads and containment C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing,	2050	740.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	6,365
03-21-10.60	stripping and cleaning Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.3 ton	39.90	-	-	7.50	-	47.41 /ton	13
00 04 40 00	Bir in the second secon	0045		40.00					o "	

43.33

8.20

51.50 /ton

03-21-10.60 Reinforcing in place, crane cost for handling, add to

above, slabs

2215

0.3 ton

14

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
	tanks/pumps equipment Pads and containment		40.5		20.04				00.04	4.005
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	13.5 cy	-	98.01	-	-	-	98.01 /cy	1,325
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	13.5 cy	27.68	-	-	5.70	-	33.38 /cy	451
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	13.5 cy	46.13	-	-	13.04	-	59.17 /cy	800
	Acetate tanks/pumps equipment Pads and containment	_	13.5 cy	471.83	172.51		19.05	_	663.39 /cy	8,968
	pumps Equipment Pads									
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	72.0 sfca	7.24	1.36	-	-	-	8.60 /sfca	619
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.0 ton	39.80	-	-	7.50	-	47.25 /ton	2
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.0 ton	43.30	-	-	8.30	-	51.50 /ton	2
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	2.0 cy	-	98.01	-	-	-	98.01 /cy	196
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	2.0 cy	27.68	-	-	5.70	-	33.38 /cy	67
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	2.0 cy	46.13	-	-	13.04	-	59.17 /cy	118
	Acetate pumps Equipment Pads	_	2.0 cy	336.15	147.01		19.05	_	502.20 /cy	1,004
	ol tank/pump Equipment Pads and containment			= 0.4	4.00				0.00 / /	
03-11-13.65	C.I.P. concrete forms, slab on grade, curb, wood, 6" to 12" high, 2 use, includes erecting, bracing, stripping and cleaning	2050	374.0 sfca	7.24	1.36	-	- -	-	8.60 /sfca	3,217
03-21-10.60	Reinforcing in place, unloading & sorting, add to above - slabs	2005	0.3 ton	39.86	-	-	7.50	-	47.37 /ton	13
03-21-10.60	Reinforcing in place, crane cost for handling, add to above, slabs	2215	0.3 ton	43.35	-	-	8.17	-	51.50 /ton	14
03-31-05.35	Concrete, ready mix, regular weight, slabs/mats, 4000 psi	0305	13.9 cy	-	98.01	-	-	-	98.01 /cy	1,361
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, pumped	1425	13.9 cy	27.68	-	-	5.70	-	33.38 /cy	464
03-31-05.70	Placing conc, curbs/pads, elev slab, less than 6" thick, w/crane & bucket	1460	13.9 cy	46.13	-	-	13.04	-	59.17 /cy	822
	Methanol tank/pump Equipment Pads and containment	_	13.9 cy	270.46	134.66		19.05	-	424.17 /cy	5,891
	03 CONCRETE									26,847
04 STONE & MA										
	Masonry Walls chemical storage Grout, door frames, 3' x 7' opening, 2.5 CF per	0800	2.0 opng	32.67	10.51	-	2.27	-	45.45 /opng	91
04-05-16 30	opening Grout, door frames, 6' x 7' opening, 3.5 CF per	0850	2.0 opng	43.56	14.70	_	3.03		61.28 /opng	123
	opening								. •	
	Grout, for bond beams, lintels and concrete masonry unit (CMU) cores, C476, includes material only	2000	441.0 cf	5.60	4.20	-	0.39	-	10.19 /cf	4,495
	Masonry reinforcing bars, #5 and #6 reinforcing steel bars, placed horizontally, ASTM A615	0020	1,575.0 lb	0.65	0.46	-	-	-	1.11 /lb	1,745
04-05-19.26	Masonry reinforcing bars, #5 and #6 reinforcing steel bars, placed vertically, ASTM A615	0060	819.0 lb	0.80	0.46	-	-	-	1.26 /lb	1,030

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
04220 Exterior	Masonry Walls chemical storage									
04-05-19.26	Masonry reinforcing bars, truss type steel joint reinforcing, mill standard galvanized, 12" wide	0250	7.7 clf	26.07	24.73	-	-	-	50.79 /clf	391
04-22-10.28	Concrt block,high strngt,hollow,3500 psi,12"8"16",inclds mortar and horzntl joint rnfrcng every other course,excluds scffldn,grout and verticl rnfrcng	0350	1,050.0 sf	11.33	5.95	-	-	-	17.28 /sf	18,143
	Exterior Masonry Walls chemical storage 04 STONE & MASONRY	_	1,050.0 sf	15.62	8.98		0.17	_	24.78 /sf	26,017 26,017
06 WOOD & PL	ASTICS									
	raming - Roof Chemical Storage									
	Nails, floor or roof sheathing	1025	6.0 lb	_	2.45	-	-	-	2.45 /lb	15
	Nails, roof framing, sinkers, 8d to 16d, allow 20 lbs	5625	6.0 lb	-	2.33	-	-	-	2.33 /lb	14
06-05-23.60	Average cost, hold downs (HD's), 7 to 12 gauge, glulams/beams	1230	4.0 ea	-	23.28	-	-	-	23.28 /ea	93
06-05-23.60	Threaded rod for hold downs, to 1-1/4" diameter, glulams/beams	1295	40.0 If	3.08	1.03	-	0.25	-	4.36 /lf	174
06-05-23.60	I-joist hanger (EWP), 12 to 16 ga., per 100, avg cost	1460	0.1 c	296.80	656.40	-	-	-	953.20 /c	95
	Rafter anchors, 18 ga galv, 1.5" wide, 5.25" L, cost per 100	3525	0.2 c	317.30	37.25	-	-	-	354.55 /c	71
06-11-10.10	Framing, beams/girders, 6x or larger, allow average cost per MBF	3800	0.6 mbf	1,150.34	1,539.44	-	-	-	2,689.79 /mbf	1,641
06-11-10.30	I-joist (composite) rafters , 24" o.c., w/ blocking, avg	1050	320.0 sffl	0.78	1.92	-	-	-	2.70 /sffl	865
06-11-10.30	Wood framing, roofs, fascia boards, 2" x 8"	6070	0.2 mbf	3,067.58	601.80	_	_	-	3,669.40 /mbf	833
	Wood framing, roofs, rafters, to 4 in 12 pitch, 2" x 8"	7060	2.0 mbf	730.37	601.79	_	_	-	1,332.16 /mbf	2,611
	Framing, roofs, hip and valley rafters, 2" x 10"	7365	0.0 mbf	862.90	681.20	_		_	1,544.00 /mbf	65
	Wood framing, roofs, hip and valley rafters, to 4 in 12 pitch, 2" x 8"	7600	2.0 mbf	1,415.80	601.79	-	-	-	2,017.59 /mbf	4,067
06-11-10.30	Wood framing, roofs, rafter ties, #3, 1" x 4"	7800	0.0 mbf	3,409.00	1,306.00	-	<u>-</u>	-	4,714.00 /mbf	33
	Framing, roofs, ridge board, #2 or better, 2" x 12"	7922	0.1 mbf	1,207.90	690.40	_		_	1,898.30 /mbf	190
	Furring, wood, on ceilings, on wood, 1" x 3"	0850	320.0 If	1.32	0.36	_		_	1.68 /lf	537
	Sheathing, plywood on roof, CDX, 1/2" thick, pneumatic nailed	0105	300.0 sf	0.54	0.56	-	-	-	1.10 /sf	330
06-16-36.10	Sheathing, with boards, on roof, laid horizontal, 1" x 6"	1400	150.0 sf	1.27	1.47	-	-	-	2.73 /sf	410
	Wood Framing - Roof Chemical Storage 06 WOOD & PLASTICS	_	320.0 sf	22.20	15.41		0.03	_	37.64 /sf	12,044 12,044
07 THERMAL P										
	Masonry Walls chemical storage	0300	2 100 0 -4	0.40	0.50				0.69 /sf	4 4 4 4 0
07-19-19.10	Silicone water repellants, sprayed on CMU, 2 coat Exterior Masonry Walls chemical storage	0300 _	2,100.0 sf 1,050.0 sf	0.16 0.31	0.53 1.07	-	· -		1.38 /sf	1,446 1,446
06120 Wood Fr	raming - Roof Chemical Storage									
	Blanket insulation, for walls or ceilings, kraft faced fiberglass, 6" thick, R19, 23" wide	0180	300.0 sf	0.28	0.37	-	-	-	0.65 /sf	196
07-26-10.10	Building Paper, vapor barrier, asphalt felt sheathing paper, 15#	0400	3.0 sq	12.06	4.81	-	-	-	16.87 /sq	51
07-41-13.20	Steel roofing panels, on steel frame, flat profile, standard finish, 1-3/4" standing seams, 10" wide, 26 gauge	0710	300.0 sf	2.41	3.73	-	-	-	6.14 /sf	1,841
	Wood Framing - Roof Chemical Storage	_	320.0 sf	2.63	3.89			-	6.52 /sf	2,088

COM ALTERNATIVES ANALYSIS - ALT 3

Brown AND Caldwell

Phase	Estimate Breakdown	Item	Quantity	Labor	Material	Sub	Equip	Other	Total Cost/Unit	Total Net
Thuse	Estimate Broakdown	itom	Quantity	Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit	Total Gost offic	Amount
	07 THERMAL PROTECTION									3,534
09 FINISHES										
06120 Wood F	Framing - Roof Chemical Storage									
09-91-06.4	1 Coatings & paints, B & C coating system E-8 (Clear epoxy, wood)	BC-0051	320.0 sqft	0.26	0.44	-	-	-	0.70 /sqft	224
	Wood Framing - Roof Chemical Storage 09 FINISHES	_	320.0 sf	0.26	0.44				0.70 /sf	224 224
11 EQUIPMEN	т									
11999 Aeratio	n Chemical									
	FRP tank, acetate, 7,500 gal.,	BC-0016	1.0 ea	2,022.71	21,000.00	-	622.71		23,645.42 /ea	23,645
11-00-08.00	O Chemical metering pump, acetate	BC-0011	2.0 ea	459.41	11,000.00	-	-	-	11,459.41 /ea	22,919
11-00-08.00	O Chemical metering pump, methanol	BC-0041	2.0 ea	565.42	11,000.00	-	-	-	11,565.42 /ea	23,131
23-13-23.20	6 Storage tank, horizontal, concrete, above ground, fuel-oil, vaulted, 20,000 gallon, incl. pad & pump	0600	1.0 ea	2,722.91	108,000.00	-	1,150.56	-	111,873.47 /ea	111,873
	Aeration Chemical 11 EQUIPMENT		1.0 LS	6,795.27	173,000.00		1,773.27		181,568.54 /LS	181,569 181,569
21 FIRE SUPP	RESSION									
22999 Chemic	cal Piping									
21-99-99.99	9 Fire suppression system allowance	MISC _	1.0 LS	-		20,000.00	-	-	20,000.00 /LS	20,000
	Chemical Piping 21 FIRE SUPPRESSION		1.0 LS			20,000.00			20,000.00 /LS	20,000 20,000
		MISC MISC _	2.0 LS 2.0 LS 1.0 LS	1,795.00 2,692.50 8,975.00	2,500.00 3,750.00 12,500.00		:	- -	4,295.00 /LS 6,442.50 /LS 21,475.00 /LS	8,590 12,885 21,475 21,475
26 ELECTRICA	AL									
26001 Aeratio	n Tanks - E&I (#15)									
26-00-00.02	Electrical (This is based on a percentage of the Total Project Costs)	FACTOR ED	1.0 LS	-	-	64,012.09	-	-	64,012.09 /LS	64,012
	Aeration Tanks - E&I (#15) 26 ELECTRICAL	_	1.0 LS		-	64,012.09			64,012.09 /LS	64,012 64,012
	20 ELEGINIOAE									04,012
27 COMMUNIC	CATIONS									
	n Tanks - E&I (#15)									
27-20-00.0°	 Instrumentation (This is based on a percentage of the Total Project Costs) 	FACTOR ED	1.0 LS	-	-	16,003.03	-	-	16,003.03 /LS	16,003
	Aeration Tanks - E&I (#15) 27 COMMUNICATIONS		1.0 LS		-	16,003.03			16,003.03 /LS	16,003 16,003
										,,,,,,
31 EARTHWOI										
	Chemical Storage O Fine grading, fine grade for slab on grade, machine	1100	22.2 04	1.07			0.72		1.79 /sy	00
31-22-10.10	Slabs Chemical Storage	1100 _	33.3 sy 300.0 cy	0.12	-		0.08	-	0.20 /cy	60 60
03330 Slabs ta	anke									
	Fine grading, fine grade for slab on grade, machine	1100	66.7 sy	1.07	_	_	0.72	_	1.79 /sy	119
2. 22 .0.11	Slabs tanks		22.2 cy	3.20		=	2.17		5.36 /cy	119
			,						,	

Phase	Estimate Breakdown	Item	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
31 E	EARTHWORK									179
33 UTILITIES										
33999 Chemical feed	l yard piping									
33-11-13.25 Che	emical piping, double contained, allowance		1.0 ls	6,152.00	20,020.00		2,000.00		28,172.00 /ls	28,172
Ch	emical feed yard piping		1.0 LS	6,152.00	20,020.00		2,000.00		28,172.00 /LS	28,172
33 l	UTILITIES									28,172
09 /	Acetate/Methanol		1.0 LS	62,221.40	233,055.77	100,015.12	4,783.21		400,075.50 /LS	400,076
01 7	TOTAL AMOUNT									25,814,216

COM ALTERNATIVES ANALYSIS - ALT 3

Estimate Totals

Totals	Amount	Hours	Rate	Description
	4,143,655	55,976 hrs		Labor
	15,334,383			Material
	5,543,237 748,293	59,320 hrs		Subcontract Equipment
	44,648	39,320 1113		Other
25,814,216	25,814,216	-		
	1,290,711		5.000 %	Civil and Misc. Yard Piping
27,104,927	1,290,711			
	414,365		10.000 %	Labor Mark-up
	1,226,751		8.000 %	Material Mark-up
	25,068		5.000 %	Subcontractor Mark-up
	59,863		8.000 %	Construction Equipment Mark-up
	3,572		8.000 %	Other - Process Equip Mark-up
	306,688		2.000 %	Material Shipping & Handling
	772,080		6.000 %	Material Sales Tax
29,913,314	2,808,387			
	2,991,331		10.000 %	Contractor General Conditions
	598,266		2.000 %	Start-Up, Training, O&M
	8,973,994	_	30.000 %	Undesign/Undevelop Contingency
42,476,905	12,563,591			
	849,538		2.000 %	Bldg Risk, Liability Auto Ins
	637,154	_	1.500 %	Contractor Bonds & Insurance
43,963,597	1,486,692			
43,963,597				Total

Appendix D: Sidestream Nitrogen Removal Report

Technical Memorandum

950 West Bannock Street Boise, Idaho 83702 208.389.7700

Prepared for: City of Meridian

Project Title: Side Stream Nitrogen Evaluation

Project No.: 146999

Technical Memorandum

Subject:

Meridian Wastewater Treatment Plant Side Stream Nitrogen Evaluation

Date:

January 9, 2015 (Revised June 9, 2015)

To:

David Allison, P.E., City of Meridian Project Manager

From:

Rick Kelly, Ph.D., P.E., Brown and Caldwell

Copy to:

Clint Dolsby, P.E., City of Meridian

Laurelei McVey, City of Meridian

Prepared by: Adam Klein, P.E. (Washington only), Brown and Caldwell

Zach Dobroth, P.E., Brown and Caldwell

Reviewed by: Henryk Melcer, Ph.D., P.E., Brown and Caldwell

Rick Kelly, Ph.D., P.E., Brown and Caldwell

Limitations:

This document was prepared solely for the City of Meridian (City) in accordance with professional standards at the time the services were performed and in accordance with the contract between the City and Brown and Caldwell dated October 21, 2014. This document is governed by the specific scope of work authorized by the City; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by the City and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

List	t of Figures	iv
List	t of Tables	iv
List	t of Abbreviations	vi
1.	Introduction	1
2.	Model Description	1
2.1	·	
2.2	2 Updates to the Meridian WWTP Model	2
3.	Model Input File Development	5
3.1	Primary Effluent	5
3.2	2 Centrate	11
3.3	3 Treated Centrate	14
3.4	Fermentate	16
4.	Target Conditions	19
4.1	Ammonia	19
4.2	2 Oxidized Nitrogen	19
4.3	B Phosphorus	19
5.	Secondary Clarifier Capacity	20
6.	Model Scenarios	21
6.1	Scenarios to Evaluate Infrastructure Requirements	22
6.2	2 Scenarios to Evaluate Average Operating Costs	22
6.3	S Scenarios to Evaluate Capacity of Existing System	23
6.4	Scenarios to Evaluate the Impact of Digester Cleaning	23
7.	Model Results	23
7.1	Modeling Procedure	23
	7.1.1 SRT and Activated Sludge Volume Optimization	
	7.1.2 Methanol Dose Optimization	
7.2		
	3 Cases 007 through 010	
	Cases 011 and 012	
7.5		
7.6		
	Model Conclusions	
8.1		
8.2	·	
8.3 g /l	Role of Centrate Digester Cleaning	
	F 1415 VALUE VILVALIII I F	

8.5	5 Summary						
9. E	3usiness	s Case Evaluation	36				
9.1	1 Problem Statement and Level of Service						
9.2	Curren	t and Design Conditions	37				
9.3	Alterna	tives	37				
9.4	Compa	rative Analysis	38				
	9.4.1	Capital Costs	39				
	9.4.2	Operating Costs	40				
	9.4.3	Replacement Costs	41				
	9.4.4	Risk Costs	41				
	9.4.5	Benefit Costs	41				
	9.4.6	Summary	41				
9.5	Busine	ss Case Evaluation and Recommendation	42				
10. E	3CE Sen	sitivity	42				
10.1	. Proport	tion of Nitrogen in the Centrate	43				
10.2	Diurna	l Load Pattern	43				
10.3	Methar	nol Demand	45				
10.4	Methar	nol Cost	46				
10.5	Sensiti	vity Matrix	47				
11. (Conclusi	ons and Recommendations	48				
		isions					
	Recom	nmendations	48				
Refe	rences		49				

List of Figures

Figure 1. Process flow schematic in BioWin simulator (2011 model)	2
Figure 2. Process flow schematic in BioWin simulator (updated model)	3
Figure 3. Primary clarifier TSS removal model	7
Figure 4. Primary clarifier BOD removal model	8
Figure 5. Diurnal variability of raw influent parameters (from May 2011 wastewater characterization)	10
Figure 6. 2030 summer maximum month model input parameters	11
Figure 7. Centrate input variability	14
Figure 8. Treated centrate input variability	16
Figure 9. Mixed liquor SVI with 30-day moving average	20
Figure 10. Combined capacity of secondary clarifiers 4 and 5, based on state point analysis	21
Figure 11. Effect of SRT on effluent ammonia concentration (Case 004)	24
Figure 12. Determining the minimum SRT required to meet the peak day effluent ammonia limit	25
Figure 13. Relationship between methanol dose rate and effluent NOx-N and PO ₄ -P (Case 004)	26
Figure 14. Effect of methanol dose on effluent NOx-N (Case 004)	26
Figure 15. Effect of methanol dose on effluent PO ₄ -P (Case 004)	27
Figure 16. Historical final effluent NH3-N concentration, with 30-day moving average	34
Figure 17. Comparison of existing process configuration and a two-stage nitrogen removal configuration .	35
Figure 18. Side stream process schematic	37
Figure 19. Secondary influent TKN loading pattern	44
Figure 20. The effect of centrate return pattern on the peak day effluent ammonia concentration	45
Figure 21. Relationship between the TKN load and the methanol dose required to achieve an effluent NOx-N of 8 mg/L	46
Figure 22. Effect of methanol cost on BCE recommendation	47
Figure 23. 20-year NPV impact of side stream treatment (millions)	47
List of Tables	
Table 1. Meridian WWTP Model: Physical Data Inputs	4
Table 2. Model Inputs Differing from BioWin 4.0 Defaults	4
Table 3. Historical Raw Influent Data Analysis	
Table 4. Facilities Plan 2030 Residential/Commercial Flows and Loads	6
Table 5. Primary Effluent Characteristics for each Model Scenario	9
Table 6. Facilities Plan Centrate Projections	12

Table 7. Historical Centrate Data Analysis	12
Table 8. Centrate Parameters	13
Table 9. Treated Centrate Parameters	15
Table 10. Meridian Fermenter Data from August-October 2014	17
Table 11. Fermentate Parameters	18
Table 12. October 2014 Draft NPDES Permit (all values in mg/L)	19
Table 13. Summary of Conditions for All Simulations	22
Table 14. Summary of Key Results for Cases 001-004	28
Table 15. Summary of Key Results for Cases 007-010	29
Table 16. Summary of Key Results for Cases 011 and 012	30
Table 17. Summary of Key Results for Cases 013 and 014	31
Table 18. Summary of Key Results for Digester Cleaning Cases	32
Table 19. Impact of Digester Cleaning on Selected Performance Criteria, 2030 Maximum Month Winter Condition	33
Table 20. Summary of Biological Process Modeling Results	36
Table 21. Side Stream Treatment Design Criteria	38
Table 22. Model Comparison of Side stream Alternatives	39
Table 23. Capital Costs to Implement Side stream Treatment	40
Table 24. Average Annual Operating Costs	41
Table 25. Pro and Con Analysis of Side stream Treatment	42
Table 26. Business Case Evaluation	42
Table 27 Proportion of Nitrogen Load in Centrate	43

List of Abbreviations

AB	aeration basin	NF	no fermenter
Anammox	anaerobic ammonia-oxidizers	NH ₄	ammonia
AOB	ammonia-oxidizing bacteria	NH ₄ -N	ammonia-nitrogen
BCE	business case evaluation	NOB	_
BOD	biochemical oxygen demand (5-day)		nitrite-oxidizing bacteria
°C	degree(s) Celsius	NOx N	nitrate + nitrate
CaCO₃	calcium carbonate	NOx-N	nitrate nitrogen + nitrite nitrogen
City	City of Meridian	NPDES	National Pollutant Discharge Elimination System
COD	chemical oxygen demand	NPV	net present value
d	day(s)	ОНО	ordinary heterotrophic organism
DO	dissolved oxygen	Р	phosphorus
EPS	extracellular polymeric substance	PAO	phosphorus accumulating organism
FE	final effluent	PE	primary effluent
ft	foot/feet	PHA	polyhydroxyalkanoate
ft ²	square foot/feet	PO ₄ -P	ortho-phosphate
ft ³	cubic foot/feet	RAS	return activated sludge
FTE	full-time equivalent	RBCOD	readily biodegradable chemical oxygen demand
gal	gallon(s)	RI	raw influent
gpd	gallon(s) per day	RMSE	root-mean-squared-error
HRT	hydraulic retention time	R&R	repair and replacement
IMLR	internal mixed liquor recycle	scfm	standard cubic foot/feet per minute
ISS	inert suspended solids	sCOD	soluble chemical oxygen demand
kg	kilogram(s)	SLR	solids loading rate
kWh	kilowatt-hour(s)	SOR	surface overflow rate
L	liter(s)	SPA	state point analysis
lb	pound(s)	SRT	solids retention time
m ³	cubic meter(s)	SVI	sludge volume index
mg	milligram(s)	TIN	total inorganic nitrogen
Mgal	million gallon(s)	TKN	total Kjeldahl nitrogen
mgd	million gallon(s) per day	TP	total phosphorus
mg/L	milligram(s) per liter	TSS	total prospriords total suspended solids
min	minute(s)	VFAs	volatile fatty acids
MLSS	mixed liquor suspended solids	VSS	volatile suspended solids
mM	millimolar	WAS	·
mmol	millimole(s)	WWTP	waste activated sludge
N	nitrogen	VVVVIP	wastewater treatment plant

1. Introduction

The City of Meridian (City) has received a preliminary draft of its new National Pollutant Discharge Elimination System (NPDES) permit, which calls for decreased wastewater treatment plant (WWTP) effluent limitations for ammonia-nitrogen (NH₄-N), total phosphorus (TP), and other constituents. To prepare for the new permit, the City requested help in determining the benefit of implementing a side stream treatment process for nitrogen removal at the WWTP.

This technical memorandum provides a summary of the evaluation, which included the following tasks:

- updating a previously calibrated BioWin model to determine the impact of removing a portion of the side stream nitrogen load on the capacity of the existing secondary activated sludge process
- evaluating the impact of yearly digester maintenance, including the potential for ammonia and phosphorus breakthrough
- determining the upgrades (with and without side stream treatment) necessary to meet a proposed maximum month influent flow of 15 million gallons per day (mgd) while maintaining effluent quality parameters
- developing planning-level capital and operational cost estimates for facility expansion with and without side stream treatment

Following this introduction, this technical memorandum is organized into four main parts. Sections 2 through 6 discuss the preparation of a biological process model, which was used to assess the impacts of side stream treatment on Plant operation and capacity. Sections 7 and 8 discuss the modeling itself, with presentation of data and conclusions. Sections 9 and 10 detail a life-cycle cost analysis of side stream treatment, using a business case evaluation (BCE). Section 11 includes recommendations for the City.

2. Model Description

This section provides a description of updates to the biological process model that was developed and calibrated in 2011.

2.1 BioWin Calibration (2011)

In September 2011, Brown and Caldwell developed a biological process model for the Meridian WWTP activated sludge secondary treatment process using the BioWin simulator (produced by EnviroSim Associates Ltd., Hamilton, Ontario, Canada). BioWin allows the prediction of complex biological interactions using various mechanistic and empirical models to represent material transformations and pollutant removals in the plant for both liquid and solids process streams. It enables the user to simulate carbonaceous oxidation and the fate of nutrients in activated sludge treatment facilities.

The 2011 model was developed as part of a study on controlling *Microthrix parvicella* bacteria, which were seasonally disrupting mixed liquor settling at the WWTP. Data collected during a 2-week wastewater sampling period in May 2011 were used to calibrate the model, with adjustments made to the simulator to reach agreement between the measured effluent characteristics and the simulated effluent quality.

Details of the calibration process and results of the analysis can be reviewed in the *Microthrix* Control technical memorandum (submitted to the City on September 9, 2011).

2.2 Updates to the Meridian WWTP Model

The model developed in 2011 was used as the basis for the current analysis. Figure 1 depicts the Meridian WWTP process flow schematic in the 2011 model. Shown are the secondary pump station, the anaerobic zone (Ana 1), the two anoxic zones (Anox/Ana 1 and 2), the two swing zones (Swing 1 and 2), the four aerated zones (Aer 1, 2, 3, and 4) and the secondary clarifiers. Also shown is the internal mixed liquor recycle (IMLR) stream, the clarifier return activated sludge (RAS) and waste activated sludge (WAS) streams, and the secondary effluent. Feed to the system was the primary effluent (PE), as measured during the wastewater characterization period, and inclusive of dewatering centrate.

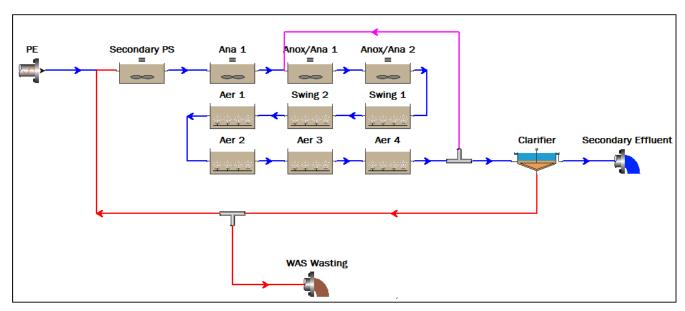


Figure 1. Process flow schematic in BioWin simulator (2011 model)

Several updates to the model were made for the current analysis. Figure 2 presents the updated process flow schematic used for this evaluation. Four new flow inputs were added: centrate (from solids dewatering), DEMON effluent (from nitrogen side stream treatment process), fermentate (fermented liquor from the new primary sludge fermenter), and methanol. These inputs were toggled on or off depending on the scenario being evaluated. Each simulation included either centrate flow (no side stream treatment) or DEMON effluent flow (side stream treatment included). A RAS denitrification basin was added on the RAS line exiting the secondary clarifiers.

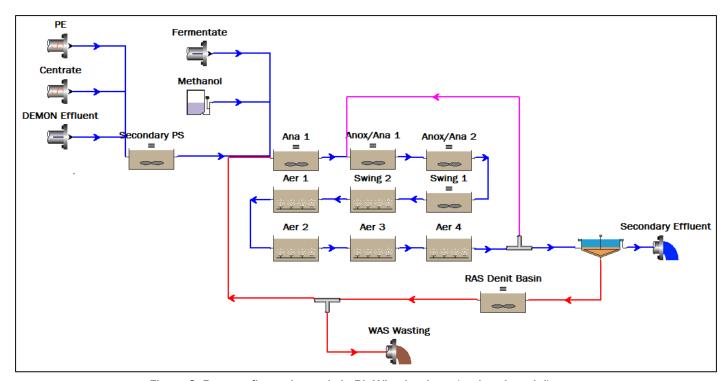


Figure 2. Process flow schematic in BioWin simulator (updated model)

Physical and process data were entered into the simulator to build the model; pertinent inputs are summarized in Table 1. The anaerobic and anoxic zones were configured as separate cells in the model because they are separated by baffle walls. The aeration basins were configured with two swing cells and four additional aerobic cells, all separated by baffle walls. Total basin volume was approximately 2.4 million gallons (Mgal). Dissolved oxygen (DO) set points for the cells were based on actual operating conditions. While the City will soon be implementing tighter DO control with dedicated control valves and probes in each cell, the first two aerobic cells (and the swing cells, if aerated) currently operate at a high DO concentration (modeled at 5.3 milligrams per liter [mg/L]).

Table 1. Meridian WWTP Model: Physical Data Inputs							
Unit Process	Width (ft)	DO Set Point (mg/L)					
Secondary pump station	40,300	772	6.98	8.63	0		
Anaerobic cell 1	220,800	2,108	14	136	0		
Anoxic/anaerobic cell 1	142,400	1,360	14	136	0		
Anoxic/anaerobic cell 2	185,200	1,768	14	136	0		
Swing cell 1	170,900	1,632	14	136	0 or 5.3a		
Swing cell 2	156,700	1,496	14	136	0 or 5.3a		
Aerobic cell 1	384,600	3,672	14	136	5.3		
Aerobic cell 2	427,300	4,080	14	136	5.3		
Aerobic cell 3	327,600	3,128	14	136	3.0		
Aerobic cell 4	384,600	3,672	14	136	1.3		
Secondary clarifiers ^b	1,674,000	15,700	14.25	-	-		
RAS denitrification basin	74,300	1,387	7.16	20	0		

a. Depending on aeration status of swing cell; when aerated, a DO set point of 5.3 mg/L was used.

The secondary clarifiers were initially set to remove a constant value of 99.81 percent of incoming solids; this value was adjusted very slightly during the simulations to achieve an effluent total suspended solids (TSS) of approximately 10 mg/L. The clarifier sludge blanket was assumed to be 7 percent of the settler height, and the clarifier solids underflow rate was paced at 50 percent of the PE. Initially set at 100,000 gallons per day (gpd), the WAS flow rate was adjusted during modeling to regulate the solids retention time (SRT) of the process.

Simulations were performed at summer and winter conditions. Aeration basin temperatures were either set at minimum or maximum seasonal values (14°C winter and 16°C [min] or 23°C [max] summer) or average seasonal values (16°C winter and 21°C summer), depending on the scenario being modeled.

Calibration parameters within the BioWin model were unchanged from the 2011 model. This resulted in several parameters differing from the current BioWin default, since the current version of BioWin (version 4.0 was used in this evaluation) differed from the version used in 2011 (version 3.2). However, side by side comparison of the 2011 calibration simulations and simulations run using BioWin 4.0 showed very little change. Table 2 summarizes some of the key simulator parameters which differ from version 4.0 default values.

Table 2. Model Inputs Differing from BioWin 4.0 Defaults							
Parameter	Unit	BioWin Default	Model Value				
Nitrite-oxidizing bacteria (NOB):							
Maximum specific growth rate	1/d	0.7	0.725				
Phosphorus accumulating organisms (PAOs):							
Sequestration rate	1/d	4.5	6.0				
Aerobic P/PHA uptake	mg P/mg COD	0.93	0.95				
P/Ac release ratio	mg P/mg COD	0.51	0.49				

b. Assuming secondary clarifiers 4 and 5 are in service.

Table 2. Model Inputs Differing from BioWin 4.0 Defaults						
Parameter Unit BioWin Mod Default Val						
Switches: NH4 nutrient half sat.	mg N/L	0.005	0.0001			
Cation to P mole ratio in polyphosphate	meq/mmol P	0.15	0.3			

3. Model Input File Development

Four types of model inputs were developed: PE, centrate, treated centrate, and fermentate. Inputs were developed for three basic conditions:

- present-day maximum month
- 2030 maximum month
- planning period midpoint average day

For each condition, separate inputs were developed for the summer and winter seasonal conditions.

3.1 Primary Effluent

PE is defined as raw influent (RI) treated in the plant's primary clarifiers. The PE input files do not include contributions from the dewatering centrate.

The present-day scenarios were developed based upon an assessment of historical RI flows and loadings. Data from 2009–14 were reviewed to determine current average loadings, along with peak month and peak day peaking factors, and day-to-day variability. These data are summarized in Table 3.

Table 3. Historical Raw Influent Data Analysis ^a									
Parameter	RI Flow, mgd	RI NH ₄ -N, lb/d	RI TP, lb/d						
Summer ^b									
Average	5.8	14,000	14,000	1,400	300				
Max month	6.6	16,250	17,300	1,700	350				
Max day	7.5	22,000	24,000	2,000	420				
Standard Error ^c	0.05	0.1	0.13	0.065	0.09				
Winterb									
Average	5.1	14,500	13,750	1,570	310				
Max month	5.7	16,500	16,250	1,800	345				
Max day	6.4	21,000	28,000	1,950	375				
Standard Errorc	0.05	0.1	0.13	0.065	0.08				

a. The values in this table reflect averages over the period from 2009–14.

The 2030 scenarios were taken from the Facilities Plan, and are summarized in Table 4.

Table 4. Facilities Plan 2030 Residential/Commercial Flows and Loads ^a							
Parameter	Unit	Average	Maximum Month	Maximum Week	Maximum Day		
Flow	mgd	12.2	14.2	15.5	17.2		
BOD	lb/d	27,100	34,900	42,900	46,500		
TSS	lb/d	26,700	34,500	41,700	45,900		
NH4-N	lb/d	3,200	3,900	4,200	4,900		
TKN	lb/d	4,900	5,500	5,800	6,400		
TP	lb/d	660	850	1070	1100		
PO ₄ -P	lb/d	330	430	500	580		

a. Table 3-4 of the Facilities Plan.

Influent loadings (Table 3) were used to develop the present-day scenarios, the Facilities Plan projections (Table 4) were used to develop 2030 scenarios, and other projections were based on linear extrapolation between those two datasets. Primary clarifier removal of TSS and biochemical oxygen demand (BOD) were estimated using a pair of empirical models, based on historical performance.

The primary clarifier TSS removal model is based on the following equation, which relates performance to the influent TSS concentration (TSS $_{inf}$) and the surface overflow rate (SOR, gpd/ft²):

TSS removal =
$$E_0 \exp(-b/TSS_{inf} - c*SOR)$$

The model was first proposed by Tebbutt and Christoulas (1975) and reprinted in Wahlberg (1997). In the equatino, E_0 , b, and c are regression parameters. The model was calibrated against daily operating data from 2009–14, resulting in the following fit:

b. Summer data include May-September; winter data include November-March.

c. The standard error is calculated by dividing the standard deviation by the mean value. The values in the table represent the average variability in that data over a 30-day period.

- $E_0 = 0.9566$
- b = 83.999
- c = 0

The historical data are plotted against the model on Figure 3.

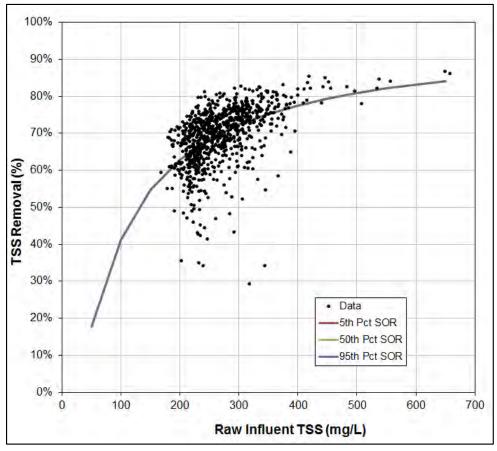


Figure 3. Primary clarifier TSS removal model

The model projects zero dependence of performance on SOR (the 5th, 50th, and 95th percentile SOR lines on Figure 3 overlap, so only the 95th percentile curve is visible), which suggests that the primary clarifiers have historically not been stressed in terms of hydraulic capacity. In fact, the highest daily SOR recorded in the 2009–14 period is 799 gallons per day per square foot (gpd/ft²), which is quite low (primary clarifiers are commonly designed to a peak SOR up to 3,000 gpd/ft²).

The model fit is rather poor, with a negative R squared value. This means that a better fit would be obtained by simply assuming the average removal over the entire period, versus using the model. Even so, the model provides a conservative approximation of clarifier performance under typical conditions, with a root-mean-squared-error (RMSE) of 6.6 percent. The poor model fit is likely the result of the clarifiers never being stressed, and performance appears to be linked more closely to random factors such as influent characteristics rather than to the design and operation of the clarifiers themselves.

The primary clarifier BOD removal model takes the form of the following equation, which relates BOD removal to the influent BOD (BOD_{inf}) and TSS concentrations, as well as to the clarifier's TSS removal rate:

BOD removal = $1 - [A+B*TSS_{inf}/BOD_{inf}*(1-TSS removal)]$

where A and B are regression parameters. The model was calibrated against daily operating data from 2009–14, resulting in the following fit:

- A = 0.366
- B = 1.016

The historical data are plotted against the model output on Figure 4.

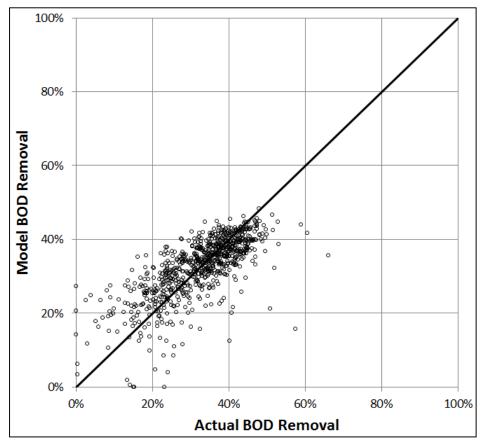


Figure 4. Primary clarifier BOD removal model

In this case, the model fits with a positive R squared (0.26), and an RMSE of 6.8 percent.

The primary clarifier performance models were used to translate RI BOD and TSS projections into PE loadings. RI total Kjeldahl nitrogen (TKN) and total phosphorus (TP) loadings were assumed to pass through the primary clarifiers unchanged. NH₄-N loadings based on Table 3 were translated into TKN loadings using the following ratio:

• RI NH₄-N/TKN = 0.65

which is based on historical averages over the period 2009-14.

Other assumptions include the following:

- PE pH was 7.8 in the summer and 7.9 in the winter, based on historical RI data from 2009–14.
- PE alkalinity was 304 mg/L calcium carbonate (CaCO₃), based on data from the May 2011 wastewater characterization.

- PE volatile suspended solids (VSS):TSS ratio was 0.86, based on the May 2011 wastewater characterization.
- PE chemical oxygen demand (COD):BOD ratio was 2.10, based on the May 2011 wastewater characterization.

The PE inputs for each of the model scenarios are summarized in Table 5.

Table 5. Primary Effluent Characteristics for each Model Scenario							
Year	2030	2030	Current	Current	Midpoint	Midpoint	
Season	Summer	Winter	Summer	Winter	Summer	Winter	
Flow condition	Max month	Max month	Max month	Max month	Average day	Average day	
Load condition	Max month	Max month	Max month	Max month	Average day	Average day	
Raw Influent Loadings (from Tables	3 and 4)						
BOD lb/d	34,900	34,900	16,250	16,500	20,550	20,800	
TSS lb/d	34,500	34,500	17,300	16,250	20,350	20,225	
TKN lb/d	5,500	5,500	2,615	2,769	3,527	3,658	
TP lb/d	850	850	350	345	480	485	
Primary Clarifier Performance (from	empirical mode	ls)					
Primary TSS rem %	71.7%	74.6%	73.2%	74.8%	69.4%	72.0%	
Primary BOD rem %	34.9%	37.8%	34.4%	38.2%	32.6%	35.7%	
Primary Effluent Characteristics (Bi	oWin inputs)						
Flow, mgd	14.2	12.3	6.6	5.7	9.3	8.2	
COD, mg/L	403	446	407	451	374	410	
TKN, mg/L	46.4	53.7	47.5	58.2	45.3	53.4	
TP, mg/L	7.2	8.3	6.4	7.3	6.2	7.1	
NOx, mg/L	0	0	0	0	0	0	
рН	7.8	7.9	7.8	7.9	7.8	7.9	
Alkalinity, mg/L CaCO ₃	304	304	304	304	304	304	
ISS, mg/L	11.3	11.8	11.5	11.8	11.0	11.4	

The PE characteristics were translated into 30-day, hourly model input files according to the following procedure.

Day-to-day variability in loadings was based on the standard errors presented in Table 3. It was assumed that the PE variability in flow, COD, TKN, TP, and inert suspended solids (ISS) would match the RI variability in flow, BOD, NH₄-N, TP, and TSS, respectively.

Maximum day loadings were incorporated into maximum month scenarios using peaking factors developed from the historical data (Table 3), or as presented in the Facilities Plan.

Diurnal variability was based on a diurnal normalization of key parameters developed during the May 2011 wastewater characterization. The values from the 2011 characterization are plotted on Figure 5.

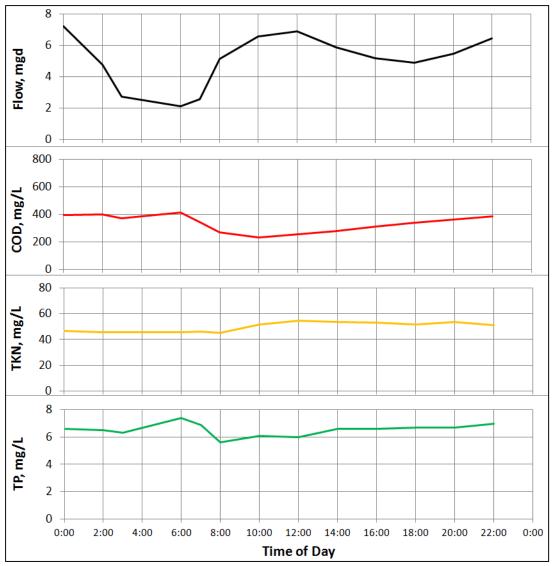


Figure 5. Diurnal variability of raw influent parameters (from May 2011 wastewater characterization)

Figure 6 presents the randomized 30-day model input file for the 2030 summer maximum month condition. This input file includes a peak day flow of 16.9 mgd, which occurs on day 3 of the scenario, a peak day TKN load of 6,320 pounds (lb), which occurs on day 17 of the scenario, and a peak day TP load of 1,080 lb, which occurs on day 23 of the model. These values are all within 12 percent of Facilities Plan peak day projections (Table 3); the small deviation reflects the inherent randomization of the model file development.

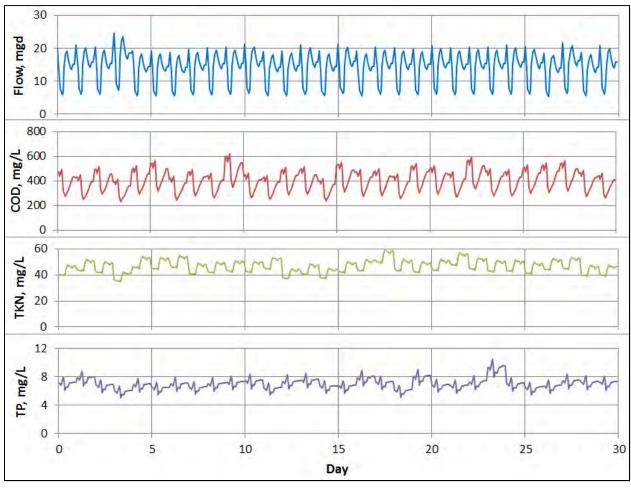


Figure 6. 2030 summer maximum month model input parameters

3.2 Centrate

Centrate parameters were developed based on the following sources of information:

 Facilities Plan. Table 5-1 in the Facilities Plan summarizes projected centrate characteristics for the 2030 maximum month condition. The basis of these projections is not known. This table is reproduced below as Table 6.

Table 6. Facilities Plan Centrate Projections ^a						
Parameter	Unit	2010	2030			
Flow	mgd	0.045	0.103			
TKN	mg/L	1,108	960			
NH ₄ -N	mg/L	1,057	910			
TP	mg/L	501	530			
PO ₄ -P	mg/L	489	520			
TSS	mg/L	711	640			
VSS	mg/L	522	455			
BOD	mg/L	173	315			
COD	mg/L	1,756	1,805			
Alkalinity	mg/L CaCO ₃	3,625	4,100			

a. Table 5-1 of the Facilities Plan.

Historical plant data. The plant collects weekly data on centrate NH₄-N and TSS, and monthly data on centrate TP. These data were used to project the typical variability in centrate characteristics. As centrate flow is not actively metered, centrate flow was assumed to be equal to the "gallons dewatered," which is recorded in the plant's data historian. The historical data are summarized in Table 7.

Table 7. Historical Centrate Data Analysis ^a						
Parameter	NH ₄ -N	TSS	TP	Gallons Dewatered		
Unit	mg/L	mg/L	mg/L	gpd		
Summerb						
Average	865	185	165	54,000		
Max month	945	270	-	68,000		
Standard Errorc	0.050	0.36	-	0.185		
Winterb						
Average	850	145	170	59,000		
Max month	930	230	-	70,000		
Standard Errorc	0.045	0.28	_	0.15		

a. The values in this table reflect averages over the period from 2009–14.

• Data from other plants. Detailed centrate characterization data from the Chambers Creek Regional WWTP in Pierce County, Washington, were used to define the input fractions when information on the Meridian centrate stream was not available. Table 8 summarizes the centrate input parameters.

b. Summer data include May-September; winter data include November-March.

c. The standard error is calculated by dividing the standard deviation by the mean value. The values in the table represent the average variability in that data over a 30-day period.

Table 8. Centrate Parameters					
Parameter	Value	Source			
Total COD, mgCOD/L	1,802	Facilities Plan			
Total Kjeldahl nitrogen, mgN/L	960	Facilities Plan			
Total P, mgP/L	530	Facilities Plan			
Nitrate N, mgN/L	0	Chambers Creek			
рН	7.9	Chambers Creek			
Alkalinity, mmol/L	82	Facilities Plan			
Inorganic S.S., mgISS/L	185	Facilities Plan			
Calcium, mg/L	24.8	Chambers Creek			
Magnesium, mg/L	2.72	Chambers Creek			
Dissolved oxygen, mg/L	0	Chambers Creek			
Fractions					
Fbs: readily biodegradable	0.595	Calculateda			
Fac: acetate	0.039	Calculateda			
Fxsp: non-colloidal slowly biodegradable	0.993	Calculateda			
Fus: unbiodegradable soluble	0.0039	Calculateda			
Fup: unbiodegradable particulate	0.320	Calculated ^a			
Fna: ammonia	0.900	Calculated ^a			
Fnox: particulate organic nitrogen	0.509	Calculated ^a			
Fnus: soluble unbiodegradable TKN	0.015	Calculated ^a			
FupN: N:COD ratio for unbiodegradable part. COD	0.051	Calculated ^a			
Fpo4: phosphate	0.850	Calculated ^a			
FupP: P:COD ratio for unbiodegradable part. COD	0.064	Calculateda			

a. Fractions were calculated based on a combination of data from the Facilities Plan and Chambers Creek.

A 30-day randomized centrate itinerary was developed. Day-to-day variability (Figure 7) was based on historical data for flow, NH_4 -N (used as surrogate for TKN), and TSS (used as surrogate for ISS). Other parameters were held constant over the 30 days. The centrate was assumed to be returned continuously over each 24-hour period. No diurnal variability in centrate flow was modeled.

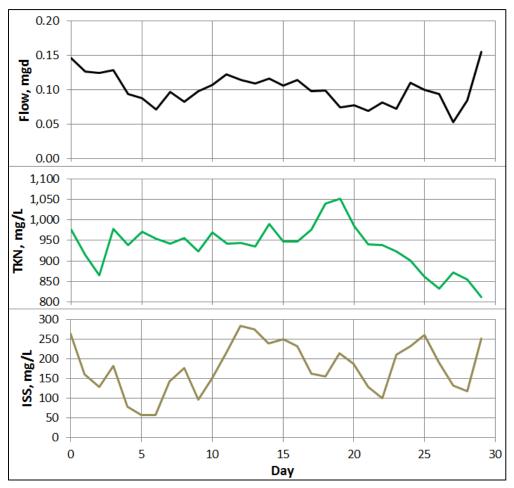


Figure 7. Centrate input variability

3.3 Treated Centrate

Centrate was assumed to be treated by an Anammox-type process. The process was assumed to remove 80 percent of the centrate ammonia and 75 percent of the centrate total inorganic nitrogen (TIN) based on performance data from worldwide installations. The Anammox effluent characteristics were based on data from the pilot investigation at Chambers Creek. Input parameters are summarized in Table 9.

Table 9. Treated Centrate Parameters					
Parameter	Value	Source			
Total COD mgCOD/L	1,081	Chambers Creek			
Total Kjeldahl nitrogen mgN/L	195	Chambers Creek			
Total P mgP/L	478	Chambers Creek			
Nitrate N mgN/L	37	Chambers Creek			
pH	6.76	Chambers Creek			
Alkalinity mmol/L	13.2	Chambers Creek			
Inorganic S.S. mgISS/L	68	Chambers Creek			
Calcium mg/L	24.8	Chambers Creek			
Magnesium mg/L	2.72	Chambers Creek			
Dissolved oxygen mg/L	0	Chambers Creek			
Fractions					
Fbs: readily biodegradable	0.0014	Chambers Creek			
Fac: acetate	0.00043	Chambers Creek			
Fxsp: non-colloidal slowly biodegradable	0.998	Chambers Creek			
Fus: unbiodegradable soluble	0.598	Chambers Creek			
Fup: unbiodegradable particulate	0.087	Chambers Creek			
Fna: ammonia	0.884	Chambers Creek			
Fnox: particulate organic nitrogen	0.500	Chambers Creek			
Fnus: soluble unbiodegradable TKN	0.010	Chambers Creek			
FupN: N:COD ratio for unbiodegradable part. COD	0.032	Chambers Creek			
Fpo4: Phosphate	0.943	Chambers Creek			
FupP: P:COD ratio for unbiodegradable part. COD	0.128	Chambers Creek			

A randomized 30-day itinerary of treated centrate characteristics were developed. Day-to-day variability was based on that observed during the Chambers Creek pilot investigation. Because the side stream treatment system is a process, the treated centrate characteristics have limited variability from one day to the next, and instead tend to follow a trend. In this input file, the COD and TKN trends both follow a pattern of gradual decline across the 30-day itinerary. Maximum and minimum values, along with the overall variability, match that observed in the Chambers Creek pilot investigation.

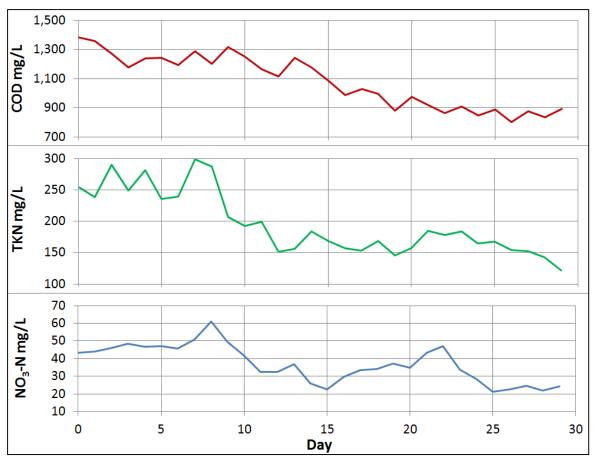


Figure 8. Treated centrate input variability

Treated centrate flows were assumed to be identical to the centrate flows assumed for the cases without side stream treatment. Treated centrate was assumed to be returned continuously over each 24-hour period. No diurnal variability in treated centrate flow was modeled.

3.4 Fermentate

The primary sludge fermenter was modeled using characteristics primarily developed from other facilities. At the time of modeling, very little data was available for the Plant fermenter, which was out of service during the winter season. For that reason, discussion of the fermenter in this document is limited, and no conclusions should be drawn about the role of the fermenter in the treatment process until further data are collected.

Fermentate characteristics were based on the following sources of data:

• Data from August through October 2014, when the fermenter was in service. Table 10 summarizes the data from this period.

Table 10. Meridian Fermenter Data from August–October 2014 ^{a,b,c}							
Parameter	Feed	Fermented Primary Solids	Thickened Fermented Primary Solids	Recycle	Elutriation	Fermentate	
Flow, gpd	53,250	58,360	26,700	71,310	275,300	291,300	
Solids concentration, %TS	3.29	2.67	3.56				
TSS, mg/L						765	
pH	6.36	5.07	5.31			5.97	
Volatile acids, mg/L						391	
Solids load, lb/d TS	14,600	13,000	7,900			1,860	
Volatile acid load, lb/d						950	

- a. Data represent averages from period spanning 8/20/2014 through 10/15/2014.
- b. Limited data available for many of these parameters.
- c. Data reflects grab sampling.

Although not specified, it was assumed that the volatile acids measured was specific to acetate, the 391 mg/L would translate to 423 mg/L as COD. As it is likely that other volatile acids were present, the model has assumed an average volatile fatty acid (VFA) concentration of 450 mg/L as COD.

The VFA production per pound of feed solids projects to 0.065 lb acetate/lb TSS. Converting to COD units increases this to 0.070 lb COD/lb TSS.

- Data from bench-scale testing conducted at Chambers Creek.
- Data from bench-scale testing conducted at the Pueblo, Colorado, facility.

Table 11 summarizes the fermentate input characteristics used in the model.

Table 11. Fermentate Parameters					
Parameter	Value	Source			
Ratios and Assumed Concentrations					
VFA/sCOD	0.333	Chambers Creek			
RBCOD/sCOD	0.953	Chambers Creek			
COD/sCOD	0.507	Chambers Creek			
VSS/TSS	0.950	Chambers Creek			
VFA, mg COD/L	450	2014 data			
TSS, mg/L	750	2014 data			
Input Values					
Total COD mgCOD/L	2,672	Calculated			
Total Kjeldahl nitrogen mgN/L	100	Chambers Creek, Pueblo			
Total P mgP/L	150	Chambers Creek			
Nitrate N mgN/L	0	Chambers Creek			
рН	6.0	2014 data			
Alkalinity mmol/L	7.36	Chambers Creek			
Inorganic S.S. mgISS/L	38	Calculated			
Calcium mg/L	160	BioWin default			
Magnesium mg/L	30	BioWin default			
Dissolved oxygen mg/L	0	BioWin default			
Fractions					
Fbs: readily biodegradable	0.482	Calculated ^a			
Fac: acetate	0.350	Calculated ^a			
Fxsp: non-colloidal slowly biodegradable	0.999	Calculated ^a			
Fus: unbiodegradable soluble	0.023	Calculated ^a			
Fup: unbiodegradable particulate	0.165	Calculated ^a			
Fna: ammonia	0.499	Calculateda			
Fnox: particulate organic nitrogen	0.500	Calculateda			
Fnus: soluble unbiodegradable TKN	0.100	Calculated ^a			
FupN: N:COD ratio for unbiodegradable part. COD	0.028	Calculated ^a			
Fpo4: phosphate	0.500	Calculateda			
FupP: P:COD ratio for unbiodegradable part. COD	0.085	Calculateda			

a. Fractions were calculated based on a combination of data from the Plant, Chambers Creek, and Pueblo.

One of the key parameters absent from the Meridian data is the nitrogen content of the fermentate. At Chambers Creek, the fermentate had a very high TKN (> 200 mg/L). At Pueblo, the TKN content was not measured, but the NH₄-N concentration was only 24 mg/L. For this evaluation, a fermentate TKN of 100 mg/L is assumed.

Fermentate was assumed to be added at a constant flow rate over the 30-day input period.

4. Target Conditions

The goal of each modeling scenario was to generate effluent characteristics that conform to a set of target conditions. The target conditions were based on draft NPDES permit documents, as well as operational targets discussed with City staff prior to the modeling effort. Target conditions were developed for ammonia, oxidized nitrogen (NOx-N), and PO₄-P.

The draft NPDES permit includes limits for TP, BOD, TSS, ammonia, and a variety of other parameters, including metals. Table 12 summarizes the permit limits that relate directly to this evaluation.

Table 12. October 2014 Draft NPDES Permit (all values in mg/L)										
	Discharge Location 001, Fivemile Creek				Discharge Location 002, Boise River					
	Period	Season	Month	Week	Day	Period	Season	Month	Week	Day
Summer	Summer									
BOD	May-Sept	-	20	30	-	May-Sept	_	30	45	-
TSS	May-Sept	-	20	30	-	May-Sept	_	30	45	
TP	May-Sept	0.12	-	-		May-Sept	_	0.07	0.165	-
NH4-N	May-Sept	-	0.405	-	1.65	July-Oct	_	0.242	-	1.06
Winter										
BOD	Oct-April	-	20	30	-	Oct-April	_	30	45	
TSS	Oct-April	-	20	30	_	Oct-April	_	30	45	-
TP	Oct-April	_	-	_	_	Oct-April	_	-	_	_
NH ₄ -N	Oct-April	-	0.307	-	1.25	Nov-Jun	_	0.255	_	1.04

4.1 Ammonia

Draft NPDES permit documents specify maximum day ammonia limits for the summer and winter conditions. The limits for discharge location 001 (Fivemile Creek) have been used as the basis of this evaluation, as that is the primary discharge location.

summer: 1.65 mgN/Lwinter: 1.25 mgN/L

The monthly average ammonia limitations included in Table 12 were often more restrictive than the peak day limits. These limits were also considered when assessing capacity.

4.2 Oxidized Nitrogen

Oxidized nitrogen can denitrify within the secondary clarifier, resulting in bubbling of nitrogen gas, which can impair mixed liquor settleability. In order to reduce the risk of clarifier denitrification, the target effluent oxidized nitrogen (NOx-N) concentration was set at 8.0 mg/L (monthly average). Maintaining an effluent NOx-N less than 8.0 mg/L will also guarantee that effluent TN remains less than 15.5 mg/L, as required for Class A reclaimed water.

4.3 Phosphorus

Draft NPDES permit documents specify restrictions on phosphorus in the effluent. This will likely require the plant to commence chemical addition to remove phosphorus. To reduce chemical demands, biological phosphorus removal should be maximized. The modeling effort aimed to minimize effluent orthophosphate,

as much as reasonably possible, giving priority to meeting the above targets for ammonia and oxidized nitrogen. A PO4-P concentration of less than 0.1 mg/L was used as a goal.

5. Secondary Clarifier Capacity

The capacity of the secondary process is constrained by the ability of the secondary clarifiers to retain mixed liquor solids. The capacity of the secondary clarifiers was defined in the Facilities Plan on the basis of the solids loading rate (SLR) to be 36.5 lb/d/ft^2 , and on the basis of the SOR to be $1,200 \text{ gpd/ft}^2$. Both of these capacity projections were based on an assumed mixed liquor sludge volume index (SVI) of 120 mL/g.

The plant has three secondary clarifiers: two with a diameter of 100 feet, and one with an 80-foot diameter. For the purpose of capacity modeling, the smaller unit has been assumed to remain out of service. The SOR capacity of 1,200 gpd/ft² would equate to an effluent flow of 18.8 mgd with the two larger clarifiers in service. This flow exceeds the projected maximum day flow in the Facilities Plan (17.2 mgd), but is less than the projected maximum hour flow (28.0 mgd). Even with all three clarifiers in service, the SOR capacity would equate to an effluent flow of 24.9 mgd, which is less than the projected peak hour flow. At peak hour flows, the clarifiers may experience a rising sludge blanket. If sustained, this could lead to loss of solids in the effluent. However, the nature of the peak hour flow implies a short duration, so it may be possible to absorb such flows provided that the sludge blanket is typically maintained at a low level. For the purpose of this evaluation, clarifier capacity will be judged against peak month and peak day conditions.

The peak hour condition will be revisited as part of the upcoming plant capacity assessment.

The SLR capacity of 36.5 lb/d/ft^2 is specific to the SVI condition projected in the Facilities Plan (120 mL/g). Typically, plant capacity is determined based on the 90th or 95th percentile of historical SVI data. Historical SVI data are plotted on Figure 9.

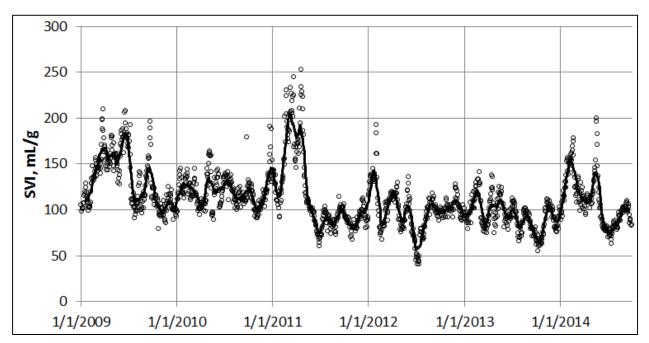


Figure 9. Mixed liquor SVI with 30-day moving average

Over the past 5 years, the 95th percentile SVI was 177 mL/g. This is influenced by the spike in SVI observed in early 2011, which was likely related to the *Microthrix* issues observed at that time. If the period of analysis is limited to 1 or 3 years, the 95th percentile SVI is closer to 150 mL/g.

State point analysis (SPA) is a graphical technique that may be used to estimate the capacity of secondary clarifiers, given inputs of effluent flow, RAS flow, MLSS concentration, and SVI. The SPA model may be calibrated to a specific treatment plant or SVI condition through detailed settling tests. In the absence of such tests, several "generic" correlations exist, based on observations at a number of facilities. One such correlation, developed by Wahlberg and Keinath (1988), has been used to project the capacity of the two larger clarifiers, at SVIs of 150 and 177 mL/g, over a range of flow and MLSS conditions (Figure 10).

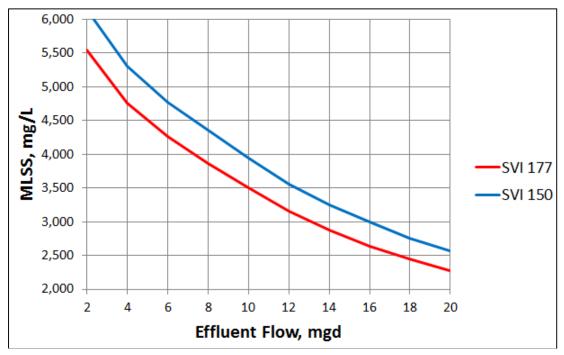


Figure 10. Combined capacity of secondary clarifiers 4 and 5, based on state point analysis Capacity with RAS flow capped at 8.64 mgd, which is the capacity of the existing system.

For context, at an effluent flow of 10 mgd, a RAS flow of 8.64 mgd, and an MLSS concentration of 3,500 mg/L, the SLR would be $34.7 \, \text{lb/d/ft}^2$.

6. Model Scenarios

A total of 16 scenarios were modeled as part of this evaluation. The scenarios are summarized in Table 13 and discussed in the following sections.

	Table 13. Summary of Conditions for All Simulations									
Case	Year	Flow	Load	Season	Side stream?	Fermentate?	Digester Cleanout?	Swing 1 Air	Swing 2 Air	
Scenarios to	Scenarios to Evaluate Infrastructure Requirements									
001	2030	Max month	Max month	Summer	No	Yes	No	Off	Off	
002	2030	Max month	Max month	Winter	No	Yes	No	Off	On	
003	2030	Max month	Max month	Summer	Yes	Yes	No	Off	Off	
004	2030	Max month	Max month	Winter	Yes	Yes	No	Off	On	
Scenarios to	Evaluate Aver	age Operating (Costs							
007	Midpoint	Average day	Average day	Summer	No	Yes	No	Off	Off	
008	Midpoint	Average day	Average day	Winter	No	Yes	No	Off	On	
009	Midpoint	Average day	Average day	Summer	Yes	Yes	No	Off	Off	
010	Midpoint	Average day	Average day	Winter	Yes	Yes	No	Off	On	
Scenarios to	Evaluate Capa	acity of Existing	System							
011	Current	Max month	Max month	Summer	No	Yes	No	Off	Off	
012	Current	Max month	Max month	Winter	No	Yes	No	Off	On	
013	75% Current	Max month	Max month	Summer	No	Yes	No	Off	Off	
014	75% Current	Max month	Max month	Winter	No	Yes	No	Off	On	
Scenarios to	Scenarios to Evaluate the Impact of Digester Cleaning									
002_DC14	2030	Max month	Max month	Winter	No	Yes	Yes, 14-day	Off	On	
004_DC14	2030	Max month	Max month	Winter	Yes	Yes	Yes, 14-day	Off	On	

6.1 Scenarios to Evaluate Infrastructure Requirements

Cases 001–004 represent maximum month conditions, as specified in the Facilities Plan. Summer and winter scenarios were modeled, with and without side stream treatment. The goal of these cases was to assess the volume of aeration basins required. The unlikely combination of maximum month flow and maximum month loading was modeled in order to ensure conservatism in basin sizing. This was done in place of imposing a safety factor.

The key parameter is the peak day effluent ammonia concentration. In order to meet that limitation, the SRT must be increased enough to ensure a high level of nitrification, even during peak events. The high SRT results in a high MLSS concentration, which results in a high clarifier solids loading. The secondary clarifier model (Figure 10) was used to determine the maximum MLSS concentration at the projected flow conditions, and the volume of the aeration basins was increased to ensure that the MLSS concentration remained below that level.

6.2 Scenarios to Evaluate Average Operating Costs

Cases 007–010 represent average conditions, midway between the current flows and loadings and the average flows and loadings projected for 2030 in the Facilities Plan. The goal of these cases was to compare average operating costs with and without side stream treatment.

6.3 Scenarios to Evaluate Capacity of Existing System

Cases 011–014 were intended to assess the capacity of the existing system. These cases were set up with maximum month flows and loads, as currently observed at the plant. Cases 011 and 012 determine that the Plant cannot meet the effluent targets, so Cases 013 and 014, at 25 percent reduced flows and loadings, were developed to project capacity backwards.

6.4 Scenarios to Evaluate the Impact of Digester Cleaning

Cases 002 and 004 were simulated again, this time with increase centrate flows, as would be observed during a period of digester cleaning. When a digester is cleaned, the digester volume (750,000 gallons) is pumped down and dewatered. If 14 days are allowed to empty a digester, the increased centrate flow will be 54,000 gpd.

7. Model Results

This section presents the results of the BioWin simulations. Section 7.1 provides an overview of the modeling process, and how the model was used to arrive at an optimal operating condition for each scenario. The subsequent sections provide details on each of the model scenarios.

7.1 Modeling Procedure

This section provides a detailed example of the modeling process, with a step-by-step look at how the model was used to reach an optimized result for each case. The iterative process included the following steps:

- 1. Simulate condition at existing aeration basin volume (2.4 Mgal) with no IMLR, fermentate, or methanol addition. The first swing zone was aerated for winter cases, but unaerated for summer cases. The second swing zone was always unaerated. The swing zone settings were optimized, in this way, based on preliminary modeling.
- 2. Assess the peak day effluent NH₄-N concentration. If the effluent NH₄-N is too high, increase the SRT by reducing the WAS flow rate.
- 3. Repeat step 2 until the peak day effluent NH₄-N limit is satisfied.
- 4. The effluent will now have a high NOx-N concentration. Increase IMLR flow to optimal level. The goal is to remove as much of the NOx-N as possible, using carbon in the plant influent. The IMLR flow may be increased, to bring back enough NOx-N to the anoxic zones to allow full utilization of readily biodegradable carbon in the influent.
- 5. Add fermentate. With no IMLR, the anoxic and swing zones will all function as extensions of the anaero-bic selector. Phosphorus removal may be very efficient, with fermentation occurring in these zones and supplementing the readily biodegradable carbon in the influent. Once IMLR is activated, only the anaerobic selector will remain anaerobic, and the anoxic and swing zones will become anoxic. This tends to reduce the amount of phosphorus removal, as the influent readily biodegradable carbon is not sufficient to maximize phosphorus removal. The fermentate adds a large amount of readily biodegradable carbon to the anaerobic selector, which restores phosphorus removal.
- 6. Increase IMLR flow to optimal level. Much of the carbon in the fermentate is taken up by phosphorus-accumulating organisms in the anaerobic selector. The remaining readily biodegradable carbon drives nitrogen removal in the anoxic cells. When fermentate is added, the IMLR flow must be increased to provide enough NOx-N back to the anoxic zones to fully utilize the fermentate carbon.
- 7. Add methanol until effluent target NOx-N is achieved. In all of the cases modeled, readily biodegradable carbon in the influent and the fermentate was not sufficient to remove enough nitrogen to meet the effluent target NOx-N of 8.0 mg/L. Methanol is another source of readily biodegradable carbon. In the sim-

- ulations, the methanol largely passes through the anaerobic selector (phosphorus accumulating organisms [PAOs] cannot use methanol directly as a carbon source), and is used for nitrogen removal in the anoxic cells.
- 8. Increase IMLR flow to optimal level. With methanol addition, the existing IMLR flow is not sufficient to meet the effluent target NOx-N. For this modeling effort, it was assumed that the IMLR system was expanded to allow pumping of four times the PE flow (4Q). In all model scenarios, the IMLR was increased to 4Q to optimize both nitrogen and phosphorus removal.
- 9. If effluent targets are not achievable, increase methanol dose to optimal level. Increasing the methanol dose will reduce effluent NOx-N as well as effluent PO₄-P. However, once the methanol dose reaches a certain level, further increase yields a diminishing level of return. This is because a fraction of the methanol begins to pass through the anoxic cells and discharge into the aerated cells, where it is rapidly oxidized. With the IMLR flow maximized at 4Q, there may not be enough NOx-N in the return to allow full utilization of the dosed methanol. In these cases, the methanol dose was held at an "optimal" level, beyond which excessive breakthrough resulted in wasted methanol, with little improvement in effluent parameters. This is discussed in detail in the subsequent examples.
- 10. Increase aeration basin volume. Once all of the other parameters have been optimized, the aeration basin volume must be adjusted to ensure that the secondary clarifier solids loading capacity is not exceeded. The model MLSS is compared with the maximum allowable MLSS from Figure 10, and the aeration basin volume is increased proportionally.
- 11. Make minor adjustments. The increase in aeration basin volume may require small adjustments to the SRT or methanol dose to achieve an optimal solution. This in turn may require further adjustment of the aeration basin volume. This iterative process continues until all effluent targets have been met, or until an optimal solution is achieved.

The following sections provide detail on how the model was used. Case 004 has been used as an example, as it was modeled over a wide range of SRT and methanol doses in order to achieve an optimal condition.

7.1.1 SRT and Activated Sludge Volume Optimization

The draft permit includes maximum day and maximum month limits for ammonia. In order to ensure that the effluent ammonia concentration does not exceed these limits, the SRT must be increased. Figure 11 shows the effect of SRT on the effluent ammonia over the 30-day simulation.

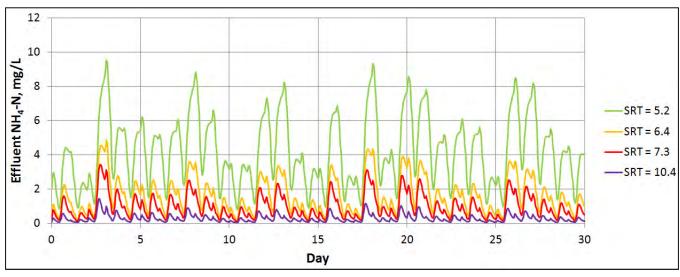


Figure 11. Effect of SRT on effluent ammonia concentration (Case 004)

In this case, the SRT was optimized at approximately 10.4 days, which was the minimum SRT required to meet the peak month effluent ammonia concentration (Figure 12).

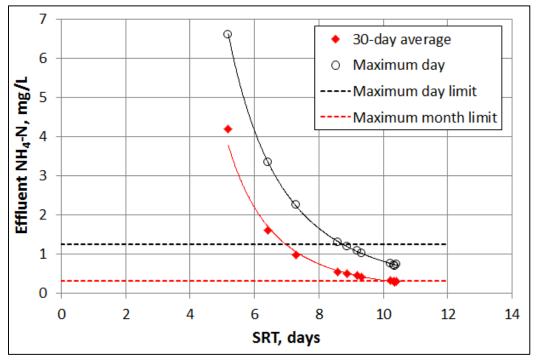


Figure 12. Determining the minimum SRT required to meet the peak day effluent ammonia limit

At an SRT of 10.4 days, the MLSS concentration within the existing 2.4 Mgal of aeration basins would have been 12,050 mg/L. In order to reduce the MLSS concentration below the maximum allowable level (3,150 mg/L, from Figure 10), the aeration basin volume was increased to 9.2 Mgal.

7.1.2 Methanol Dose Optimization

Methanol is used to drive nitrogen removal in the anoxic cells, and may also be used by PAOs in the anaerobic selector (although the PAOs prefer to use volatile acids as a carbon source). Increasing the methanol dose results in decreased effluent NOx-N, as well as decreased effluent PO₄-P. When there is sufficient NOx-N in the anoxic cells to fully utilize the methanol, the relationship between methanol dose rate and effluent NOx-N will be approximately linear. This is observed at methanol flows less than 700 gpd on Figure 13. At higher methanol flows, the NOx-N concentration at the downstream end of the anoxic zone will be zero, and methanol will break through into the aerated cells, where it is rapidly oxidized and lost. Further methanol dosing will result in only minimal reduction of effluent NOx-N, and increasing wastage of methanol into the aerated cells.

Although the PAOs do not uptake methanol in the anaerobic selector, increased methanol results in a decreased effluent PO₄-P, mainly by an indirect mechanism. The methanol removes nitrogen, which reduces the amount of NOx-N returned in the RAS from the secondary clarifier. This reduces the amount of NOx-N in the anaerobic selector, which enhances the ability of the PAOs to release phosphorus and uptake carbon.

On Figure 13, the optimal methanol dose appears to be approximately 900 gpd. Dosing rates exceeding 900 gpd yield very little change in effluent NOx-N or PO_4 -P, with high rates of breakthrough of methanol into the aerated cells.

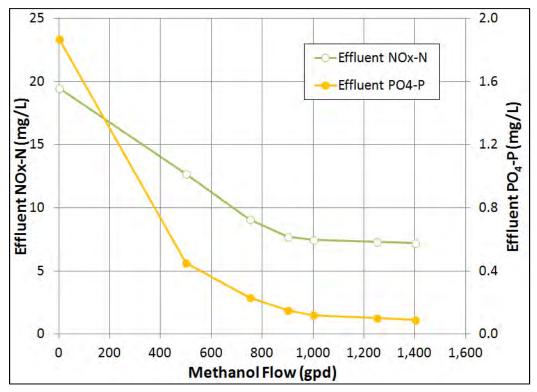


Figure 13. Relationship between methanol dose rate and effluent NOx-N and PO4-P (Case 004)

Figures 14 and 15 depict the impact of methanol on effluent NOx-N and PO₄-P concentrations over the 30-day simulation. These data mirror those observed on Figure 13, showing the diminishing return gained by increasing methanol dose beyond a certain point.

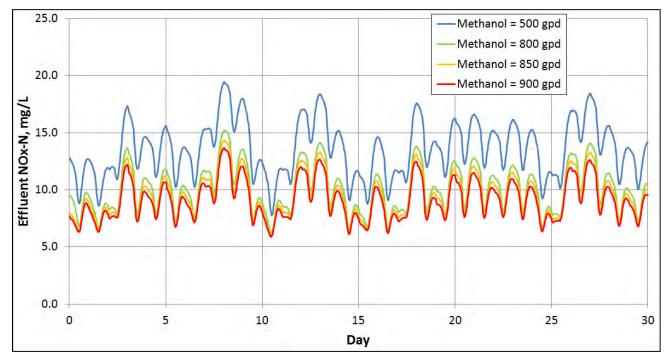


Figure 14. Effect of methanol dose on effluent NOx-N (Case 004)

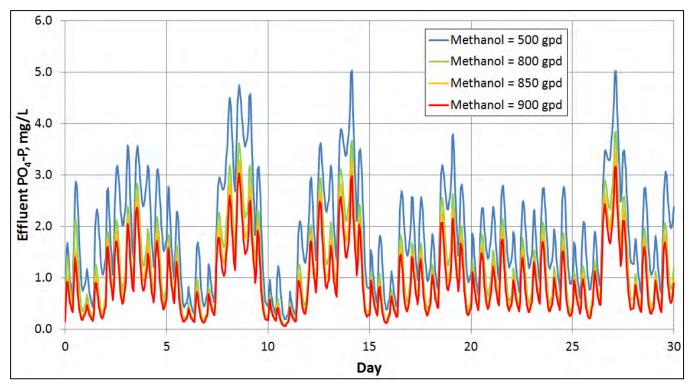


Figure 15. Effect of methanol dose on effluent PO₄-P (Case 004)

7.2 Cases 001 through 004

The first four cases were designed to evaluate the 2030 maximum month condition with and without side stream nitrogen treatment. The purpose of these cases was to determine the potential savings in activated sludge volume that could be realized with side stream treatment, while also determining the impacts of seasonal variations. Key results of these cases are summarized in Table 14.

Table 14. Summary of Key Results for Cases 001–004							
Parameter	Torgot		Cas	Cases			
Parameter	Target	001	002	003	004		
Season	-	Summer	Winter	Summer	Winter		
Flow (mgd)	-	14.20	12.26	14.20	12.26		
Temperature (°C)	-	23	14	23	14		
Aeration basin volume (Mgal)	-	5.28	9.70	5.04	9.16		
SRT (d)	-	4.69	10.22	4.78	10.35		
Methanol flow (gpd)	-	800	1,250	525	900		
MLSS (mg/L)	<2,800 summer <3,150 winter	2,801	3,159	2,817	3,157		
BioWin O ₂ (ft ³ /min)	-	31,350	26,074	29,259	23,910		
WAS (lb/d)	-	25,220	23,974	23,684	22,386		
FETSS (mg/L)	10	9.73	9.27	10.20	9.26		
FE PO ₄ -P (mg/L)	<0.1	0.44	0.70	0.59	1.13		
FE NH ₄ -N (mg/L)	<0.405 summer <0.307 winter	0.35	0.29	0.32	0.28		
FE NOx (mg/L)	<8	8.05	9.27	8.03	9.31		
FE TN (mg/L)	<15.5	11.31	12.57	11.21	12.50		
Peak day NH ₄ -N (mg/L)	<1.65 summer <1.25 winter	0.94	0.68	0.92	0.70		

In each case, the SRT was gradually increased in order to ensure sufficient nitrification to achieve the monthly average and peak day effluent ammonia criteria. During the summer, the minimum SRT was approximately 4–5 days. During the winter, the SRT had to be increased to approximately 10 days. This reflects the impact of temperature. In these cases, 14 °C was assumed for the winter cases, and 23 °C was assumed for the summer cases.

To keep the MLSS concentration low enough to avoid clarifier capacity limitations, the activated sludge volume then had to be increased from the existing 2.4 Mgal in all four cases. The winter cases indicated a need for up to 9.7 Mgal of aeration basin volume. The summer cases required only 5.3 Mgal.

Methanol addition was required for all cases to limit NOx and PO₄-P in the final effluent (FE). Higher methanol doses and/or lower SRTs resulted in methanol breakthrough from the selector zones to the aerobic cell. Selector effluent methanol was limited to 7 mg/L or less for these four cases. Even with the optimized methanol addition, effluent PO₄-P was above the target for all four cases and effluent NOx was above the target for the winter cases (002 and 004). During the winter, the effluent NOx-N could not be maintained lower than 9.3 mg/L (monthly average) without excessive waste of methanol into the aerated cells.

The addition of side stream nitrogen treatment (in Cases 003 and 004) allowed for a slight (approximately 6 percent) reduction in the aeration basin volume requirement, and a larger (approximately 30 percent) reduction in the methanol demand. Aerated demands and WAS production was were also reduced for the side stream treatment cases.

7.3 Cases 007 through 010

Cases 007 through 010 were designed to evaluate the average day condition mid-way through the planning period. Key results for these cases are summarized in Table 15.

Table 15. Summary of Key Results for Cases 007–010							
Parameter	Target		Cas	Cases			
raidilletei	Target	007	008	009	010		
Season	-	Summer	Winter	Summer	Winter		
Flow (mgd(-	9.3	8.2	9.3	8.2		
Temperature (°C)	-	21	16	21	16		
Act. sludge volume (Mgal)	-	4.8	4.8	4.8	4.8		
SRT (d)	-	6.0	9.1	6.0	9.1		
Methanol flow (gpd)	-	630	1,000	430	750		
MLSS (mg/L)	-	2,363	3,559	2,215	3,336		
BioWin O ₂ (ft ³ /min)	-	17,905	19,006	16,377	16,786		
WAS (lb/d)	-	15,096	14,968	14,146	14,032		
FE TSS (mg/L)	10	8.2	12.2	7.7	11.4		
FE PO ₄ -P (mg/L)	<0.1	0.47	0.44	0.69	0.66		
FE NH ₄ -N (mg/L)	<0.405 summer <0.307 winter	0.32	0.28	0.31	0.27		
FE NOx (mg/L)	<8	7.98	8.97	7.88	8.69		
FE TN (mg/L)	<15.5	11.0	12.4	10.8	12.0		
Peak day NH ₄ -N (mg/L)	<1.65 summer <1.25 winter	0.78	0.70	0.79	0.81		

The aeration basin volume was assumed to be 4.8 Mgal in all of these cases, to ensure that secondary clarifier capacity would not be an issue. Most of the modeling work involved optimizing the methanol dose to meet the target effluent NOx-N and PO₄-P requirements.

As observed with Cases 002 and 004, the effluent NOx-N target of 8.0 mg/L could not be efficiently achieved in the winter. Likewise, the effluent PO $_4$ -P could not meet its target of 0.1 mg/L for any of the four cases while also attempting to maintain effluent NOx-N concentrations below 8.0 mg/L.

The addition of side stream nitrogen treatment (in Cases 009 and 010) resulted in reductions in the aeration demand, methanol dose, and WAS loading.

7.4 Cases 011 and 012

Cases 011 and 012 were used to evaluate the capacity of the existing process, without side stream treatment. These cases input current maximum month flows and loads. Key results for these cases are summarized in Table 16.

Table 16. Summary of Key Results for Cases 011 and 012						
Parameter	Torget	Cas	ses			
Parameter	Target	011	012			
Season	-	Summer	Winter			
Flow (mgd)	_	6.60	5.70			
Temperature (°C)	-	16	14			
Act. sludge volume (Mgal)	-	2.40	2.40			
SRT (d)	-	9.91	11.26			
Methanol flow (gpd)	-	650	900			
MLSS (mg/L)	< 4,100 summer < 4,300 winter	6,098	6,879			
BioWin O ₂ (ft ³ /min)	_	14,818	16,660			
WAS (lb/d)	-	11,538	11,474			
FE TSS (mg/L)	10	17.26	19.34			
FE PO ₄ -P (mg/L)	<0.1	0.69	0.80			
FE NH ₄ -N (mg/L)	<0.405 summer <0.307 winter	0.42	0.28			
FE NOx (mg/L)	<8	8.01	9.95			
FE TN (mg/L)	<15.5	11.83	14.09			
Peak day NH ₄ -N (mg/L)	<1.65 summer <1.25 winter	1.01	0.61			

For these cases, the activated sludge volume was fixed to match existing capacity. The SRT was modified (by adjusting the WAS flow) in order to meet the peak day NH₄-N concentration. Then, the methanol dose was optimized.

With a fixed activated sludge volume, the MLSS concentrations for these cases were much higher than the target. At these flows, the secondary clarifiers would be overloaded (based on Figure 10).

These results indicate that the existing WWTP does not have the capacity required to meet the proposed effluent requirements and would require substantial expansion to add activated sludge volume. Significant methanol dosing (650–900 gpd) would also be required.

7.5 Cases 013 and 014

As the plant did not have capacity to treat existing flows and loads to the specified effluent targets, Cases 013 and 014 were designed to project performance at reduced flows and loads. These cases decrease influent flows and loads by 25 percent. Table 17 provides a summary of key results for these cases.

Table 17. Summary of Key Results for Cases 013 and 014					
Parameter	Torgot	Cases			
raidilletei	Target	013	014		
Season	-	Summer	Winter		
Flow (mgd)	-	4.95	4.28		
Temperature (°C)	-	16	14		
Act. sludge volume (Mgal)	-	2.40	2.40		
SRT (d)	-	10.00	11.50		
Methanol flow (gpd)	-	475	600		
MLSS (mg/L)	<4,850 summer <5,000 winter	4,548	5,145		
BioWin O ₂ (ft ³ /min)	-	10,463	11,350		
WAS (lb/d)	-	8,691	8,549		
FETSS (mg/L)	10	12.87	14.45		
FE PO ₄ -P (mg/L)	<0.1	0.78	0.95		
FE NH ₄ -N (mg/L)	<0.405 summer <0.307 winter	0.38	0.25		
FE NOx (mg/L)	<8	8.19	10.20		
FE TN (mg/L)	<15.5	11.71	13.96		
Peak day NH ₄ -N (mg/L)	<1.65 summer <1.25 winter	1.22	0.61		

While still high (over 4,500 mg/L), the MLSS concentrations are close to the maximum allowable concentrations at these flow rates. This indicates that the existing plant would have the capacity to meet some of the effluent targets at these flows and loadings. It is important to point out that while these MLSS concentrations are low enough to meet SLR limitations in the secondary clarifiers, these concentrations are very high and could impact oxygen transfer efficiency of the aeration system and are above typical recommended maximum values for conventional activated sludge systems. Further, the winter case would still not be able to efficiently meet the target NOx-N concentration of 8.0 mg/L.

Combining the projected MLSS concentrations from Cases 011–014, with the maximum allowable MLSS concentrations from Figure 10, the capacity of the existing treatment plant would project to the following maximum month flows:

summer: 5.20 mgdwinter: 4.20 mgd

7.6 Digester Cleaning Cases

Cases 002 and 004 were remodeled to assess the impact of digester cleaning. When periodic digester cleaning is required, the WWTP experiences a larger-than-normal centrate dose over a fairly short period of time, which could stress the treatment process. The goal of this evaluation was to determine the impact of this added centrate with and without side stream treatment.

A digester emptying time of 14 days was evaluated, assuming a constant flow of centrate delivered to the plant over that times. The digester cleaning scenario was evaluated with the 2030 maximum month flows and loads, in the winter condition. This condition was selected because this condition drove the projected aeration basin volume requirement. In practice, it would be unlikely to schedule a cleaning action during the

most limiting loading condition. However, the goal was to assess sensitivity, and this case was assumed to be the most sensitive to digester cleaning activity. Key results for the digester cleaning cases are summarized in Table 18.

Table 18. Summary of Key Results for Digester Cleaning Cases					
Parameter	Target	Ca	ses		
raiailletei	raiget	002_DC14	004_DC14		
Season	-	Winter	Winter		
Flow (mgd)	-	12.26	12.26		
Temperature (°C)	-	14	14		
Side stream?	-	No	Yes		
Digester cleanout time	d	14	14		
Act. sludge volume (Mgal)	-	9.70	9.16		
SRT (d)	-	10.07	9.81		
Methanol flow (gpd)	-	1,425	950		
MLSS (mg/L)	<3,150	3,188	3,059		
BioWin O ₂ (ft ³ /min)	-	27,006	23,735		
WAS (lb/d)	-	24,710	22,945		
FE TSS (mg/L)	10	9.35	8.97		
FE PO ₄ -P (mg/L)	<0.1	0.80	1.31		
FE NH ₄ -N (mg/L)	<0.405 summer <0.307 winter	0.31	0.31		
FE NOx (mg/L)	<8	9.18	9.00		
FE TN (mg/L)	<15.5	12.54	12.21		
Peak day NH ₄ -N (mg/L)	<1.65 summer <1.25 winter	0.73	0.82		

When compared to simulations without the added digester cleanout load (see Cases 002 and 004 in Table 14) the results (summarized in Table 19) show that digester cleanout has surprisingly little impact on plant performance.

Table 19. Impact of Digester Cleaning on Selected Performance Criteria, 2030 Maximum Month Winter Condition							
	No Digester Cleaning	14-day Digester Cleaning	Change (14-day Cleaning)				
No Side stream Treatment							
Methanol requirement, gpd	1250	1425	14%				
Aeration demand, scfm	26,074	27,006	4%				
WAS production, lb/d	23,974	24,710	3%				
MLSS, mg/L	3,159	3,188	1%				
With Side stream Treatment							
Methanol requirement, gpd	900	950	6%				
Aeration demand, scfm	23,910	23,735	-1%				
WAS production, lb/d	22,386	22,945	2%				
MLSS, mg/L	3,157	3,059	-3%				

The main impact is to the methanol dose, which had to be increased by approximately 14 percent (no side stream treatment) or 6 percent (with side stream treatment). Otherwise, impacts to MLSS, aeration demand, WAS production, and the ability to meet effluent targets were limited (less than 5 percent).

8. Model Conclusions

The BioWin side stream nitrogen treatment modeling effort has produced the following results and conclusions.

8.1 Existing Plant Capacity

The existing facility does not have the capacity to meet the proposed effluent targets. Plant capacity is estimated to be approximately 5.2 mgd in the summer and 4.2 mgd in the winter. The main factors driving the capacity estimate are the winter effluent ammonia requirements, which forces an increase in SRT leading to an increase in MLSS, and increase in solids loading to the secondary clarifiers. While the Plant has successfully nitrified in the past, it has not consistently reduced effluent ammonia to the proposed criteria, especially during the winter season (Figure 16).

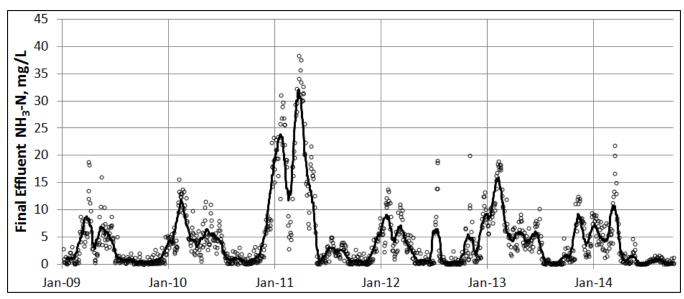


Figure 16. Historical final effluent NH3-N concentration, with 30-day moving average

Aside from capacity, the existing facility would require a large amount (500–800 gpd) of supplemental carbon to meet targeted effluent NOx-N and PO₄-P requirements. It is possible that these requirements could be reduced through a process reconfiguration. The existing A²O process is inefficient with respect to nitrogen removal. A more efficient configuration would provide for two separate stages of denitrification. A five-stage Bardenpho process (Figure 17) is a textbook example of a configuration aimed for both phosphorus removal and efficient nitrogen removal.

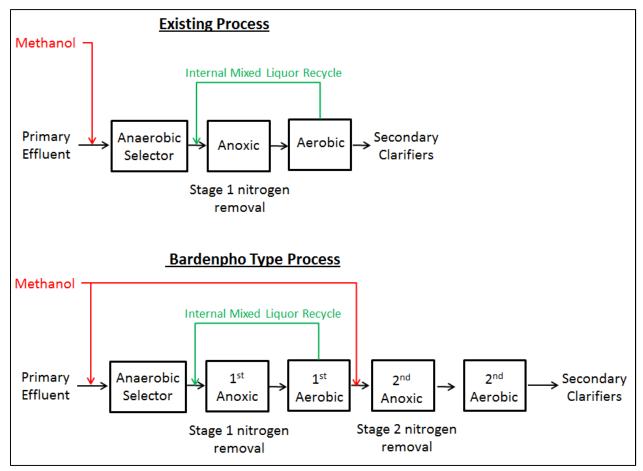


Figure 17. Comparison of existing process configuration and a two-stage nitrogen removal configuration

Changing the process configuration would also allow the plant to achieve the effluent NOx-N target conditions more efficiently. As noted in the results presentation, there were several scenarios, primarily in the winter, when the plant could not achieve an effluent NOx-N of 8.0 mg/L without excessive wasting of methanol.

8.2 Future Plant Requirements

In order to meet the target effluent criteria for the 2030 maximum month condition, the plant would require 9.7 Mgal of aeration basins, or additional secondary clarifiers. The plant projects a demand for large volumes of methanol (500–1,000 gpd, year round) to meet the target effluent NOx-N and PO₄-P conditions.

8.3 Role of Centrate

Treating the centrate using an Anammox-type process would have several advantages. These include a reduction in the size of future aeration basins (9.2 Mgal versus the 9.7 Mgal required without side stream treatment), and a reduction in annual operating costs. Side stream treatment would reduce methanol requirements by approximately 30 percent and aeration demand by approximately 10 percent, and would generate 6 percent less WAS solids. This comparison is expanded upon in detail in Section 9.

8.4 Digester Cleaning

Digester cleaning had relatively small impact on plant operation or performance. The additional centrate load associated with emptying one of the digesters results in an increased methanol demand. However, the centrate has little effect on performance in terms of meeting the target effluent conditions. Notably, the additional centrate load has little impact on the SRT required to meet the peak day effluent ammonia limit, and therefore little impact on the MLSS concentration, clarifier solids loading, or required aeration basin volume. The reason for this appears to be related to the diurnal pattern of nitrogen loading in the PE (Figure 5). The plant observes very low flow and loads overnight, a condition that can starve the nitrifying bacterial community, resulting in inefficient nitrification. The additional nitrogen load associated with centrate helps to reduce those overnight limitations, and improves the overall performance of the nitrifying community. In a counterintuitive way, additional centrate may actually increase process capacity by resulting in a more stable nitrogen loading pattern. This impact is discussed further in Section 10.

8.5 Summary

Table 20 summarizes the key findings of the biological process modeling.

Table 20. Summary of Biological Process Modeling Results						
Existing Plant Capacity						
Summer, maximum month	5.2 mgd					
Winter, maximum month	4.2 mgd					
Projected Facility Needs						
Aeration basin volume	9.7 Mgal					
Average methanol demand	815 gpd					
Peak month methanol demand	1,250 gpd					
Peak month aeration demand	31,350 scfm					
Digester Cleaning (14- or 30-day period)						
Increase methanol requirement	6%-14%					
Effect on process capacity	Minimal					
Effect of Side Stream Treatment	To be discussed in Section 9					

9. Business Case Evaluation

The BCE is a tool that seeks to determine the most cost-effective solution to a specific issue or problem. The BCE considers five categories of costs: capital, operating, replacement, risk, and benefit. The BCE differs from traditional life-cycle cost analyses in its inclusion of risk and benefit costs, which broaden the scope of the comparison. The BCE approach was used to determine whether the plant should implement side stream treatment of its dewatering centrate. The results of the modeling (Section 8) were used as the basis for much of the comparative analysis.

9.1 Problem Statement and Level of Service

The plant is facing increased regulation on effluent discharge of nitrogen and phosphorus. Should the plant implement side stream treatment of its dewatering centrate as part of upcoming facility upgrades?

Level-of-service considerations include the following:

- Expansion of the secondary process (aeration basins and secondary clarifiers) is likely to be required in order to meet future loadings and regulatory requirements. Side stream treatment of the centrate may impact the scope of such expansion.
- Side stream treatment of the centrate may impact operational costs related to the main biological process. Impacts may include process aeration demands, supplemental carbon (methanol), biosolids processing, hauling and disposal, and chemical addition for phosphorus removal.
- The side stream process will have a capital cost associated with implementation.
- The side stream process will have annual operating costs.
- The side stream process will have replacement costs. Replacement costs related to the main biological process are assumed to be independent of side stream treatment.
- The risk of side stream process upset and resulting impacts on the main biological process must be considered in this evaluation.

9.2 Current and Design Conditions

Dewatering centrate is currently returned to the primary influent, and treated in the main biological process. Centrate flows and characteristics were summarized in Section 3.2.

9.3 Alternatives

There are two alternatives in this evaluation: side stream treatment, and no side stream treatment. The side stream treatment alternative assumes an Anammox-type process, capable of removing 80 percent of NH₄-N and 75 percent of TIN from the centrate. For costing purposes, a DEMON-type Anammox system was assumed for this alternative.

The side stream process was assumed to treat 100 percent of the dewatering centrate. The process includes a pretreatment stage aimed at removing solids from the centrate, a flow equalization basin, two parallel reactors, and an effluent storage basin (Figure 18).

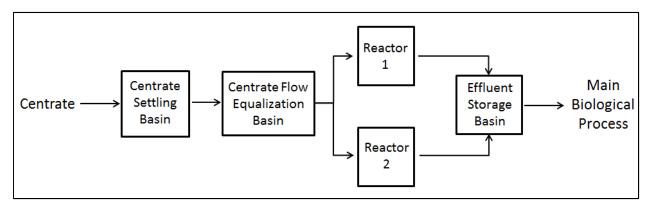


Figure 18. Side stream process schematic

Design criteria for the side stream process are summarized in Table 21.

Table 21. Side Stream Treatment Design Criteria						
Parameter	Average Day	Max Month	Peak 2-week	Peak Day		
Centrate flow, gpd	78,967	103,000	109,867	137,333		
Centrate NH ₄ -N load, lb/d	600	782	834	1,043		
Days/week of operation	7					
Centrate Settling Basin						
Surface overflow rate, gpd/ft ²	359	469	500	625		
L, ft	11.0					
W, ft	20.0					
D, ft	21.0					
Volume, gal	34,518					
Centrate Flow Equalization Basin						
HRT, hours	15.7	12.0	11.3	9.0		
L, ft	17.2					
W, ft	20.0					
D, ft	20.0					
Volume, gal	51,500					
DEMON reactors	2					
Solids loading rate, firm, kg/m³/d	1.15	1.50	1.60	2.00		
Solids loading rate, total, kg/m³/d	0.57	0.75	0.80	1.00		
Reactor Dimensions						
L, ft	19.9					
W, ft	20.0					
D, ft	21.0					
Volume, gal	62,500					
Effluent Storage Basin						
HRT, hours	5.6	4.3	4.0	3.2		
L, ft	8.2					
W, ft	20.0					
D, ft	15.0					
Active volume, gal	18,311					

For cost estimating purposes, it was assumed that the centrate treatment system would be built in new structures, with the settling tank and flow equalization basins covered to limit odors and cooling.

9.4 Comparative Analysis

The BioWin model was used to compare the two alternatives, and the results of that modeling have been presented in Section 8. Table 22 summarizes the key results that pertain to this BCE.

Table 22. Model Comparison of Side stream Alternatives						
Side stream treatment?	No	Yes				
Aeration basin volume required	9.70	9.16	Mgal			
Average methanol dose	815	590	gpd			
Maximum month methanol dose	1250	900	gpd			
Average aeration demand	18,455	16,581	scfm			
Maximum month aeration demand	31,350	29,260	scfm			
Average WAS production	15,032	14,089	lb/d			
Average mass of PO ₄ -P over target ^a	0.96	1.54	lb/month			

a. Target effluent PO₄-P was 0.1 mg/L.

The BCE considers only costs that differentiate between the alternatives; non-differential costs are not considered. The following sections detail the costs included in this BCE.

9.4.1 Capital Costs

In order to meet the 2030 maximum month conditions, the main secondary treatment process will need to be expanded. The critical factor is maintaining a high enough SRT to ensure that the maximum day ammonia concentration is not exceeded. This results in a high MLSS concentration, which imposes a high solids loading to the secondary clarifiers. For the summer condition, with a maximum month flow of 14.2 mgd, and a maximum day flow of 17.2 mgd, the maximum allowable MLSS concentration will be approximately 2,800 mg/L (Figure 10). For the winter condition, with a maximum month flow of 12.3 mgd, and a maximum day flow of 13.8 mgd, the maximum allowable MLSS concentration will be approximately 3,150 mg/L.

Using these criteria, the sizes of the aeration basins required to meet the effluent targets for the 2030 maximum month condition were 9.70 Mgal (no side stream), and 9.16 Mgal (with side stream). Given 2.4 Mgal of existing volume, the scope of the basin expansion would be either 7.30 Mgal or 6.76 Mgal.

The City of Nampa, Idaho, is currently expanding its aeration basins by 3.3 Mgal. Given the proximity to Meridian, and the similarity between projects, the costs from the Nampa expansion have been used to project relative costs of aeration basin expansion at Meridian. The Nampa aeration basin expansion is projected to have a direct cost of \$2.55M, which computes to \$771,900/Mgal. Extrapolating to the two alternatives in this BCE, the following cost estimates were derived for the two alternatives:

• Alternative 1, no side stream: \$5.64M

Alternative 2, side stream: \$5.22M

These direct cost projections were expanded to include markups, contingency, and allied costs such as engineering, construction management, and administration, resulting in the following total project costs (refer to Appendix A for details):

Alternative 1, no side stream: \$13.6MAlternative 2, side stream: \$12.6M

The cost to implement side stream treatment includes a vendor package, a set of concrete basins, and materials and equipment not included within the vendor package (equipment located outside of the two reactors). Costs are summarized in Table 23.

Table 23. Capital Costs to Implement Side stream Treatment							
	Direct Costs	Contractor Costs ^a	Contingencyb	Allied Costs ^c	Total		
Vendor quoted equipment and coordination	\$1,563,139	\$93,788	\$0	\$198,831	\$1,855,759		
Greenfield tank construction	\$145,464	\$49,589	\$48,763	\$97,526	\$351,582		
Vendor system installation, and material outside of vendor package	\$1,951,225	\$66,911	\$68,490	\$834,650	\$3,008,914		
Total	\$3,659,828	\$210,288	\$117,253	\$1,131,008	\$5,216,254		

- a. Includes 10% field overhead, bonds, and insurance; 15% contractor overhead and profit; and 6% state sales tax. Vendor package includes only the sales tax. Material outside of vendor package eliminates field overhead and profit and tax, and reduces contractor overhead and profit to 3%, because these costs are based on final realized costs at Chambers Creek.
- b. 25% for greenfield expansion and material outside of vendor package; 3% for vendor package.
- c. Includes 2% legal, 5% administrative, 3% permitting and scope, 5% preliminary engineering, 15% final engineering, 10% construction management. Vendor package costs do not include legal, administrative, and permitting/scope, and reduce preliminary engineering to 0.5% and final engineering to 1.5%.

9.4.2 Operating Costs

The modeling results in Table 22 translate into operating costs associated with methanol dosing, aeration demand, biosolids hauling, and chemical addition for phosphorus removal. The following assumptions were used to develop these costs:

- electricity: \$0.069 per kilowatt-hour (kWh)
- biosolids hauling and application: \$5.933 per wet ton
- methanol: \$2.25 per gallon
- aeration energy demand: 350 kWh per standard cubic foot per minute (scfm) per year
- chemical addition for phosphorus removal: \$10 per lb P removed

The electric and biosolids costs come from the plant. The methanol cost is a long-term average value from Olympia, Washington. The price of methanol is unstable, and has varied from close to \$1.00 per gallon to over \$4.50 per gallon during the past 10 years. The aeration energy demand is based on data from other plants with similar process demands. The chemical addition cost for phosphorus removal is an average value considering several chemical formulations (alum, ferric chloride, ferrous chloride, and polyaluminum chloride), with costs developed for the City of Nampa in 2013.

The annual operating costs are summarized in Table 24.

Table 24. Average Annual Operating Costs						
Parameter	Alternative 1: No Side stream	Alternative 2: Side stream				
Methanola	\$669,319	\$484,538				
Process aeration ^b	\$445,694	\$400,439				
Biosolids hauling ^c	\$16,277	\$15,256				
P removal chemical ^d	\$117	\$188				

a. Methanol at \$2.25/gallon.

- b. Assumes 350 kWh/scfm/year and \$0.069/kWh.
- c. Hauling and application at \$5.933/wet ton.
- d. Chemical cost of \$10/lb P. This cost considers removal of PO_4 -P only down to a concentration of 0.1 mg/L. Removal below that concentration is considered to be the same for both alternatives (non-differential).

Annual operating costs for the side stream treatment system include \$13,300 for aeration, and \$2,250 for pumping. A single full-time equivalent (FTE) is assumed to be required to operate and maintain the system, at a cost of \$62,400 per year.

9.4.3 Replacement Costs

Major replacement items within the side stream treatment system include aeration blowers (\$50k cost with 10-year service life), pumps (\$50k cost with 15-year service life), instruments (\$100k cost with 5-year service life), and other miscellaneous equipment (\$25k cost with 10-year service life). Replacements within the mainstream process are assumed to be non-differential.

9.4.4 Risk Costs

If the side stream process were to suffer an upset, there would be costs associated with restoring the system, as well as costs associated with treating the centrate in the main biological process during the upset. It is assumed that it would take 6 months to reestablish the process, given the need to import biomass, potentially from abroad. The total cost associated with such an event is estimated to be approximately \$165k. The annual likelihood of an upset is assumed to be 10 percent. This means there would be an 88 percent chance of having at least one upset during the 20-year planning window.

There is some risk of methanol price instability. At times, the cost of methanol has doubled from historical averages. To accommodate this risk, the BCE assumes a 20 percent annual risk of the methanol price doubling.

9.4.5 Benefit Costs

Benefits associated with side stream treatment have been accounted for in the capital and operating costs.

9.4.6 Summary

The two alternatives are compared side by side in Table 25.

Table 25. Pro and Con Analysis of Side stream Treatment						
Alternative 1: No Side stream Treatment	Alternative 2: Side stream Treatment					
Capital costs:	Capital costs:					
AB expansion: \$13.6M	AB expansion: \$12.6M					
Side stream treatment: zero	Side stream treatment: \$5.22M					
Operating costs (annual):	Operating costs (annual):					
 Methanol: \$669,300 	 Methanol: \$485,500 					
 Aeration: \$445,700 	Aeration: \$400,400					
 Biosolids: \$16,300 	Biosolids: \$15,300					
Chemical: \$120	Chemical: \$190					
Replacement costs:	Side stream treatment:\$78,000					
Non-differential	Replacement costs (annual):					
Risk costs (annual):	• Equipment: \$30,800					
 Methanol price instability: \$133,900 	Risk costs (annual):					
	Process upset: \$16,500					
	Methanol price instability: \$96,900					

9.5 Business Case Evaluation and Recommendation

The BCE projects the net present value (NPV) of each alternative. As we are considering two alternatives that both impose high capital and operating costs, the NPVs are negative. The favored alternative is the alternative that is less costly. In this case, as shown in Table 26, the BCE favors Alternative 1 (no side stream treatment) by a margin of \$1.62M.

	Table 26. Business Case Evaluation ^{a,b,c,d}						
	Alternative	Capital Outlays	Benefits	Running Costs	Risk Costs	R&R Costs	NPVa
1	No side stream treatment	\$13,620,287	\$0	\$23,759,530	\$2,811,139	\$0	(\$33,690,409)
2	Side stream treatment	\$17,828,654	\$0	\$20,545,786	\$2,382,411	\$647,500	(\$35,314,533)

- a. The BCE considers 20 years of operation, assuming installation in 2018 and operation through 2038.
- b. All costs are presented in 2015 dollars.
- c. The BCE assumes an escalation rate of 3% and a discount rate of 5%.
- d. Costs that are common to both alternatives are not included in this evaluation.

The BCE result is driven by the cost to install the side stream treatment system. The BCE suggests that side stream treatment may save the City \$3.3M over 20 years. However, with a \$5.2M cost to install, those savings are not enough to overcome the difference in up-front capital expenditures. In fact, it would take approximately 20 more years for the evaluation to reach a break-even point.

From another perspective, one might say that the reduced operating costs (\$153k per year) would result in a payback period of 28 years to overcome the \$4.2M difference in capital costs between the alternatives. That assessment is somewhat more aggressive than the BCE and does not consider the replacement costs, risks, or time value of money.

10. BCE Sensitivity

Several factors impact the BCE recommendation. The section identifies several of the most important of these factors, and discusses the sensitivity of the BCE to each of them.

10.1 Proportion of Nitrogen in the Centrate

The BCE recommendation reflects the relatively low load of nitrogen present in the plant centrate. Typically, side stream treatment is targeted toward plants that observe 25–33 percent of their total nitrogen load in the centrate. In this case, the proportion of nitrogen in the centrate is much lower. Table 27 summarizes an assessment of centrate nitrogen, considering a number of data sources.

Table 27. Proportion of Nitrogen Load in Centrate						
	Historical Data (2009-14)	May 2011 Wastewater Characterization	Facilities Plan 2030 Maximum Month Projection			
Centrate NH ₄ /PE NH ₄	0.21	0.17				
Centrate NH ₄ /(RI+Centrate NH ₄)	0.20	0.18	0.17			
Centrate TKN/PE TKNa	0.17-0.18	0.13-0.14				
Centrate TKN/(RI+Centrate TKN)a	0.15-0.16	0.12-0.13	0.13			

a. TKN is not typically measured in the centrate, and was not measured during the May 2011 wastewater characterization. Therefore, high and low ranges were assumed based on ratios of ammonia to TKN observed at Chambers Creek (0.90) and projected in the Facilities Plan (0.95).

In general, it appears that between 17 and 21 percent of the PE ammonia load is derived from the centrate, and between 12 and 18 percent of the PE TKN load is derived from the centrate. These ratios, and particularly the TKN ratio, are lower than what would typically be expected for a municipal wastewater treatment plant. The amount of nitrogen in the centrate is a function of cell destruction within the digesters. The relatively low nitrogen content of this centrate may indicate lower-than-normal volatile cell destruction. This could be evaluated further during the capacity assessment.

It is also possible that the "gallons dewatered" parameter is not an accurate measure of centrate flow. If, for example, the City uses a very high wash water flow at its centrifuges, the centrate flow volume may be considerably larger than the feed flow. It is possible that this is leading to an underestimate of centrate nitrogen loading.

The relatively low proportion of nitrogen in the centrate diminishes the benefits of side stream treatment. For example, if the centrate composes only 15 percent of the secondary influent nitrogen, and the side stream process removes only 75–80 percent of that nitrogen, then the net reduction in carbon load to the main biological process is only 11–12 percent.

10.2 Diurnal Load Pattern

One of the main drivers of the BCE is the size and scope of aeration basin expansion. The aeration basin volume requirement is linked mainly to the increase in SRT required to meet the peak day effluent ammonia limit. The efficiency of nitrification depends upon the presence of nitrifying bacteria. These bacteria oxidize ammonia to nitrite and nitrate, and function best when the substrate is supplied consistently and continuously.

The RI exhibits an extremely sharp diurnal flow curve (Figure 5). Overnight flows decrease to less than 50 percent of the daily average. The TKN concentration also decreases overnight. When the TKN load is calculated, these factors combine, resulting in overnight TKN loads that are only 38 percent of the daily average, and only 25 percent of the peak. The diurnal fluctuation in TKN loading has a destabilizing effect on the nitrifying community. Overnight, the community is starved for ammonia.

In this assessment, centrate is returned at a constant rate throughout the day. This has a stabilizing effect on the nitrifying community. While the centrate results in some increase in peak TKN loading, the increase is

a small percentage relative to the PE peaks. Overnight, however, the centrate acts to sustain the nitrifying community (Figure 19). The result is that increased centrate loadings actually improve the performance of the nitrifying community, and have little impact on the required size of the aeration basins. If the centrate loading were doubled from the projection, this would have almost no impact on the plant's ability to meet the peak day ammonia requirement, and the model actually suggests some degree of improvement in certain scenarios.

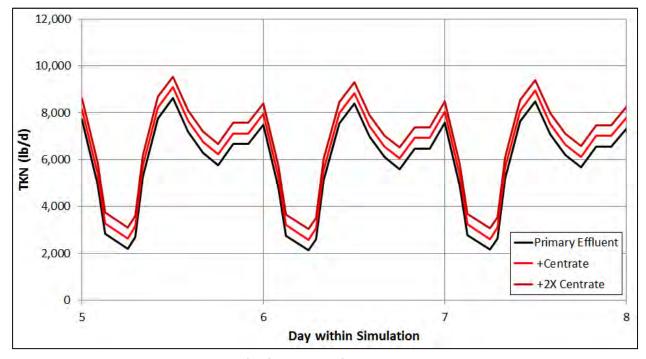


Figure 19. Secondary influent TKN loading pattern

In this light, treating the centrate may actually have a negative impact on nitrifying performance. The ability of the centrate to "fill in" the overnight dips in TKN loading is eliminated when the centrate is treated. This explains why side stream treatment allowed for only a modest reduction in aeration basin volume, and why the digester cleaning scenarios did not impact the volume requirement.

Rather than treating the centrate, switching to a load-pace centrate return, where centrate is exclusively returned during the overnight period, may offer increased cost savings in terms of basin volume requirements. Figure 20 plots the effluent ammonia concentration for the 2030 winter maximum month condition and the following three scenarios:

- centrate returned at a constant flow rate over each 24-hour period
- twice the centrate flow returned at a constant flow rate over each 24-hour period
- centrate returned primarily during the overnight period

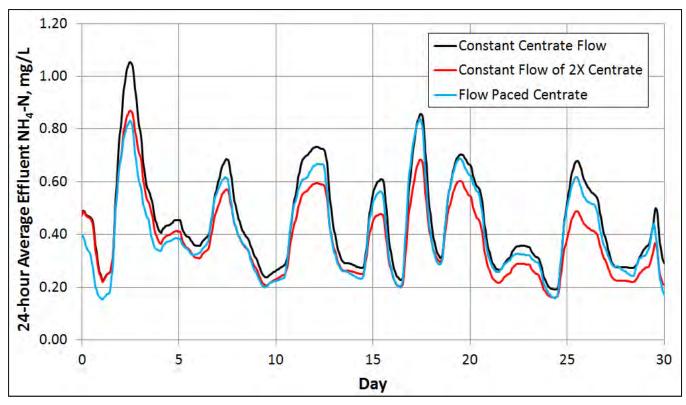


Figure 20. The effect of centrate return pattern on the peak day effluent ammonia concentration

It is likely that the load-pacing schedule can be optimized further, but Figure 19 demonstrates the potential benefit with respect to meeting the peak day ammonia requirement.

In summary, Anammox-based centrate treatment, which completely removes nitrogen from the centrate, has only a small effect on the required size of the aeration basin. This is because the volume requirement is driven mainly by the large diurnal fluctuations in nitrogen loading in the RI, which results in inefficient nitrification.

10.3 Methanol Demand

The methanol demand is largely a function of the ratio of carbon to nitrogen in the secondary influent. Typically, a secondary influent COD:TKN ratio of approximately 10.0 would be required to allow full denitrification. Plants with ratios lower than 10 will require a supplemental source of carbon, such as methanol, to drive nitrogen removal. Phosphorus removal also requires carbon. Therefore, plants that aim to remove both phosphorus and nitrogen require COD:TKN ratios greater than 10 to achieve target removal. Historically, the plant's secondary influent (PE that includes the centrate return) has averaged a COD:TKN ratio of less than 8.0.

In all of the scenarios modeled, methanol was required to meet the effluent target NOx-N. In some cases, the target was not achievable. Given the A2O process configuration, the efficiency of carbon addition is limited by the IMLR flow. Even with an IMLR ratio of 4Q, only 80 percent of nitrate generated within the aeration basins is returned for denitrification. In some of the cases, the ammonia load is such that no amount of methanol addition will produce an effluent NOx-N of less than 8 mg/L with this configuration.

The relationship between nitrogen loading and the required methanol dose is approximately linear for those cases in which the effluent target was achievable. To demonstrate, the following scenario was developed to assess the impact of increasing the TKN loading with all other parameters held constant (Figure 21).

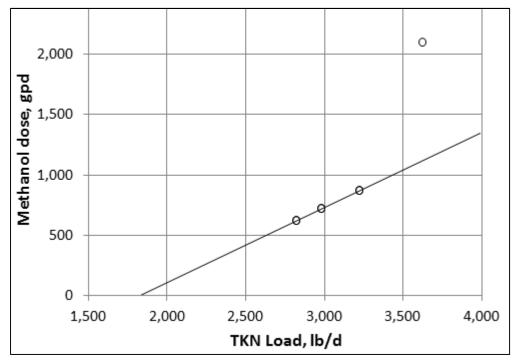


Figure 21. Relationship between the TKN load and the methanol dose required to achieve an effluent NOx-N of 8 mg/L

As the TKN load is increased, the required methanol dose increases linearly up to a load of approximately 3,330 lb/d. Beyond that point, excess methanol passes through the selector and is oxidized in the aeration basin.

In summary, the required methanol dose is generally proportional to the nitrogen loading. Because centrate treatment removes nitrogen from the feed, this reduces the required methanol dose. On average, side stream treatment resulted in a 28 percent reduction in the methanol requirement.

10.4 Methanol Cost

The BCE is highly sensitive to the cost of the methanol (Figure 22). At the assumed price of \$2.25 per gallon, the BCE favors no side stream treatment by an NPV margin of \$1.64M. The break-even cost of methanol would be \$3.31. At its highest price in recent years (\$4.50 per gallon), the BCE would favor side stream treatment by an NPV margin of \$1.8M.

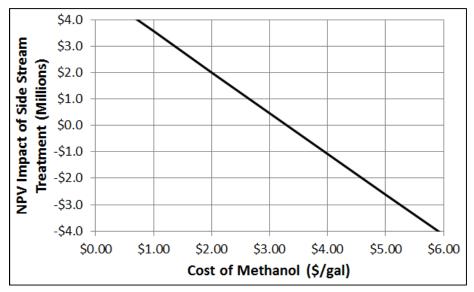


Figure 22. Effect of methanol cost on BCE recommendation

Negative values indicate cases where side stream treatment is favored.

10.5 Sensitivity Matrix

The two most sensitive parameters in the BCE are the required volume of the aeration basins and the methanol demand. As summarized in Table 22, side stream treatment offers a 5 percent reduction in the required aeration basin volume, and a 28 percent reduction in the methanol demand. Figure 23 demonstrates the sensitivity of the BCE to those two factors.

				% reduced 5% reduce	l volume ed methar	nol			
50.0%	-\$0.23	-\$0.66	-\$1.09	-\$1.52	-\$1.94	-\$2.37	-\$2.80	-\$3.22	-\$3.65
45.0%	\$0.39	-\$0.03	-\$0.46	-\$0.89	-\$1.31	-\$1.74	-\$2.17	-\$2.60	-\$3.02
40.0%	\$1.02	\$0.59	\$0.17	-\$0.26	-\$0.69	-\$1.11	-\$1.54	-\$1.97	-\$2.40
35.0%	\$1.65	\$1.22	\$0.79	\$0.37	-\$0.06	-\$0.49	-\$0.91	-\$1.34	-\$1.7
30.0%	\$2.28	\$1.85	\$1.42	\$0.99	\$0.57	\$0.14	-\$0.29	-\$0.71	-\$1.14
25.0%	\$2.90	\$2.48	\$2.05 C	\$1.62	\$1.19	\$0.77	\$0.34	-\$0.09	-\$0.5
20.0%	\$3.53	\$3.10	\$2.68	\$2.25	\$1.82	\$1.39	\$0.97	\$0.54	\$0.11
15.0%	\$4.16	\$3.73	\$3.30	\$2.88	\$2.45	\$2.02	\$1.59	\$1.17	\$0.74
10.0%	\$4.78	\$4.36	\$3.93	\$3.50	\$3.08	\$2.65	\$2.22	\$1.79	\$1.37
0.0%	\$6.04	\$5.61	\$5.18	\$4.76	\$4.33	\$3.90	\$3.48	\$3.05	\$2.62
	0.0%	2.5%	5.0%	7.5%	10.0%	12.5%	15.0%	17.5%	20.0%

Figure 23. 20-year NPV impact of side stream treatment (millions)

Negative values indicate cases where side stream treatment is favored.

In order to be cost-effective, the side stream process would need to reduce the required aeration basin volume by an additional 2.5 percent and reduce the methanol demand by an additional 10 percent. Given the impact of the diurnal flow pattern, centrate treatment has only a small impact on the required aeration basin volume. Without some form of raw wastewater influent flow equalization, centrate treatment would be

unlikely to provide better than the 6 percent volume reduction currently assumed. The relatively low proportion of nitrogen in the centrate limits the projected methanol dose reduction. If the nitrogen loading in the centrate is higher than assumed, or if the side stream treatment process performs better than expected (greater than 75 percent TIN removal), then the methanol dose may be reduced accordingly.

11. Conclusions and Recommendations

Given the relatively low carbon content of the plant influent, and the very aggressive projected regulations, Anammox-based side stream treatment was thought to potentially offer substantial life-cycle cost savings to the City. However, the current analysis has uncovered other factors that limit the benefits of this type of side stream treatment. Specifically, the high diurnal fluctuation in RI nitrogen loading mutes the impact of nitrogen removal from the centrate, and suggests a load pacing scheme as a more efficient solution. Also, the relatively low fraction of the total nitrogen load associated with the centrate limits the operational benefits of side stream treatment. These factors result in a projected \$3.3M net benefit of side stream treatment, which does not offset the projected \$5.2M cost to install the side stream treatment process.

In the near term, the draft permit and proposed effluent targets would not be achievable given the existing plant infrastructure and configuration. While side stream treatment may play a role in helping the City reduce capital and operating costs, a large-scale increase in process capacity will be required shortly. The City should explore options to expand the capacity of the biological process through aeration basin volume expansion, additional secondary clarifiers, or process modification.

The modeling projects a large requirement for supplemental carbon, on the order of 500–1,000 gpd. . At peak, the projected carbon demand would impose a large annual operating cost on the City (\$900k per year), making carbon efficiency a key driver of any future plant expansion or upgrade. The City should explore alternatives to reconfigure the biological process basins, including options to install a two-stage nitrogen removal system, to reduce projected methanol demands.

Leading into the upcoming capacity assessment, the results of this evaluation offer the following conclusions and recommendations:

Conclusions

- 1. The existing plant does not have capacity to meet the proposed effluent target conditions.
- 2. Side stream treatment is unlikely to be helpful for nitrogen removal, unless the existing diurnal loading pattern is modified (for example, by flow equalization), or the relative proportion of nitrogen in the centrate is determined to be higher than what has been modeled.
- 3. Load-pacing of the centrate may be a cost-effective way to improve nitrification efficiency and reduce the scope of secondary process expansion. This will not, however, reduce projected carbon demands.

Recommendations

- 1. Anammox-type side stream treatment is not recommended at this time. This recommendation may change based on more detailed characterization of the Plant centrate.
- 2. A detailed characterization of the centrate, and investigation of centrate flows, is recommended.
- 3. A large-scale expansion and reconfiguration of the biological process is recommended.
- 4. The process reconfiguration should be targeted toward carbon efficiency.
- 5. The primary sludge fermentate should be characterized in detail, with particular attention to the loading of nutrients (ammonia, nitrogen, and phosphorus) in the fermentate.

References

- Tebbutt, T. H. Y and D. G. Christoulas (1975). "Performance relationships for primary sedimentation," Water Research, 9, 347-356.
- Wahlberg, E. J., and Keinath, T. M. (1988). Development of settling flux curves using SVI. Journal of the Water Pollution Control Federation 60(12): 2095–2100.
- Wahlberg, E. J., J. L. Morris, W. H. Kido, R. S. Swanson, D. Finger, D. A. Philips (1997). "Primary Sedimentation: It's Performing Better Than You Think," Proceedings of the Water Environment Federation 70th Annual Conference & Exposition.

Appendix E: Side Stream P Removal Report

Technical Memorandum

950 West Bannock Street, Suite 350 Boise, ID 83702

T: 208.389.7700 F: 208.389.7750

Prepared for: City of Meridian

Project Title: WRRF Sidestream Phosphorus Removal Technology Evaluation

Project No.: 148698

Technical Memorandum

Subject: Sidestream Phosphorus Removal Technology Evaluation

Date: May 19, 2016

To: Emily Skoro, P.E., City of Meridian Project Manager

From: Dave Bergdolt, P.E., Project Manager

Copy to: Laurelei McVey, City of Meridian Plant Supervisor

Clint Dolsby, P.E., City of Meridian Engineer

Prepared by:		_
. ,	Ben Watson, E.I.T.	
Reviewed by:		
Ž	Richard Kelly, Ph.D., P.E., Senior Process	Engineer
	Adam Klein, Senior Process Engineer	

Limitations:

This document was prepared solely for City of Meridian in accordance with professional standards at the time the services were performed and in accordance with the contract between City of Meridian and Brown and Caldwell dated December 11, 2015. This document is governed by the specific scope of work authorized by City of Meridian; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by City of Meridian and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

List	of Figure	es	iii
List	of Abbre	eviations	ν
Sect	ion 1: Ir	ntroduction	1
1.1	Basis f	for Struvite Recovery Technology Sizing	
Sect	ion 2: S	idestream Phosphorus Removal Technology Review	4
		with WASSTRIP	
	2.1.1	Principles of Operation	4
	2.1.2	Required Equipment	5
	2.1.3	Product and Equipment Contracting	6
2.2	AirPrex	·	6
	2.2.1	Principles of Operation	6
	2.2.2	Equipment of Operation	6
	2.2.3	Product and Equipment Contracting	7
2.3	PHOSE	PAQ	8
	2.3.1	Principles of Operation	8
	2.3.2	Equipment of Operation	8
	2.3.3	Product and Equipment Contracting	9
Sect	ion 3: L	ife-Cycle Cost Analysis	10
3.1	Capita	I Investment Costs	10
	3.1.1	Ostara	10
	3.1.2	AirPrex	11
	3.1.3	PHOSPAQ	11
3.2	Operat	tions and Maintenance Costs	11
	3.2.1	Ostara	11
	3.2.2	AirPrex	12
	3.2.3	PHOSPAQ	12
3.3	Risks (Costs	12
	3.3.1	Service and Accessibility of Spare Parts	13
	3.3.2	Supplemental Magnesium	13
	3.3.3	Sidestream Treatment Failure	13
	3.3.4	Meeting Class A Biosolids Requirements	14
3.4	Benefi	ts	14
	3.4.1	Reduced Struvite Operations and Maintenance	14
	3.4.2	Struvite Sales	15
	3.4.3	Hauling Reduction	16
	3.4.4	Polymer Reduction	16
3.5	Net Pre	esent Value: Results	

Sect	ion 4: C	onclusions and Recommendations	18
Sect	ion 5: R	eferences	19
Sect	ion 6: U	pdate to Sidestream P Evaluation	20
6.1	Purpos	se of Update	20
6.2	New In	formation	. Error! Bookmark not defined.
6.3	OSTAR	A Update	20
	6.3.1	Updated Equipment Package and Contract Option	20
6.4	CalPre	X	20
	6.4.1	Principles of Operation	20
	6.4.2	Equipment of Operation	21
		Product and Equipment Contract	
6.5	Update	ed Capital Investments Update	
	6.5.1	Ostara	
	6.5.2	AirPrex	
	6.5.3	Calprex	
6.6	•	ed Operations and Maintenance	
	6.6.1	Ostara	
	6.6.2	AirPrex	
	6.6.3	CalPrex	
6.7	•	ed Risk Cost	
	6.7.1	Sidestream Treatment Failure	
	6.7.2	Meeting Class A Biosolids Requirements	
	6.7.3	Market Stability of Phosphorus Fertilizer	
	6.7.4	Supplemental Acetic Acid	
6.8	•	ed Benefits	
	6.8.1	Reduced Struvite Operations and Maintenance	
	6.8.2	Phosphorus Fertilizer Sales	
	6.8.3	Hauling Reduction	
6.9		esent Value: Results	
6.10	Conclu	sions and Recommendations	28
Lis	t of F	igures	
Figur	e 1. Os	tara sidestream phosphorus-removal process diagram	5
Figur	e 2. Str	ruvite produced in a Pearl reactor	5
Figur	e 3. Air	Prex process flow diagram	7
Figur	e 4. Stı	ruvite produced in AirPrex reactor, and packaged struvite fertilizer p	roduct 7
_		ruvite produced by PHOSPAQ reactor	
Figur	re 6: Pro	ocess Calprex process flow diagram (Source: CNPTM)	21

List of Tables

Table 1. Sidestream Treatment Design Flows and concentrations (2030)	1
Table 2. Struvite Related Operations and Maintenance	3
Table 3: Equipment capital cost markups	10
Table 4: Ostara O&M	11
Table 5: AirPrex O&M	12
Table 6: PHOSPAQ O&M	12
Table 7: Cost of Supplemental MgCl ₂	13
Table 8: Cost of Sidestream Treatment Failure	13
Table 9: Cost of Meeting Class A Biosolids Regulations	14
Table 10: Annual Struvite Related O&M Costs	15
Table 11: Annual Value of Struvite Sales	15
Table 12: Annual Value of Reduced Hauling	16
Table 13: Annual Value of Reduced Polymer Dosing	16
Table 14: 20-Year Summed Cost and NPV	17
Table 15: Ostara O&M	22
Table 16: Calprex O&M	23
Table 17: Cost of Sidestream Treatment Failure	24
Table 18: Fertilizer Market Stability	24
Table 19: Supplemental Acetic Acid	25
Table 20. Updated Struvite Related Operations and Maintenance	25
Table 21: Percent of UDC Applied to Alternatives	26
Table 22: Annual Value of Struvite Sales	27
Table 23: Annual Value of Reduced Hauling	27
Table 24: 20-Year Summed Cost and NPV	28

magnesium chloride

List of Abbreviations

 MgCl_2

BC	Brown and Caldwell	mgd	million gallons per day
Bio-P	biological phosphorus removal	MgO	magnesium oxide
BOD	biochemical oxygen demand	$Mg(OH)_2$	magnesium hydroxide
CaCO₃	calcium carbonate	mm	millimeter(s)
City	City of Meridian	NaOH	sodium hydroxide
CNP	CNP Corporation	NH ₄ -N	ammonia-N
CO ₂	carbon dioxide	NPV	net present value
COD	chemical oxygen demand	O&M	operations and maintenance
d DAFT	day dissolved air flotation thickener	Ostara	Ostara Nutrient Recovery Technologies Inc.
		PAC	polyaluminum chloride
EPA	United States Environmental Protection Agency	PAO	phosphorus-accumulating organism
Facility	Meridian Wastewater Resource Recov-	PAQUES	PAQUES Corporation
	ery Facility	PO ₄	phosphate
Facility Plan	City of Meridian Wastewater Facility Plan	TKN	total Kjeldahl nitrogen
gal	gallon(s)	TM	technical memorandum
gpd	gallon(s) per day	TP	total phosphorus
hr	hour(s)	TS	total solids
kWh	kilowatt-hour(s)	TSS	total suspended solids
lb	pound(s)	UDC	uniform distributed cost
lb/d	pound(s) per day	VFA	volatile fatty acid
LCCA	life-cycle cost analysis	VSS	volatile suspended solids
Mg	magnesium	WAS	waste activated sludge
MG	million gallons	WASSTRIP®	Waste Activated Sludge Stripping to Remove Internal Phosphorus
mg/L-P	milligram(s) per liter phosphorus	yr	year(s)

Section 1: Introduction

The City of Meridian (City) is currently experiencing rapid population growth. Consequently, the Meridian Wastewater Resource Recovery Facility (Facility) is quickly reaching its capacity limit. The City has begun planning and designing for expansion of the Facility to meet both anticipated growth and future permit limits for nutrients. Of particular concern is the future effluent total phosphorus (TP) requirement of 0.05 milligram phosphorus per 1 liter (mg/L-P), which is driving much of the new Facility upgrade design.

The City of Meridian Wastewater Facility Plan (Facility Plan) discussed the addition of sidestream phosphorus removal technologies to help reduce the amount of internally recycled phosphorus at the Facility to improve secondary performance with respect to biological phosphorus removal (Bio-P) (CH2M and HDR 2012). The specific recommendation was for a struvite recovery system, which removes the phosphorus by precipitating it as the mineral struvite, where struvite is a solid composed of equimolar amounts of magnesium (Mg), ammonium, and phosphate (PO4) (chemical formula: MgNH4PO4·6H2O). A later investigation into expansion alternatives for the Facility confirmed that adding a sidestream phosphorus removal facility would significantly reduce the amount of supplemental carbon required to drive the Bio-P process in the main stream, potentially saving the City hundreds of thousands of dollars per year (BC 2015). Phosphorus removed from the sidestream has the potential for reducing high operations and maintenance (O&M) costs associated with controlling and mitigating struvite precipitation within the solids handling processes at the Facility, which has been an issue with the City because of the nature of struvite precipitating out on solids handling pipelines and equipment.

Because of the potential benefits associated with a sidestream phosphorus removal process, the City has requested that Brown and Caldwell (BC) investigate potential options for implementation of sidestream phosphorus removal and struvite recovery. To complete this request, an initial review of available technologies was performed, with three systems being selected to cover the breadth of current struvite recovery technologies. Each selected technology has been reviewed with a description of differences and advantages. Based on the selected technologies, a life-cycle cost analysis (LCCA) was performed to provide a means of fiscal comparison of the alternatives. This technical memorandum (TM) presents the findings of the study, including the benefits, costs, and preliminary sizing of each struvite recovery technology, as well as a final recommendation for implementation.

1.1 Basis for Struvite Recovery Technology Sizing

This work was based on the future flows and loads presented in the Facility Plan for a 15-million-gallon per day (mgd) maximum month influent load condition, which corresponds with the flow and load conditions that provide the basis for the secondary treatment expansion project that is currently in design. Each vendor was provided a copy of the sidestream treatment design flows and concentrations table shown below in Table 1, which was developed from the Facility Plan. The vendors were asked to size their technologies from these data.

Table 1. Sidestream Treatment Design Flows and concentrations (2030)				
Parameter	Unit	Demand		
Flow	mgd	0.103		
TKN	mg/L	960		
NH4-N	mg/L	910		

Table 1. Sidestream Treatment Design Flows and concentrations (2030)					
Parameter	Unit	Demand			
TP	mg/L	530			
PO ₄ -P	mg/L	520			
TSS	mg/L	640			
VSS	mg/L	455			
BOD	mg/L	315			
COD	mg/L	1,805			
Alkalinity	mg/L as CaCO ₃	4,100			

Source: CH2M and HDR 2012

BOD = biochemical oxygen demand.

CaCO₃ = calcium carbonate.

COD = chemical oxygen demand

 NH_4 -N = ammonium-N.

TKN = total Kjeldahl nitrogen.

VSS = volatile suspended solids.

All vendors commented on the unusually high phosphorus content of the centrate stream. This too was noted in the previous Alternatives Assessment project (Brown and Caldwell, 2015). The Facility Plan value was used as it provides a conservative approach to sizing of systems. The use of the higher centrate phosphate concentrations as a basis of design may result in a lower quantity of chemicals used and a lower level of struvite harvested than what is reported here. However, as the same conditions are being applied to all options, it is not anticipated that the results of this analysis will be impacted by the high centrate phosphate. It is also important to note that centrate values presented here are for undiluted centrate (without mixing dilution water). While mixing dilution water is not anticipated to alter the conclusions of this analysis, it will need to be accounted for in the final design of any struvite recovery system.

The current O&M costs incurred by the City while mitigating its existing struvite issues were used to properly estimate savings associated with reduced O&M for each of the three struvite recovery technologies. The City provided BC with these, which include:

- Additional chemical use
- Small 0&M performed by operators (e.g., pipe replacement, equipment cleanings/maintenance)
- Larger capital projects (centrifuge replacement, pump replacement)

As a part of each of the O&M tasks, the City estimated that it spends an annual labor amount on struvite; 6 to 8 hours per week for general maintenance, 30 to 40 hours per month for preventive maintenance, and 50 to 150 hours per year on equipment repairs for an averaged total of 884 hours per year. All reported costs from the City were converted to an annual uniform distributed cost (UDC) for struvite-related O&M, reported in Table 2 below. For non-annual repair work the annual UDC is calculated by dividing the cost of the project by the original anticipated service life (e.g., centrifuge replacement in seven years versus a typical annual service life of eighteen years means at least half of the cost associated with centrifuge replacement is due to struvite and calculated to the UDC). The UDC reported in Table 2 represents only the struvite-related cost, which was calculated by subtracting the design UDC from the observed UDC.

Table 2. Struvite Related Operations and Maintenance					
Parameter	Cost	Observed life (years)	Design life (years)	UDC per year	
Labor	\$25,500	1.0	NA	\$25,500	
Ferric dosed for struvite control	\$102,000	1.0	NA	\$102,000	
PAC	\$12,000	1.0	NA	\$12,000	
Polygon (cleaning product)	\$12,000	1.0	NA	\$12,000	
Chemical metering pump replacement	\$1,100	0.5	NA	\$2,200	
Small valve replacement	\$600	0.5	50.0	\$1,200	
Large valve replacement	\$74,000	8.0	50.0	\$7,800	
Pipe replacement	\$41,000	10.0	50.0	\$3,300	
Sludge pump rebuild	\$36,000	5.0	10.0	\$3,600	
Centrifuge rebuild	\$300,000	7.0	18.0	\$26,200	
Annual struvit	\$195,800				

PAC = polyaluminum chloride. UDC Uniform Distributed Cost

Section 2: Sidestream Phosphorus Removal Technology Review

An initial review of available technologies led to the selection of three that cover the breadth of current sidestream treatment approaches. Each selected technology has been reviewed with a description of differences and advantages. The final sidestream phosphorus removal technologies include the Ostara Nutrient Recovery Technologies Inc. (Ostara) Pearl® reactor with WASSTRIP® (Waste Activated Sludge Stripping to Remove Internal Phosphorus), the CNP Corporation's (CNP) AirPrex® reactor, and the PAQUES Corporation's (PAQUES) PHOSPAQ™ reactor.

2.1 Ostara with WASSTRIP

Ostara markets the Pearl reactor, which produces a struvite precipitate from the dewatering filtrate or centrate stream. To maximize phosphorus release and recovery while minimizing struvite precipitation upstream of the Pearl reactor, the Pearl process will be combined with Clean Water Institute' patented process for Bio-P plants called WASSTRIP. The combined process minimizes the sidestream phosphorus load and struvite formation within the biosolids system, while also partially reducing sidestream ammonium loads and solids quantities for disposal. Ostara also claims that the combined processes can reclaim lost dewatering performance (which is often observed in Bio-P facilities), increasing the dewatered biosolids concentrations and reducing polymer demand for dewatering. The resulting struvite product is purchased by Ostara and sold to the public or to other fertilizer manufacturers as Crystal Green®. The Ostara/WASSTRIP process has eight current installations with another five currently under construction or design. Most projects are within the United States and Canada.

2.1.1 Principles of Operation

The WASSTRIP process is designed to release the phosphate from the waste activated sludge (WAS) that was taken up during the Bio-P process. To do this, the WASSTRIP process holds waste activated sludge (WAS) for approximately 12 hours (6 to 20 hours) in an anaerobic environment while providing a form of readily biodegradable chemical oxygen demand (COD). These conditions mimic the anaerobic environment in the anaerobic selector that allows the phosphorus-accumulating organisms' (PAOs') to release internal reserves of polyphosphate. Effluent from the WASSTRIP tank is then thickened to 2 to 3 percent solids using a thickening process (dissolved air flotation thickeners [DAFTs] in the case of Meridian). The thickener subnatant, rich in phosphate, is then combined with centrate from the centrifuges and passed to the Pearl reactor. The thickened WAS is sent to digestion for solids stabilization.

The Pearl reactor creates an environment that promotes struvite formation in a controlled location. It does this by treating thickening and dewatering streams in a high-pH environment with added magnesium to increase the struvite precipitation potential in a location that will not cause 0&M issues. To do this, Ostara increases the pH of the treated streams (filtrate, centrate, etc.) in the Pearl reactor to approximately 9 using caustic soda (i.e., sodium hydroxide [NaOH]). Additional magnesium is also added, most commonly as magnesium chloride (MgCl₂), because magnesium is typically the limiting component (lowest concentration) for precipitating struvite. A process flow diagram for the Ostara Pearl system with WASSTRIP is presented in Figure 1 below.

The Pearl reactor operates as a fluidized bed reactor, growing the struvite crystals until they reach 0.9 to 3.0 millimeters (mm) in diameter. The large struvite crystals or "prills" (see Figure 2 below) are then harvested for use as fertilizer or to supplement a fertilizer product. Ostara claims to remove up to 88 percent of the sidestream phosphorus load.

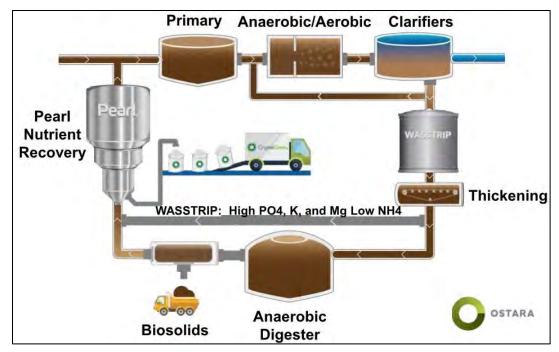


Figure 1. Ostara sidestream phosphorus-removal process diagram

Source: Ostara

Figure 2. Struvite produced in a Pearl reactor

0.9, 1.5, 3.0, and 4.5 mm prill size (Source: Ostara)

2.1.2 Required Equipment

The WASSTRIP process will require a source of volatile fatty acid (VFA) (in this analysis it will be acetic acid), and a completely mixed tank with approximately 10 hours of retention time (~500,000 gallons). The Ostara solution requires a Pearl reactor, sodium hydroxide for pH control, and magnesium chloride, as well as the associated equipment for chemical pumping and feeding of centrate and DAFT subnatant into the reactor. Struvite harvesting requires grit dewatering, washing, and drying systems, as well as all necessary equipment for bagging, moving, and storing the crystalized struvite product. The drying system is required by Ostara to remove excess moisture—not for regulatory requirements. Centrate equalization will also be required to ensure that WASSTRIP and post-digester filtrate are continuously fed in the correct flow ratio,

though it is anticipated that the upgraded centrate equalization system will be sufficiently sized for this purpose. A building will also be required to house the chemical storage, Pearl reactor, and struvite harvesting/handling equipment.

2.1.3 Product and Equipment Contracting

Ostara's standard project delivery contract includes a 20-year offtake commitment between the City and Ostara. The offtake contract is mutually exclusive, requiring the City to sell all crystalized struvite product to Ostara. The purchase price of the struvite product is a commodity indexed value (price as of February 12, 2016, is \$300 per ton). For quality control the City must sample every 1-ton bag and send the samples to Ostara at pre-agreed-upon intervals for analysis and confirmation on product purity. If the product does not meet Ostara's specifications, the City must dispose of the product at its expense. The City is also responsible for the procurement of all consumables (chemicals such as MgCl₂ and NaOH, 1-ton bags, pallets, etc.). Ostara will pick up and transport the fertilizer (40 tons per load), and provide a base level of operational support through the life of the offtake agreement. The typically 20-year agreement can be renewed at the end of the cycle, or the City can take over operation and marketing of the product at that time.

2.2 AirPrex

CNP markets the AirPrex reactor, which, like Ostara's Pearl system, precipitates struvite. However, where Ostara precipitates struvite on "clean" sidestreams of thickener and dewatering filtrate and centrate, the AirPrex system is designed to remove struvite from the digested sludge stream prior to dewatering. The AirPrex system has two modes of operation: struvite "harvesting" and the option to leave the struvite in the sludge (called "sequestering") rather than separating it for sale. CNP offers the client the ability to sell precipitated struvite back to CNP or sell it on the open market, if it is removed from the sludge. The AirPrex system will minimize sidestream P load and struvite formation within the biosolids system while also reducing sidestream ammonium loads and solids quantities for disposal. CNP also claims that the AirPrex system can reclaim lost dewatering performance, increasing the dewatered biosolids concentrations and reducing polymer demand for dewatering. The CNP AirPrex system has six European installations and one Chinese installation, and 28 projects in planning or design in the United States.

2.2.1 Principles of Operation

The AirPrex reactor relies on the anaerobic digester to release the phosphate stored within the WAS biomass and primary sludge and to generate a high ammonium concentration from the breakdown of organic content. The digested sludge is transferred into the AirPrex reactor, where it is aerated using coarse-bubble diffusers to strip carbon dioxide (CO₂) and increase the pH. This is done in lieu of chemical pH adjustment, like with the Ostara Pearl reactor. A supplemental source of magnesium (typically MgCl₂) is injected to increase the magnesium concentration and create conditions ideal for struvite precipitation. CNP claims that the Air-Prex reactor will remove up to 95 percent of the sidestream phosphorus load. If sequestration of the struvite is all that is desired (i.e., no interest in producing a fertilizer product), then the digested sludge stream with precipitated struvite is sent to dewatering. If harvesting of struvite is desired, struvite-rich digested solids are removed from the bottom of the AirPrex reactor and a Huber Coanda grit washer is used to rinse the majority of organics from the struvite. See Figure 3 below for a process flow diagram of the AirPrex system. See Figure 4 below for a picture of the struvite product.

2.2.2 Equipment of Operation

The AirPrex reactor is a 40-foot-tall circular steel tank with a 20-foot diameter. The dimensions of the reactor have been optimized for air stripping of residual CO₂. Feed to the reactor typically requires pumping from the digesters because of the height of the reactor. The reactor requires a supply of MgCl₂ (and associated chemi-

cal metering equipment) and a blower to provide the air for CO₂ stripping. If sequestration is all that is required, then no other equipment is needed. If harvesting of the struvite for recovery is desired, then a Huber Coanda grit washer and handling equipment are also required.

The equipment for the harvesting option of AirPrex will fit within a 24-by-43-foot building with the reactor, and an 8,000-gallon MgCl₂ tank located outside the building footprint. The non-harvesting option requires a smaller 24-by-33-foot structure, a smaller reactor (13 feet in diameter by 36 feet high), and no struvite separation or washing equipment. The AirPrex vendor package includes the reactor vessel, MgCl₂ storage and dosing system, additional chemical storage and metering, blowers, pumps, and struvite washing equipment (if applicable).

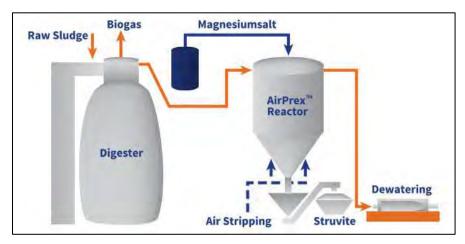


Figure 3. AirPrex process flow diagram

Source: CNP

Figure 4. Struvite produced in AirPrex reactor, and packaged struvite fertilizer product

2.2.3 Product and Equipment Contracting

CNP provides the AirPrex system as a standard quote and delivery between CNP and a City-selected contractor. Though not required if the struvite is only sequestered or if the City wants to sell the struvite on its own, CNP will provide a guaranteed struvite purchase agreement between the City and CNP for a period of 3 years at a current quoted price of \$100 per ton (as of February 22, 2016). After 3 years the contract can be renegotiated or the owner may sell the product themselves.

2.3 PHOSPAQ

PAQUES markets the PHOSPAQ reactor for struvite precipitation and recovery. PHOSPAQ is designed to recover phosphorus in the form of struvite from "clean" dewatering return streams (e.g., centrate). The system operates in a manner similar to a hybrid of the Ostara Pearl system and the CNP AirPrex system in that pH control is achieved with a combination of chemical addition and aeration. A magnesium salt is added to provide an additional driver for struvite precipitation. The removed struvite is separated via gravity systems and recovered. The City can then independently sell the struvite on the open market as a slow-release fertilizer; there is no contracting mechanism with PAQUES for purchase of the struvite from the City. The PHOSPAQ system is relatively new to the North American market with one confidential installation in the United States, and a total of nine systems installed in Europe and China.

2.3.1 Principles of Operation

The PHOSPAQ reactor requires an anaerobic digester to release phosphorus from PAOs and to generate high ammonium concentrations. Similar to Ostara's Pearl reactor, the process is inserted directly into the centrate stream and creates an environment favorable to struvite precipitation. The PHOSPAQ reactor does this by increasing the pH using coarse-bubble diffusers to strip CO₂, similar to AirPrex. However, PAQUES's reactor is not as tall and has a lower retention time than the AirPrex reactor, so supplemental chemical pH control is required to further increase the pH. The PHOSPAQ reactor uses magnesium oxide (MgO) or magnesium hydroxide (Mg(OH)₂) to further increase the pH, which doubles as the supplemental magnesium source. Struvite is allowed to settle either within the reactor or, if low total suspended solids (TSS) effluent is required, a separate proprietary gravity settler (ASTRASEPARATOR™) is used to further refine the solids separation. PAQUES claims that the PHOSPAQ reactor will achieve 70 to 90 percent removal of sidestream phosphorus loads. Figure 5 shows the struvite product provided by PHOSPAQ. PAQUES would not provide a PHOSPAQ process flow diagram when requested.

Figure 5. Struvite produced by PHOSPAQ reactor

2.3.2 Equipment of Operation

The PHOSPAQ reactor consists of a 26-foot-tall circular tank at least 13 feet in diameter, fitted with the proprietary PHOSPAQ internals. To improve TSS separation and struvite capture, a PAQUES ASTRASEPARATOR has been recommended for the Meridian application. The ASTRASEPARATOR is a propriety lamellae plate settler. No building dimensions were provided to house the additional equipment; however, because of the similarity of the equipment with AirPrex it can be assumed the 24-by-45-foot building would be sufficient. The PHOSPAQ system requires the City to provide a blower, chemical storage and metering system, equipment for struvite washing and dewatering, and pumps to feed the PHOSPAQ reactor. All equipment for struvite handling and storage is also required to be provided by the City.

2.3.3 Product and Equipment Contracting

A standard quote and supply to a City-selected contractor is the only method for procurement provided by PAQUES. PAQUES does not offer a guaranteed purchase agreement. All of the product would be handled and sold by the owner.

Section 3: Life-Cycle Cost Analysis

To compare each of the three technologies and provide a recommendation to the City for implementation, an LCCA was completed. The LCCA incorporated four different costs for the evaluation. These cost categories included capital investment, O&M, risks, and benefits. The final evaluation calculates a 20-year net present value (NPV) for each alternative by summing the capital investments, O&M, and risk and subtracting them from the benefits. The alternative with the highest NPV is deemed the most fiscally beneficial.

3.1 Capital Investment Costs

All equipment quotes were marked up to include construction fees, contingency, and allied fees. Ostara opted to provide a complete design-build quote, which includes all additional costs. Therefore, a separate markup was applied to the Ostara quote to account for sales tax and contingency. The markups are listed in Table 3Error! Reference source not found. The equipment markup was applied to the quotes and equipment costs supplied by CNP for the AirPrex system and by PAQUES for the PHOSPAQ system. The design-build markup was applied to the Ostara Pearl system and the equipment markup was also applied to equipment and tanks not included in the Ostara scope of supply.

Table 3: Equipment capital cost markups						
Parameter	Equipment markup (%)	Design-build markup (%)				
Construction fees						
Contractor field overhead, bonds, insurance	12	-				
Overhead and profit	15	-				
Contingency	25	10				
Allied fees						
Legal	2	-				
Administrative	5	-				
Permitting and scope	3	-				
Preliminary engineering	5	-				
Final engineering	15	-				
Construction engineering	10	-				
Escalation	2.3	-				
Total markup	2.43	1.19				

3.1.1 Ostara

The Ostara Pearl and WASSTRIP proposal included a lump construction fee for all equipment and construction. An additional 0.5 million gallons (MG) tank for the WASSTRIP process was priced separately, with all other equipment and structures included in the Ostara estimate. Ostara estimated a total project cost in the range of \$5 million to \$6 million based on the data provided. For this analysis, an average value of \$5.5 million was used. With a 10 percent contingency and the additional tank, the total capital cost for Ostara was \$6,728,200.

3.1.2 AirPrex

The AirPrex estimate included an itemized list of provided equipment with a lump sum depending on the harvesting alternative. AirPrex included building footprints, but no estimate for the cost of construction. A cost estimate was performed for the two alternatives to assign costs to the housing structures, additional sludge piping, and a struvite storage area. For the harvesting option the equipment costs from the vendor were \$1,450,700. With the additional structures and estimated markups the final cost was \$3,890,000.

The non-harvesting option requires a smaller footprint and less equipment. The equipment cost from the vendor was \$980,000. With the additional equipment and markups the final cost was \$2,705,000.

3.1.3 PHOSPAQ

The PHOSPAQ estimate included only the internal components to a reactor; no mechanical equipment was included. The internal components were quoted at \$425,000. Based on recommendations from the vendor and experience with previous projects, an extensive list of mechanical equipment was compiled for cost estimating. Once the appropriate markups were applied the final cost was \$2,450,000.

3.2 Operations and Maintenance Costs

The estimates for O&M were based on projections of chemical dose, power demand, and maintenance hours provided by each of the vendors. Chemical costs were based on quotes provided by UNIVAR®, a local chemical sales representative, with the exception of the price for MgCl₂, which was provided by Dustbusters Inc., a company that typically provides the product for Ostara installations. The cost of power and labor was defined by the City. The cost of annual O&M supplies was either an estimate provided by each system vendor or, if no estimate was offered, an estimate of 1 percent of the equipment capital value was used.

3.2.1 Ostara

O&M costs associated with the Pearl system are presented in Table 4. The Ostara process requires MgCl₂ as a magnesium source, NaOH for pH control, and acetic acid to initiate a phosphorus release in the WASSTRIP process. Power is required for operation of the equipment associated with the Pearl reactor and to dry the struvite prills. The annual labor includes typical O&M as well as bagging of the struvite product. The maintenance supplies are for general maintenance and the purchase of 1-ton super sacks to store the struvite prills. The MgCl₂ dose provided by Ostara is reduced relative to other vendors as they account for an assumed 106 pounds per day (lb/d) of magnesium both released in the WASSTRIP process and naturally occurring magnesium in the relatively hard groundwater present in Idaho. In the event that the assumed residual magnesium is not available, a risk factor has been added (described in Section 3.3) to the Ostara option to add additional MgCl₂ to account for the credit that Ostara takes for WASSTRIP released and naturally occurring magnesium.

Table 4: Ostara O&M						
Parameter	Annual cost					
Labor	\$28.75/hr	4 hr/d	\$30,000			
Power	\$0.06/kWh	990 kWh/d	\$21,700			
MgCl ₂	\$0.60/gal	300 gpd	\$65,200			
Caustic (NaOH)	\$0.145/lb	0.069 ton/d	\$7,300			
Acetic acid	\$0.74/lb	133 lb/d	\$35,800			
Maintenance supplies	\$15,000/yr	-	\$15,000			
Total o	\$175,00					

3.2.2 AirPrex

O&M costs associated with the AirPrex system are presented in Table 5. The AirPrex reactor requires only $MgCl_2$ for a magnesium source. The AirPrex system was conservative for the amount of $MgCl_2$ to add as it did not account for any residual magnesium from phosphorus release in the digester or naturally occurring in the water source. Therefore, no risk was assigned to the $MgCl_2$ costs. Power costs include struvite harvesting equipment, pumping, and blower demands. No maintenance estimate was available from the vendor; therefore, a value of 1 percent of vendor-supplied capital cost was used.

Table 5: AirPrex O&M							
Harvesting Sequestration							
Parameter	Unit cost	Demand	Annual cost	Demand	Annual cost		
Labor	\$28.75/hr	1.0 hr/d	\$10,500	1.0 hr/d	\$10,500		
Power	\$0.06 kWh	313 kWh/d	\$6,900	219 kWh/d	\$4,800		
MgCl ₂	\$0.60/gal	505 gpd	\$110,000	505 gpd	\$110,000		
Maintenance supplies	-	\$14,600	\$14,600	\$9,800	\$9,800		
Total cost		-	\$142,000	-	\$135,000		

3.2.3 PHOSPAQ

O&M costs associated with the PHOSPAQ system are presented in Table 6. The PHOSPAQ process prefers to use MgO as the magnesium source and pH buffer but, because of limitations in supply and cost, will defer to using Mg(OH)₂, which is quoted here. As with AirPrex, the PHOSPAQ system did not take credit for any existing magnesium, so no risk cost associated with the Mg(OH)₂ addition is included in the LCCA for this vendor. No moving equipment was provided with the vendor's quote; therefore, the estimate for the AirPrex harvesting solution was used as a substitute because of similar processes like blowers and pumps. No maintenance estimate was available because the vendor provides none of the mechanical equipment, so an estimate was made using 1 percent of the value of the combined mechanical equipment estimate and vendor-supplied equipment.

Table 6: PHOSPAQ 0&M							
Parameter Demand Unit cost Annua							
Labor	4 hr/d	\$28.75/hr	\$30,000				
Power	313 kWh/d	\$0.06 kWh	\$6,900				
Mg(OH) ₂	811 lb/d	\$0.2702/lb	\$49,900				
Maintenance supplies	-	\$10,700/yr	\$10,700				
Total cost	-	\$97,000					

3.3 Risks Costs

Each technology was reviewed for potential risks to the City and each risk was considered for all technologies, however due to differences in the alternatives not all risk were applied to each alternative. An annual UDC was assessed based on the potential capital and O&M costs of a risk. The following sections describe the associated costs for the evaluated risks of each system.

3.3.1 Service and Accessibility of Spare Parts

While investigated, service and accessibility of spare parts was not included in the analysis as it was found that each vendor maintains suitable stockpiles of spare parts on hand for equipment failure. Ostara and Air-Prex have vested interests in optimizing the production of struvite because of their purchase agreements; therefore, access to service was assumed to be of minimal concern. The PHOSPAQ package does not include any moving parts and it is not likely to need servicing; any supplementary equipment required by the system would be serviced by the provider of that equipment. All options have a similar level of risk; therefore, the value of this risk was considered common among all options and was not quantified.

3.3.2 Supplemental Magnesium

The Ostara estimate for required magnesium takes credit for residual magnesium in the water from the WASSTRIP process and the hard groundwater in Idaho. This assumption accounts for 106 lb/d of the required magnesium for the Ostara process. Because the actual magnesium concentrations are unknown, a risk was assigned to the Ostara process for an additional 128 gallons per day (gpd) of MgCl₂ to account for the assumed available magnesium. As no other vendors took credit for the potential for existing magnesium in the system, this risk is applied only to the Ostara option. Costs associated with this risk are provided in Table 7.

Table 7: Cost of Supplemental MgCl ₂					
Parameter Ostara					
Probability of risk	50%				
Capital investment	\$0				
Annual O&M costs	\$27,800				
Annual UDC a \$13,900					

a. Annual cost assigned to this risk for the LCCA.

3.3.3 Sidestream Treatment Failure

The inherent risk of failure is common to all options; however, the probability of risk of failure is different among options because of their responsiveness and the number of installations currently in place in North America and worldwide. Additional weight was placed on North American installations. The cost of failure was calculated based on using chemical precipitation to remove the phosphorus prior to being returned to the headworks. No additional infrastructure would be required because the reaction vessel for each option would provide the mixing and flocculation required for chemical phosphorus treatment. The alum dose was based on a 48 percent liquid solution costing \$1.22/gal, the removal of 402 lb/d of PO₄-P at a molar ratio of 2.5 mol-Al/mol-P. The cost shown in Table 8 is the same for each option; the difference in distributed cost is the effects of the risk probability.

Table 8: Cost of Sidestream Treatment Failure						
Parameter Ostara AirPrex (all options) PHOSPAQ						
Probability of risk	10%	10%	20%			
Capital investment	\$0	\$0	\$0			
Annual O&M costs	\$806,500	\$806,500	\$806,500			
Annual UDC	\$80,650	\$80,650	\$161,300			

3.3.4 Meeting Class A Biosolids Requirements

While struvite produced from a wastewater treatment plant has been exempted from meeting the United States Environmental Protection Agency (EPA) 503 regulations on biosolids by some governing bodies, the EPA does not necessarily provide that exemption, as evidenced with the City of Boise (City of Boise, July 2, 2015 Interoffice Memorandum). Therefore, each vendor was informed of the unique requirements faced in Idaho and offered solutions to this issue. Two plausible options were provided by the vendors. First, the produced struvite is sold directly to the vendors, which take responsibility (and associated risk) for ensuring that the product meets any potential applicable EPA 503 requirements. This option is viable for both Ostara and AirPrex, so no risk was included for these alternatives. The second solution is to install additional dryers capable of meeting the time and temperature requirements stated in the EPA 503 regulation. When these criteria have been met, the product qualifies as Class A biosolids and can be marketed to the public. The City of Boise has recently been forced to follow this option, and costs from that project have been scaled to meet the size of this analysis and are included in the results shown in Table 9. PHOSPAQ is the only option affected by this risk, and based on the experience of the City of Boise, a probability of 50 percent was assigned and the cost was distributed across the 20-year analysis period.

Table 9: Cost of Meeting Class A Biosolids Regulations							
Parameter Ostara AirPrex (Harvesting) PHOSPAQ							
Probability of risk	50%	50%	50%				
Capital investment a	\$1,000,000	\$1,000,000	\$1,000,000				
Annual O&M costs	\$90,300	\$90,300	\$90,300				
Annual UDC	\$70,150	\$70,150	\$70,150				

a City of Boise, July 2, 2015 Interoffice Memorandum

3.4 Benefits

Each option includes benefits based on the expected improvements observed by each system. Some benefits add cash value to the system from sale of products while others represent a reduction in overhead expenses, such as chemical demand or maintenance. Where a reduction was expected, the benefit becomes the difference between a "do nothing" option (no sidestream phosphorus installation) and the anticipated results for the vendor system.

3.4.1 Reduced Struvite Operations and Maintenance

The baseline for struvite-related O&M was provided by plant staff. Projects included pipe replacement, valve replacement, pump rebuilding, and centrifuge replacement. The annual distributed cost was calculated for each item based on expected life, observed life, and replacement value. The location of the repairs was also noted because the technologies intercept the process flows at different locations, and therefore some observed O&M issues may not be eliminated by that technology. Based on the technology interception point, the O&M values have been categorized as shown in Table 10. Digester cleaning is not included in this analysis as the impact of struvite accumulation and the required interval for maintenance cleaning is currently unknown.

Table 10: Annual Struvite Related 0&M Costs					
Pre-sludge storage (Ostara)	Pre-dewatering (AirPrex and Ostara)	Post-dewatering (PHOSPAQ, AirPrex, and Ostara)			
Valve replacement: \$8,900	Ferric dose: \$102,000	PAC dose: \$12,000			
Pipe replacement: \$3,280	Chemical metering: \$2,200				
Sludge pumping: \$3,600	PolyGone: \$12,000				
	Centrifuge rebuild: \$26,190				

The Ostara system will require the least struvite-related 0&M because it diverts phosphorus around digestion with the use of WASSTRIP. The WASSTRIP reactor will remove approximately 60 percent of the phosphorus from the WAS, which ensures that conditions for struvite precipitation will not likely form in the digester. Because the system prevents struvite-forming conditions, not all of the material costs listed in Table 10 are deemed necessary—only labor associated with checking and cleaning the equipment. Labor was estimated to be 244 hours per year. This yields the greatest reduction in 0&M-related costs of \$188,600 per year.

The AirPrex reactor treats the sludge post-digestion, but prior to dewatering. Therefore, it will have little to no effect on any 0&M upstream of digester 3 (currently used for sludge storage and dewatering equalization). While not captured in this analysis, some capital improvements can be made to the system to reduce the maintenance required. All materials in the pre-dewatering column of Table 10 were included in the struvite-related 0&M, along with an additional 376 hours per year, resulting in an 0&M reduction of \$169,000 per year.

The PHOSPAQ reactor treats the centrate stream only and will reduce 0&M only on systems downstream of the centrifuge. All material in the pre-sludge storage and pre-dewatering cells was included in the estimate for struvite-related 0&M, in addition to the current struvite-related 0&M labor of 884 hours per year. The total reduction in struvite-related 0&M cost was the price of PAC used for struvite control in the centrate equalization tank, which amounts to approximately \$12,000 per year.

3.4.2 Struvite Sales

Each vendor supplied different options for the sale and handling of the struvite product. If available, a purchase agreement with the vendor was the preferred method for the sale and distribution of struvite. Ostara provides a 20-year agreement with a price indexed to the market value (currently \$300 per ton according to Ostara). AirPrex offered a 3-year contract at a fixed price with the price and contract renegotiated every third year (currently \$100 per ton according to AirPrex). PHOSPAQ did not provide a purchase agreement or a current market price so the market value recommended by AirPrex was used. The calculated struvite harvest and subsequent value for each option is presented in Table 11.

Table 11: Annual Value of Struvite Sales							
Parameter Ostara AirPrex (Harvesting) AirPrex (Sequestration) PHOSPAQ							
Vendor-estimated annual struvite harvest	450 tons	233 tons	NA	491 tons			
Vendor-quoted price	\$300/ton	\$100/ton	NA	\$100/ton a			
Annual benefit	\$135,000	\$23,300	NA	\$49,100			

a. No vendor quote was provided; the current market value as quoted by the AirPrex vendor was used.

3.4.3 Hauling Reduction

A reduction of hauled sludge was anticipated by the vendors as a result of:

- (1) the removal of the struvite mass in the sludge
- (2) the increase in percent total solids (TS) content of dewatered solids.

The PHOSPAQ option treats centrate only and no reduction in solids hauled is anticipated. The price of hauling and disposal was provided by the City at \$20.68/wet ton; costs for each option are shown in Table 12. The proposed reduction in solids volume can be verified only with pilot testing.

Table 12: Annual Value of Reduced Hauling							
Parameter Ostara AirPrex AirPrex (Harvesting) (Sequestration) PHOSPAQ							
Vendor-estimated annual struvite harvest	450 tons	233 tons	0 tons	491 tons			
Average annual wet haul	14,073 tons	15,102 tons	16,206 tons	17,911 tons			
Average annual value of reduced hauling	\$99,650	\$78,400	\$55,500	\$0			

3.4.4 Polymer Reduction

All systems that treat flow prior to dewatering steps claim a reduction in required dewatering polymer. Both AirPrex and Ostara claim a 15 percent reduction in polymer dose; PHOSPAQ does not treat flow prior to dewatering and therefore no reduction in polymer use is anticipated. The value of these benefits is shown in Table 13, with the difference between the Ostara and AirPrex benefit due to differences in the mass of solids being dewatered between the two processes. Polymer reduction claims can be verified only with pilot testing.

Table 13: Annual Value of Reduced Polymer Dosing							
Parameter	Ostara	AirPrex (Har- vesting)	AirPrex (Sequestration)	PHOSPAQ			
Vendor-estimated polymer reduction	15%	15%	15%	15%			
Average annual reduction in polymer demand	7,765 gal	6,117 gal	4,292 gal	0 gal			
Average annual value of reduced polymer demand	\$82,538	\$65,071	\$46,199	\$0			

3.5 Net Present Value: Results

NPV is the difference between present value of investments and the present value of predicted incomes or expenses. Calculating the NPV requires two rates: the discount rate and the escalation rate. The escalation rate, which is based on the current rate of inflation, is used to increase the summed value of 0&M, risks, and benefits to the year of analysis (i.e., \$1 spent on 0&M in 2016 is equivalent to a higher dollar value in 2036, because of inflation). The discount rate is typically based on the inflation rate plus an anticipated interest rate. This rate is used to discount the future value to present value (2016) for comparison of options. This analysis assumed a 3.06 percent inflation rate and 4.6 percent discount rate. Results of the analysis are summarized on Table 14.

Table 14: 20-Year Summed Cost and NPV							
Alternative Capital Benefits O&M Risks NPV cheapest native							
Ostara and WASSTRIP	\$6,728,200	\$10,540,000	\$3,674,100	\$3,458,800	(\$3,517,700)	(\$1,409,000)	
AirPrex (Harvesting)	\$3,889,000	\$6,753,100	\$2,975,900	\$3,166,800	(\$3,325,600)	(\$1,216,900)	
AirPrex (Sequestration)	\$2,673,000	\$5,137,000	\$2,831,900	\$1,693,700	(\$2,108,700)	\$0	
PHOSPAQ	\$2,451,000	\$1,031,200	\$2,768,100	\$4,860,400	(\$8,695,400)	(\$6,586,700)	

All alternatives have a negative NPV at the end of the 20-year analysis period, indicating that the systems will not have paid back the initial investment. However, this does not include the savings that would be realized by the mainstream process currently in design. Based on the LCCA, AirPrex sequestration has the highest NPV (smallest negative value), meaning it will have the fastest payback and lowest overall cost to the City.

Because of the high centrate phosphorus concentration, the actual struvite sales may be less than anticipated and the consumption of magnesium may be lower than anticipated. As all options (with the exception of AirPrex Sequestration) include struvite sales, all options (with the exception of AirPrex Sequestration) may see lowered benefit costs due to reduced sales. Furthermore, all options may also experience lower O&M costs because of reductions in magnesium chemical use, with the AirPrex options experiencing the largest reduction because of the highest associated costs for magnesium. Therefore, it is not anticipated that changing the assumption associated with centrate phosphorus concentration would change the overall outcome of this LCCA.

Section 4: Conclusions and Recommendations

Based on this analysis, the 20 year NPV of the four evaluated options are:

1. AirPrex (No Harvesting): -\$2,109,000

2. AirPrex (Harvesting): -\$3,326,000

Ostara: -\$3,518,000
 PhosPAQ: -\$8,011,000

From these NPVs, the recommended solution is the AirPrex system with phosphorus sequestration (no harvesting of the struvite). While all alternatives have a negative NPV at the end of the 20-year analysis, the AirPrex Sequestration alternative has the highest value, demonstrating that it will have the shortest payback period. However, it is important to point out that, with the exception of PhosPAQ, all other options were within \$1.5M over a 20 year life cycle to AirPrex with sequestration. Because of the closeness of this analysis and the dependence on the cost of hauling biosolids, power costs, and chemical costs, minor changes in these prices could impact the NPV of the different AirPrex and Ostara options to the point that it may alter the final selection of AirPrex with sequestration. However, as AirPrex with sequestration could easily be converted to a harvesting system in the future, it does provide a distinct advantage that is not captured in the LCCA.

This analysis was based on the 2012 Facility Plan and included unusually high predicted centrate phosphorus concentrations. If observed, phosphorus is less than the predicted concentrations. The NPV for the no-harvesting alternative will improve because of lower magnesium doses while the NPV for harvesting options will further decrease because of decreased struvite sales. An additional benefit of the AirPrex system is the ability to add harvesting at a later date should it become more economically beneficial. While all three technologies will achieve the desired removal of sidestream phosphorus, the most fiscally beneficial alternative, as demonstrated by this analysis, is the AirPrex system with phosphorus sequestration. The final recommendation of this report is that the claims of AirPrex (No Harvesting) with regard to polymer reduction and improved solids dewaterability be confirmed with a pilot study. This will ensure that the assumptions made in this LCCA with respect to the benefits of AirPrex can be confirmed to validate the overall finding that AirPrex has the lowest 20 year NPV.

Section 5: References

CH2M and HDR. 2012. City of Meridian Wastewater Facility Plan, July.

Brown and Caldwell (BC). 2015. Secondary Treatment Alternatives Evaluation, September.

City of Boise, July 2, 2015 Interoffice Memorandum to Boise Public Works Commission, Directors Report - Sewer

Section 6: Update to Sidestream P Evaluation

6.1 Purpose of Update

During the initial study, the City was aware of struvite precipitation in the pipes and pumps after the secondary digester. However, in 2017 the secondary digester was taken offline and cleaned as part of normal operations and maintenance. The cleaning work uncovered struvite deposits inside the digester and throughout internal piping that resulted in higher than anticipated maintenance costs. Based on the new information, the City requested that an update to the sidestream P evaluation be conducted using the higher operation and maintenance cost estimates. The results of this update are presented in this section of the Evaluation and is meant to present an updated final recommendation to that presented initially in Section 4. For this update, the City also requested that an additional add-on process for the AirPrex system, called CalPrex, be evaluated. CalPrex is a new technology from CNP which removes phosphorus prior to digestion and has the potential to reduce or eliminate struvite formation ahead of digestion processes.

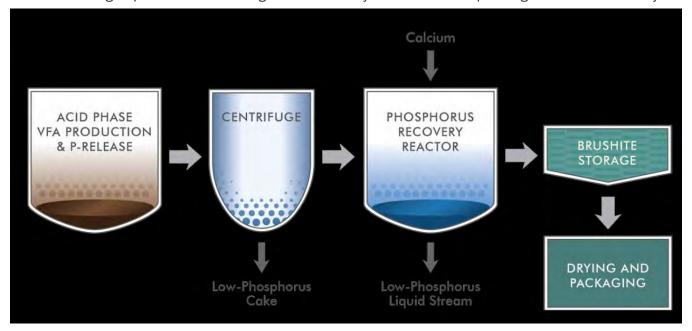
6.2 OSTARA Update

6.2.1 Updated Equipment Package and Contract Option

At the City's request, a unique equipment package and contract option has been provided by OSTARA. The new package reduces the capital cost and simplifies operations by removing the drying and processing equipment. The unclassified product will be purchased by OSTARA at a reduced rate and processed at an offsite facility.

6.3 CalPrex Process

CNP has brought a new process to the US market called CalPrex. The CalPrex reactor precipitates phosphorus with calcium in the form of Brushite (CaHPO $_4 \cdot 2H_2O$) in a pH controlled environment by using an acid phase digester to release biologically bound phosphorus then precipitates the phosphorus prior to mesophilic or thermophilic digestion in a dedicated precipitation reactor. Brushite has an equivalent value to struvite as a slow release fertilizer.


6.3.1 Principles of Operation

The CalPrex process is outlined in Figure 6. This process feeds primary solids and WAS to an acid phase digester to release the biologically bound phosphate. Effluent from the acid phase digester is dewatered using a centrifuge to separate the phosphorus rich centrate from the solids. The centrate is fed into the CalPrex reactor along with a source of calcium. The process relies on maintaining a pH of 6.5 to form brushite, and depending on the centrate feedpH, either calcium chloride (CaCl₂) or calcium hydroxide (Ca(OH)₂) is used as the calcium source. The brushite formed is settled in the recovery reactor for havesting, while the treated centrate is mixed back into the cake produced by the acid phase centrifuge. The combined slurry is the new mesophilic gas digester feed source. The harvested brushite is mechanically dried per EPA 503 regulations for a class A biosolid then sold as a fertilizer on the local market.

As the City does not current operate an acid-gas digestion process, and relies on primary sludge fermentation as a source of volatile acids for promoting nutrient removal, modification to the typical operation of the CalPrex system would be required to allow for operability within the City's current system. For example, the City would likely have to convert to an acid-gas digestion system. However, the City could harvest the VFA's from the CalPrex reactor effluent by recycling it back to the mainstream process while plant effluent is used

to dilute the acid phase digester cake and re-dilute prior to gas-phase digestion. This has not been completed by CalPrex yet, and the loss of high temperature centrate and additional low temperature water would increase heating requirements for the digesters. This may not be an ideal operating condition for the City.

6.3.2 Equipment for Operation

The first phase of Calprex is acid phase digestion of primary solids and WAS. The existing fermenter could be repurposed into acid phase digesters by adding a gas handling system and heating elements. An additional 180,000-gallon acid phase digester is required to maintain a typical acid phase digester HRT of 4 days. A 21 inch centrifuge is also required to separate the low P solids from the phosphate rich liquid; the cake is temporarily stored in a tank while the centrate passes to the next stage. A CalPrex reactor complete with instrumentation to control pH and feed locations for either CaCl₂ or Ca(OH)₂, is also required, as well as chemical storage and metering equipment for the calcium chemicals . A 10 inch centrifuge is required to separate brushite crystals from the centrate. Finally, a brushite dryer is needed to meet the time and temperature requirements for a Class A Biosolids.

Figure 6: Process Calprex process flow diagram (Source: CNP™)

6.3.3 Product and Equipment Contract

CNP provides the CalPrex system as an equipment package and will deliver it to a City selected contractor for installation. It does not include the acid phase digester, structures to house the dewatering equipment, or storage space for the Brushite fertilizer. These pieces of equipment and tankage are separately supplied or constructed by others.

6.4 Updated Capital Investments

Based on the additional information on struvite maintenance control from the City, CNP technologies and Ostara were provided the opportunity to revise the previous capital estimates to allow for more complete removal of phosphorus to protect digestion equipment, as possible.

6.4.1 Ostara

Based on discussions with the City Ostara provided a simplified process which produces a struvite product that is not completely processed. The newly proposed Ostara PEARL reactor process removes all processing equipment from the original quote, and leaving Ostara to process the struvite pearls at an offsite location. This reduced the capital cost from \$5.5 million to \$4.25 million. The size of the WASSTRIP tank was increased to accommodate a 24 hr holding time, which increase the cost of WASSTRIP process to \$1.27 million. With a 10 percent contingency and a revised WASSTRIP tank quote, the total capital cost was \$6,056,000 for the revised Ostara system.

6.4.2 AirPrex

No update to the AirPrex sequestration or harvesting quotes was necessary. See section 3 for the original capital cost quote for AirPrex

6.4.3 CalPrex

The CalPrex system was evaluated to reduce the phosphate entering the digestion system. The CalPrex quote included the feed pumps, centrifuges, CalPrex reactor, and sludge recombination systems; the equipment quote came to \$3.02 million. Costs were also estimated for converting existing fermenters to acid phase digesters, installation of an additional 180,000 gallon acid phase digester, and upgrades to plant infrastructure to allow for transfer of centrate liquids around. With the markups applied the total capital cost was \$8.6 million for the CalPrex and AirPrex systems together.

6.5 Updated Operations and Maintenance

The estimates for 0&M were based on projections of chemical dose, power demand, and maintenance hours provided by each of the vendors. Chemical costs were based on previous quotes or provided by UNIVAR®, a local chemical sales representative. The cost of power and labor was defined by the City and has not been updated. The cost of annual 0&M supplies was either an estimate provided by each system vendor or, if no estimate was offered, an estimate of 1 percent of the equipment capital value was used.

6.5.1 Ostara

The O&M estimates for Ostara were updated based on the reduced processing layout. Table 15 presents the new O&M estimates. There were several changes from the previous O&M estimates provided in Section 3. These include:

- The required labor dropped from 0.5 FTE to 0.4 FTE.
- The electrical demands of the reduced processing layout did not diminish significantly.
- Caustic addition was updated by OSTARA.
- Acetic acid is no longer required for the WASSTRIP tank, which was enlarged to allow for a 24 hour retention time, which is typically sufficient to ensure P release without VFA addition.

Table 15: Updated Ostara O&M							
Parameter Unit cost Demand Annual cost							
Labor	\$28.75/hr	4 hr/d	\$24,000				
Power	\$0.06/kWh	990 kWh/d	\$21,700				
MgCl ₂	\$0.60/gal	300 gpd	\$65,200				
Caustic (NaOH)	\$0.145/lb	0.25 ton/d	\$26,100				

Table 15: Updated Ostara O&M							
Parameter Unit cost Demand Annual cos							
Acetic acid	\$0.74/lb	- lb/d	\$-				
Maintenance supplies	\$20,300						
Total c	\$157,300						

6.5.2 AirPrex

No updates were necessary for the AirPrex Sequestration or Harvesting quotes. See Section 3 for the original O&M quotes.

6.5.3 CalPrex

O&M costs associated with the CalPrex System are presented in Table 16. The CalPrex system requires $CaCl_2$ and $Ca(OH)_2$ for pH control and as a source of calcium. The calcium dose was calculated based on the stoichiometric mass required to precipitate 85 percent of the phosphorus load applied to the system. The dose was based on the conservative estimate that no calcium is present in the water source. and the vendor provided an estimate for the ratio of $CaCl_2$ and $Ca(OH)_2$ required. Power costs include operating both centrifuges continuously, all internal pumps, and the brushite dryers. Power costs do not include the heating or mixing estimates for the acid phase digesters. No maintenance estimate was available from the vendorso a value of 1 percent of vendor supplied capital cost was used.

Table 16: Calprex 0&M					
Parameter	Annual cost				
Labor	\$28.75/hr	3 hr/d	\$23,600		
Power	\$0.06/kWh	4,750 kWh/d	\$103,900		
CaCl ₂	\$0.38/lb	7 lb/d	\$1,000		
Ca(OH) ₂	\$0.174/lb	740 lb/d	\$39,700		
Acid Phase Centrifuge Polymer	\$10.63/gal	9.4 gal/d	\$36,300		
Maintenance supplies	\$32,900/yr	-	\$86,000		
Total	\$290,500				

6.6 Updated Risk Cost

Risks costs were generated for the CalPrex alternative and the Ostara process risk costs were updated. No update was required for the Airprex alternatives. Sections covering service and accessibility of spare parts and supplemental magnesium have not been modified.

6.6.1 Sidestream Treatment Failure

CalPrex is currently being piloted tested at one facility in the United States and does not currently have any full-scale installations in North America. To account for this uncertainty, it was assessed a higher probability of process failure. The risk of Ostara and AirPrex failing was not modified. The value of the risk is summarized in Table 17.

Table 17: Cost of Sidestream Treatment Failure							
Parameter Ostara AirPrex (all options) CalPrex							
Probability of risk	10%	10%	20%				
Capital investment	\$0	\$0	0\$				
Annual O&M costs	\$806,500	\$806,500	\$806,500				
Annual UDC	\$80,650	\$80,650	\$161,300				

6.6.2 Meeting Class A Biosolids Requirements

Under the updated Ostara alternative, final handling and processing of Crystal Green Pearls will be the responsibility of Ostara. This places the burden of meeting Class A Biosolids on Ostara and removes the risk from this analysis. The AirPrex alternative still carries the risk, while the CalPrex process already includes driers designed to meet Class A requirements.

6.6.3 Market Stability of Phosphorus Fertilizer

The market stability risk accounts for both lost struvite sales revenue due to struvite market value or reduced struvite production. The risk is different between the alternatives due to the guaranteed sales contracts offered by OSTARA. OSTARA renews contracts with a guaranteed purchase price every ten years, while AirPrex and CalPrex purchase prices are based on a market value. Under the initial contract with OSTARA, there is a small risk the Pearl product will not be acceptable and must be landfilled. After the initial 10-year purchase agreement ends, risks were assessed for devalued product (i.e. low market value, increased processing costs), no value product, and no change. The AirPrex and CalPrex alternatives carry the same risk for devalued product as the 10 year OSTARA contract renewal. The annual UDC posed by these risks is presented in Table 18 for all alternatives.

Table 18: Fertilizer Market Stability					
Parameter	Applicable Period	Risk	Annual UDC		
OSTARA					
Unacceptable Product	0-10 yr	2%	\$2,700		
Contract Renewed	11-20 yr	70%	\$-		
Product Devalued 50%	11-20 yr	10%	\$4,500		
Product Devalued 100%	11-20 yr	20%	\$19,800		
AirPrex					
Product Devalued 50%	0-20 yr	10%	\$1,200		
Product Devalued 100%	0-20 yr	20%	\$5,600		
CalPrex					
Product Devalued 50%	0-20 yr	10%	\$800		
Product Devalued 100%	0-20 yr	20%	\$3,600		

6.6.4 Supplemental Acetic Acid

The WASSTRIP process requires either sufficient sludge retention time for full phosphorus release, or a source of supplemental VFA's. The update to the analysis has enlarged the WASSTRIP tank changing the design intent from VFA supplementation to a 24-hour retention time. If the process is not capable of full phosphorus release supplemental VFA's will still be required. Therefore the VFA cost has been moved from an 0&M item to a risk cost as shown in Table 19.

Table 19: Supplemental Acetic Acid							
Parameter Ostara AirPrex (all options) CalPrex							
Probability of risk	33%	0%	0%				
Capital investment	\$0	\$0	\$0				
Annual O&M costs	\$35,800	\$0	\$0				
Annual UDC	\$11,800	\$0	\$0				

6.7 Updated Benefits

The Ostara benefits have been updated per the changes described in Section 6.2.1. The current struvite related 0&M has been updated with new information provided by the City. CalPrex is not predicted to reduce polymer demand beyond the original estimates for AirPrex, therefore the original table was not modified. All other benefits have been modified to include the CalPrex alternative and are discussed below.

6.7.1 Reduced Struvite Operations and Maintenance

The previous estimate of struvite related O&M costs have been updated based on new information from the 2016 primary digester cleaning. The digester required additional cleaning and contract work to deal with the buildup of struvite in the reactor, piping, and equipment. The city provided the cost of the additional cleaning as an update to the sidestream phosphorus evaluation TM. The increases costs are summarized in Table 20.

Table 20. Updated Struvite Related Operations and Maintenance						
Parameter	Cost	Observed life (years)	Design life (years)	UDC per year		
General Struvite Maintenance						
Labor	\$25,500	1.0	NA	\$25,500		
Ferric dosed for struvite control	\$102,000	1.0	NA	\$102,000		
PAC	\$12,000	1.0	NA	\$12,000		
Polygon (cleaning product)	\$12,000	1.0	NA	\$12,000		
Chemical metering pump replacement	\$1,100	0.5	NA	\$2,200		
Small valve replacement	\$600	0.5	50.0	\$1,200		
Large valve replacement	\$74,000	2.0	50.0	\$16,600		
Pipe replacement	\$41,000	10.0	50.0	\$3,300		
Sludge pump rebuild	\$36,000	5.0	10.0	\$3,600		
Centrifuge rebuild	\$300,000	7.0	18.0	\$26,200		

Primary Digester Maintenance				
Labor	\$5,800	2.5	NA	\$2,300
Miscellaneous valves, piping, and equipment	\$3,000	2.5	20	\$1,100
Additional Cleaning Chemicals	\$17,500	2.5	NA	\$7,000
Struvite Removal Contract Work	\$16,500	2.5	NA	\$6,600
Secondary Digester Maintenance				
Labor	\$11,500	5	NA	\$2,300
Miscellaneous valves, piping, and equipment	\$3,000	5	20	\$500
Additional Cleaning Chemicals	\$35,000	5	NA	\$7,000
Struvite Removal Contract Work	\$33,000	5	NA	\$6,600
Annual struvite 0&M distributed cost				\$238,000

PAC = polyaluminum chloride.

UDC Uniform Distributed Cost

Bold Text indicates new information

The struvite related O&M has been estimated for each technology based on where it interrupts the process flow. The updated calculations are provided in Table 21 in a revised format.

Table 21: Percent of UDC Applied to Alternatives					
	Ostara	AirPrex (Sequestration, Harvest Alternatives)	CalPrex		
General Struvite Maintenance					
Labor	30%	50%	30%		
Ferric dosed for struvite control	20%	20%	20%		
PAC	20%	20%	20%		
Polygon (cleaning product)	0%	0%	0%		
Chemical metering pump replacement	20%	50%	0%		
Small valve replacement	20%	50%	0%		
Large valve replacement	20%	50%	0%		
Pipe replacement	20%	50%	0%		
Sludge pump rebuild	20%	50%	0%		
Centrifuge rebuild	20%	0%	0%		
Primary Digester Maintenance					
Labor	20%	50%	0%		
Miscellaneous valves, piping, and equipment	20%	50%	0%		
Additional Cleaning Chemicals	20%	50%	0%		
Struvite Removal Contract Work	20%	50%	0%		
Secondary Digester Maintenance					

Labor	20%	0%	0%
Miscellaneous valves, piping, and equipment	20%	0%	0%
Additional Cleaning Chemicals	20%	0%	0%
Struvite Removal Contract Work	20%	0%	0%
Total benefit from reduced struvite 0+M	\$190,100	\$180,300	\$230,100

6.7.2 Phosphorus Fertilizer Sales

The vendor estimates for struvite production with Ostara and the AirPrex harvesting option have not been modified. The value of the Ostara Pearl product was reduced because OSTARA is taking over the final classifying and packaging of the product. CalPrex provided a range of 250 to 500 tons of brushite harvested per year, so for this analysis the average of 375 tons per year was used. The CalPrex vendor provided the market value of brushite of \$250 per ton, the highest of the three alternatives. The net benefit for each alternative is shown in Table 22 below.

Table 22: Annual Value of Struvite Sales							
Parameter Ostara AirPrex AirPrex (Harvesting) (Sequestration) CalPrex							
Vendor-estimated annual struvite harvest	450 tons	233 tons	NA	375 tons			
Vendor-quoted price	\$200/ton	\$100/ton	NA	\$250/ton			
Annual benefit	\$90,000	\$23,300	NA	\$93,800			

6.7.3 Hauling Reduction

A slight reduction in the base (no sidestream treatment) estimate of average annual sludge hauling has resulted in the reduction of the benefits as shown in Table 23 below. The CalPrex alternative is not anticipated to increase dewatered cake total solids content unlike the other three alternatives. CalPrex does remove 375 tons per year of precipitate resulting in a reduction of sludge hauled.

Table 23: Annual Value of Reduced Hauling						
Parameter	Ostara	AirPrex (Harvesting)	AirPrex (Sequestration)	CalPrex		
Vendor-estimate increase in dewatered cake total solids content	3%	3%	3%	0%		
Vendor-estimated annual precipitate harvest	450 tons	233 tons	0 tons	375 tons		
Average annual wet haul	13,230 tons	14,260 tons	15,360 tons	15,840 tons		
Average annual value of reduced hauling	\$96,800	\$75,500	\$52,700	\$42,900		

6.8 Net Present Value: Results

The results from the NPV calculation based on new information from the City and the new alternative are provided in Table 24. The escalation rate and discount rate discussed in Section 3.5 have not been modified for this update.

Table 24: 20-Year Summed Cost and NPV							
Alternative	Capital	Benefits	0&M	Risks	NPV	Difference from cheapest alternative	
Ostara and WASSTRIP	\$6,056,000	\$9,624,700	\$3,303,200	\$2,596,600	(\$2,538,100)	(\$1,096,200)	
AirPrex (Harvesting)	\$3,889,000	\$7,419,200	\$2,975,900	\$3,309,300	(\$2,830,100)	(\$1,590,300)	
AirPrex (Sequestration)	\$2,673,000	\$6,055,100	\$2,831,900	\$1,693,700	(\$1,239,800)	\$0	
CalPrex	\$8,592,000	\$7,703,000	\$6,602,600	\$3,912,600	(\$11,244,900)	(\$9,803,000)	

All alternatives have a negative NPV at the end of the 20-year analysis period, the updated information caused all NPV values to increase. This analysis does not include the savings associated with main process carbon purchase as it is anticipated this savings would be the same with all approaches. With the updated information AirPrex sequestration has the highest NPV (smallest negative value), meaning it will have the fastest payback and lowest overall cost to the City. The OSTARA alternative is the next highest NPV and is now better than the AirPrex Harvesting alternative due to the reduced risk of primary digester cleaning. Cal-Prex was unable to generate sufficient benefits to offset the high initial investment and O&M cost associated with the dryers and centrifuges.

6.9 Conclusions and Recommendations

AirPrex with phosphorus sequestration (no struvite harvesting) is the preferred alternative based on the LCCA. The updates to the LCCA caused a small increase in all NPV's due to higher struvite O&M costs providing greater benefit when removing struvite. The updated analysis also reduced the NPV difference between AirPrex and OSTARA to approximately 1.1 million over a twenty year period, which is within the margin of error for this analysis. Small changes to O&M, benefits, or risks could sway the NPV analysis in favor of OSTARA. In addition to the lowest NPV, AirPrex also has the lowest capital investment making it the preferred alternative. The AirPrex (sequestration) alternative also has an unquantified advantage that it can be modified to harvest struvite later should the market change to favor struvite sales.

Appendix F: Detailed Cost Estimates

Projects starting in Fiscal Year 2020

3/8/2018 12:02 PM

Project Number: 150058.200 Estimate Issue: 5

Due Date: 3/8/2018
Estimator: IAN KRULJAC

BID ITEM 011 - OSTARA

CITY OF MERIDIAN FACILITY MASTER PLAN 2020 EXPANSION PROJECTS BID ITEM 011 - OSTARA BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 5

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROJECT 011 - OSTARA

The quoted item in this estimate includes costs of general conditions, sales tax, startup, O&M manuals, training, electrical and instrumentation, bonds and insurance, site improvments and overhead and profit.

Brown AND Caldwell

BID ITEM 011 - OSTARA

Project Number: 150058.200

Estimate Issue: 5

Due Date: 3/8/2018

Estimator: IAN KRULJAC

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
011 OSTARA									
46999 OSTARA	QUOTE	180,500.0 GPD			23.55			23.55 /GPD	4,250,000
_	011 OSTARA	1.0 LSUM			4,250,000.00			4,250,000.00 /LSUM	4,250,000
	01 2020 EXPANSION PROJECTS	1.0 LSUM			4,250,000.00			4,250,000.00 /LSUM	4,250,000

Estimate Totals

Description	Rate	Hours	Amount	Totals
Labor Material Subcontract Equipment Other			4,250,000	
			4,250,000	4,250,000
Contingency	30.000 %		1,275,000	
			1,275,000	5,525,000
ESC. TO MIDPOINT 2020	12.170 %		517,225	
Gross Markups			517,225	6,042,225
Total				6,042,225

2/15/2018 4:46 PM

Project Number: 150058.200 Estimate Issue: 3

Due Date: 2/15/2018
Estimator: IAN KRULJAC

BID ITEM 010 WASSTRIP

CITY OF MERIDIAN FACILITY MASTER PLAN 2020 EXPANSION PROJECTS BID ITEM 010 WASSTRIP BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 3

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROJECT 010 - WASSTRIP

Brown AND Caldwell

BID ITEM 010 WASSTRIP

Project Number: 150058.200

Estimate Issue: 3

Due Date: 2/15/2018

Estimator: IAN KRULJAC

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 SOG - WAS	STRIP	4,464.0 SQFT	7.00	16.55		0.57		24.11 /SQFT	107,606
03345 CONC WAL	LS - WASSTRIP TANK	4,550.0 SQFT	36.80	17.34		0.49		54.63 /SQFT	248,563
05999 RAILINGS,	GRATING AND STRUCTURAL STEEL	630.0 SQFT	56.03	45.17		1.87		103.07 /SQFT	64,934
26999 ELECTRICA	AL ALLOWANCE - place holder	1.0 LSUM			111,636.67			111,636.67 /LSUM	111,637
27999 INSTRUME	NTATION ALLOWANCE - place holder	1.0 LSUM			55,818.34			55,818.34 /LSUM	55,818
31315 EX AND BA	CKFILL - WASSTRIP 3:1	7,349.0 CYD	7.38	14.44		7.21		29.03 /CYD	213,333
32999 SITE RESTO	ORATION ALLOWANCE	4,200.0 SQFT	6.68	10.77		2.96		20.41 /SQFT	85,709
33500 WASSTRIP	- 6" DIPGL - TRENCH	430.0 LNFT	8.97	2.85		6.54		18.36 /LNFT	7,895
40120 6" DIPGL		430.0 LNFT	53.47	82.50	47.42			183.39 /LNFT	78,856
46999 WASSTRIP	PUMPS	2.0 EACH	42,493.08	85,335.36	18,315.39	2,963.65		149,107.48 /EACH	298,215
01	0 WASSTRIP							/LSUM	1,272,566

Estimate Totals

Description	Rate	Hours	Amount	Totals
Labor		3,105 hrs	428,085	
Material			539,892	
Subcontract			224,476	
Equipment Other		845 hrs _	80,113	
			1,272,566	1,272,566
Contingency	30.000 %	_	365,019	
			365,019	1,637,585
ESC. TO MIDPOINT 2020	12.170 %		112,900	
Gross Markups			112,900	1,750,485
Total				1,750,485

3/5/2018 4:56 PM

Project Number: 150058.200 Estimate Issue: 4

Due Date: 3/5/2018
Estimator: IAN KRULJAC

BID ITEM 013 - DAFT AUTOMATION

CITY OF MERIDIAN FACILITY MATER PLAN 2020 EXPANSION PROJECTS BID ITEM 013 - DAFT AUTOMATION BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 4

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROJECT 013 - DAFT AUTOMATION

Brown AND Caldwell

BID ITEM 013 - DAFT AUTOMATION

Project Number: 150058.200
Estimate Issue: 4
Due Date: 3/5/2018

Estimator: IAN KRULJAC

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
013 DAFT AUTO	MATION								
27999 DAFT A	UTOMATION	1.0 LSUM		79,166.03	39,999.63			119,165.66 /LSUM	119,166
40120 6" DIPG	L	160.0 LNFT	49.13	40.24	44.93			134.31 /LNFT	21,490
	013 DAFT AUTOMATION	1.0 LSUM	7,861.42	85,604.86	47,188.88			140,655.16 /LSUM	140,655
	01 2020 EXPANSION PROJECTS	1.0 LSUM	7,861.42	85,604.86	47,188.88			140,655.16 /LSUM	140,655

Estimate Totals

Description	Rate	Hours	Amount	Totals
Labor		66 hrs	7,861	
Material			85,605	
Subcontract			47,189	
Equipment				
Other				
			140,655	140,655
Contingency	30.000 %		40,345	
			40,345	181,000
ESC. TO MIDPOINT 2020	12.170 %		11,837	
Gross Markups			11,837	192,837
Total				192,837

8/24/2018 10:20 AM

Brown AND Caldwell

BID ITEM 027 - ANAEROBIC DIGESTER WITH CONTROL BUILDING

Estimate Issue: 5
Due Date: 8/24/2018
Estimator: IAN KRULJAC

Project Number: 150058.200

CITY OF MERIDIAN FACILITY MASTER PLAN 2020 EXPANSION PROJECTS BID ITEM 027 - ANAEROBIC DIGESTER WITH CONTROL BUILDING BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 5

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/24/2018

Notes PROJECT 027 - ANAEROBIC DIGESTER WITH CONTROL BUILDING

8/24/2018 10:20 AM

CONTROL BUILDING

BID ITEM 027 - ANAEROBIC DIGESTER WITH CONTROL BUILDING

Sub

Equip

Other

Project Number: 150058.200 Estimate Issue: 5 Due Date: 8/24/2018 Estimator: IAN KRULJAC

Total Net

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
26999 ELECTRICA	AL ALLOWANCE	1.0 LSUM			492,189.25			492,189.25 /LSUM	492,189
46999 ANAEROBI	C DIGESTER	750.0 KGAL	2,682.05	5,659.68		1,747.85		10,089.58 /KGAL	7,567,185
02	27 ANAEROBIC DIGESTER WITH							/LSUM	8.059.374

Material

Labor

Estimate Totals

Totals	Amount	Hours	Rate	Description
	2,011,541			Labor
	4,244,758			Material
	492,189			Subcontract
	1,310,886			Equipment Other
8,059,374	8,059,374			
	2,311,727		30.000 %	Contingency
10,371,101	2,311,727			
	714,988		12.170 %	Esc. To Midpoint 2020
11,086,089	714,988			Gross Markups
11.086.089				Total

2/16/2018 12:01 PM

Brown AND Caldwell

BID ITEM 016 - CENTRIFUGE FEED

Estimator: IAN KRULJAC

CITY OF MERIDIAN FACILITY MASTER PLAN 2020 EXPANSION PROJECTS BID ITEM 016 - CENTRIFUGE FEED BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 3

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROJECT 016 - CENTRIFUGE FEED

Brown AND Caldwell

BID ITEM 016 - CENTRIFUGE FEED

Sub

Equip

Other

Project Number: 150058.200

Estimate Issue: 3

Due Date: 2/15/2018

Estimator: IAN KRULJAC

Total Net

Estimate Breakdown Total Cost/Unit Phase Quantity Cost/Unit Cost/Unit Cost/Unit Cost/Unit Amount Cost/Unit **40120 CENTRIFUGE FEED PIPING** 1.0 LSUM 67,909.32 72,909.31 140,818.63 /LSUM 140,819 016 CENTRIFUGE FEED /LSUM 140,819

Material

Labor

Estimate Totals

Description	Rate	Hours	Amount	Totals
Labor			67,909	
Material			72,909	
Subcontract Equipment				
Other				
			140,818	140,818
Contingency	30.000 %		40,392	
			40,392	181,210
ESC. TO MIDPOINT 2020	12.170 %		12,170	
Gross Markups			12,170	193,380
Total				193,380

5/11/2018 2:53 PM

Project Number: 150058.200 Estimate Issue: 7

Due Date: 5/11/2018
Estimator: IAN KRULJAC

BID ITEM 025 - NEW ENTRANCE

CITY OF MERIDIAN FACILITY MASTER PLAN 2020 EXPANSION PROJECTS BID ITEM 025 - NEW ENTRANCE BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 7

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROJECT 025 - NEW ENTRANCE

BID ITEM 025 - NEW ENTRANCE

Sub

Equip

Other

Project Number: 150058.200 Estimate Issue: 7

Due Date: 5/11/2018 Estimator: IAN KRULJAC

Total Net

Estimate Breakdown Total Cost/Unit Phase Quantity Cost/Unit Cost/Unit Cost/Unit Cost/Unit Amount Cost/Unit 32999 NEW SECONDARY ENTRANCE 1.0 LSUM 114,064.64 569,389.07 32,320.12 715,773.83 /LSUM 715,774 **025 NEW ENTRANCE** /LSUM 715,774

Material

Labor

Estimate Totals

Description	Rate	Hours	Amount	Totals
Labor		694 hrs	114,065	
Material			569,389	
Subcontract				
Equipment		110 hrs	32,320	
Other		_		
			715,774	715,774
Contingency	30.000 %		205,310	
			205,310	921,084
Esc. To Midpoint 2020	12.170 %		60,850	
Gross Markups			60,850	981,934
Total				981,934

Projects starting in Fiscal Year 2022

5/11/2018 2:29 PM

Brown AND Caldwell

BID ITEM 023 - AERATION BASIN RETROFIT 1 TO 4

Estimate Issue: 6
Due Date: 5/11/2018
Estimator: IAN KRULJAC

Project Number: 150058.200

CITY OF MERIDIAN - FACILITY MASTER PLAN 2022 EXPANSION PROJECTS BID ITEM 023 - AERATION BASIN RETROFIT 1 TO 4 BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 6

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROJECT 023 - AERATION BASIN RETROFIT - 1-4

BID ITEM 023 - AERATION BASIN RETROFIT 1 TO 4

Project Number: 150058.200 Estimate Issue: 6 Due Date: 5/11/2018 Estimator: IAN KRULJAC

Total Net

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
26999 ELECTRICAL	ALLOWANCE	1.0 LSUM			731,197.98			731,197.98 /LSUM	731,198
46999 AERATION B	BASIN RETROFIT 1-4	1.0 LSUM	761,196.28	2,646,069.38		126,701.18		3,533,966.84 /LSUM	3,533,967
023	AERATION BASIN RETROFIT - 1-4							/LSUM	4,265,165

Estimate Totals

Description	Rate	Hours	Amount	Totals
Labor			761,196	
Material			2,646,069	
Subcontract			731,198	
Equipment			126,701	
Other				
			4,265,164	4,265,164
Contingency	30.000 %		1,223,407	
			1,223,407	5,488,571
Esc. To Midpoint 2022	24.860 %		755,054	
Gross Markups			755,054	6,243,625
Total				6,243,625

5/11/2018 2:27 PM

Project Number: 150058.200 Estimate Issue: 6

Due Date: 5/11/2018
Estimator: IAN KRULJAC

BID ITEM 020 - AERATION BASIN

CITY OF MERIDIAN - FACILITY PLAN 2022 EXPANSION PROJECTS BID ITEM 020 - AERATION BASIN BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 6

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes

2022 EXPANSION PROJECTS. PROJECT 020 - AERATION BASIN 9 AND

10

BID ITEM 020 - AERATION BASIN

Project Number: 150058.200

Estimate Issue: 6

Due Date: 5/11/2018

Estimator: IAN KRULJAC

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
46999 AREATION BA	SIN 9 AND 10	2.0 EACH	379,181.48	802,150.39		49,626.93		1,230,958.80 /EACH	2,461,918
46999 AREATION BA	SIN BLOWERS	1.0 LSUM	82,458.13	154,423.29		12,076.23	638,679.53	887,637.18 /LSUM	887,637
020 A	AREATION BASIN CONSTRUCTION							/LSUM	3,349,555

Description	Rate	Hours	Amount	Totals
Labor		124 hrs	840,821	
Material Subcontract			1,758,724	
Equipment			111,330	
Other		_	638,680	
			3,349,555	3,349,555
Contingency	30.000 %		960,776	
			960,776	4,310,331
Esc. To Midpoint 2022	24.860 %	_	592,934	
Gross Markups			592,934	4,903,265
Total				4,903,265

5/11/2018 2:31 PM

Brown AND Caldwell

BID ITEM 021 - BLOWER BUILDING NO. 1

Estimate Issue: 6
Due Date: 5/11/2018
Estimator: IAN KRULJAC

Project Number: 150058.200

CITY OF MERIDIAN - FACILITY PLAN 2022 EXPANSION PROJECTS BID ITEM 021 - BLOWER BUILDING NO. 1 BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 6

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROCESS LOCATION/AREA INDEX

2022 EXPANSION PROJECTS. 021 - BLOWER BUILDING NO. 1

BID ITEM 021 - BLOWER BUILDING NO. 1

Project Number: 150058.200

Estimate Issue: 6

Due Date: 5/11/2018

Estimator: IAN KRULJAC

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
02220 BLOWER BUI	ILDING DEMOLITION	1,225.0 GSF	7.76	1.82		6.24		15.81 /GSF	19,364
03200 Inverted "T" S	Stem Wall	460.0 LNFT	112.01	103.00		6.80		221.80 /LNFT	102,029
03330 SOG - 55 X 75	5 X 8"	4,125.0 SQFT	4.93	5.93		0.27		11.13 /SQFT	45,893
03355 Slab over Met	tal Deck Roof	4,125.0 SQFT	6.43	9.86		0.23		16.52 /SQFT	68,147
04220 CMU WALLS	12" THK	5,000.0 SQFT	37.89	22.39		0.21		60.48 /SQFT	302,419
26024 BUILDING EL	ECTRICAL FIT OUT ALLOWANCE	4,125.0 SQFT	19.59	16.35	1.26			37.20 /SQFT	153,463
26999 ELECTRICAL	ALLOWANCE- BLOWERS	1.0 LSUM			334,581.49			334,581.49 /LSUM	334,581
46999 BLOWER BUI	ILDING NO. 1	750.0 KGAL	127.75	202.57	97.69	18.16	2,023.12	2,469.29 /KGAL	1,851,971
021	BLOWER BUILDING NO.1							/LSUM	2,877,867

Description	Rate	Hours	Amount	Totals
Labor		3,663 hrs	473,975	
Material			446,061	
Subcontract			413,023	
Equipment		264 hrs	27,466	
Other		_	1,517,343	
			2,877,868	2,877,868
Contingency	30.000 %		825,479	
			825,479	3,703,347
Esc. To Midpoint 2022	24.860 %	_	524,485	
Gross Markups			524,485	4,227,832
Total				4,227,832

Projects starting in Fiscal Year 2024

8/24/2018 9:38 AM

Project Number: 150058.200

Estimate Issue: 4
Due Date: 8/24/2018
Estimator: IAN KRULJAC

BID ITEM 014 - FERMENTER

CITY OF MERIDIAN FACILITY MASTER PLAN 2024 EXPANSION PROJECTS BID ITEM 014 - FERMENTER BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 4

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/24/2018

Notes PROJECT - 014 - FERMENTER

BID ITEM 014 - FERMENTER

Project Number: 150058.200

Estimate Issue: 4

Due Date: 8/24/2018

Estimator: IAN KRULJAC

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
02228 DEMOLITION	N	1.0 LSUM	33,456.51					33,456.51 /LSUM	33,457
03999 MISC STRUC	CTURAL	1.0 LSUM	113,752.19	122,252.17				236,004.36 /LSUM	236,004
26999 ELECTRICA	L ALLOWANCE	1.0 LSUM			223,721.73			223,721.73 /LSUM	223,722
27999 INSTRUMEN	ITATION ALLOWANCE	1.0 LSUM			55,930.45			55,930.45 /LSUM	55,930
40120 PIPING		1.0 LSUM	80,295.64	86,295.65				166,591.29 /LSUM	166,591
46999 FERMENTER	R EQUIPMENT	1.0 LSUM	133,826.08	719,130.44				852,956.52 /LSUM	852,957
014	4 FERMENTER							/LSUM	1,568,661

Description	Rate	Hours	Amount	Totals
Labor			361,330	
Material			927,678	
Subcontract			279,652	
Equipment				
Other				
			1,568,660	1,568,660
Contingency	30.000 %		449,950	
			449,950	2,018,610
ESC. TO MIDPOINT 2024	35.240 %		392,926	
Gross Markups			392,926	2,411,536
Total				2,411,536

8/24/2018 9:58 AM

Brown AND Caldwell

BID ITEM 015 - GRAVITY THICKENER

Estimate Issue: 4
Due Date: 8/24/2018
Estimator: IAN KRULJAC

Project Number: 150058.200

CITY OF MERIDIAN FACILITY MASTER PLAN 2024 EXPANSION PROJECTS BID ITEM 015 - GRAVITY THICKENER BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 4

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/24/2018

Notes PROJECT 015 - GRAVITY THICKENER

BID ITEM 015 - GRAVITY THICKENER

Project Number: 150058.200

Estimate Issue: 4

Due Date: 8/24/2018

Estimator: IAN KRULJAC

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
02228 DEMOLITIO	N	1.0 LSUM	66,856.18					66,856.18 /LSUM	66,856
03999 MISC STRU	CTURAL	1.0 LSUM	80,227.40	86,227.43				166,454.83 /LSUM	166,455
26999 ELECTRICA	L ALLOWANCE	1.0 LSUM			251,482.23			251,482.23 /LSUM	251,482
27999 INSTRUMEN	ITATION ALLOWANCE	1.0 LSUM			69,856.18			69,856.18 /LSUM	69,856
40120 PIPING		1.0 LSUM	113,655.49	122,155.49				235,810.98 /LSUM	235,811
46999 GRAVITY TH	HICKENER EQUIPMENT	1.0 LSUM	147,083.60	790,417.93				937,501.53 /LSUM	937,502
01:	5 GRAVITY THICKENER							/LSUM	1,727,962

Description	Rate	Hours	Amount	Totals
Labor			407,823	
Material			998,801	
Subcontract			321,338	
Equipment Other				
			1,727,962	1,727,962
Contingency	30.000 %		495,644	
			495,644	2,223,606
ESC. TO MIDPOINT 2024	35.240 %		433,452	
Gross Markups			433,452	2,657,058
Total				2,657,058

2/14/2018 3:14 PM

Brown AND Caldwell

BID ITEM 022 - TERTIARY MEMBRANE BASIN

Estimate Issue: 4
Due Date: 2/14/2018
Estimator: IAN KRULJAC

Project Number: 150058.200

CITY OF MERIDIAN - FACILTY MASTER PLAN 2024 EXPANSION PROJECTS BID ITEM 022 - TERTIARY MEMBRANE BASIN BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 4

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROJECT 022 - TERTIARY MEMBRANE BASIN

BID ITEM 022 - TERTIARY MEMBRANE BASIN

Project Number: 150058.200

Estimate Issue: 4

Due Date: 2/14/2018

Estimator: IAN KRULJAC

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03330 SLAB ON GR	ADE	148.0 CYD	234.46	306.99		8.80		550.25 /CYD	81,437
03330 SOG - TM BU	ILDING 60 X 80 X 12"	4,800.0 SQFT	5.03	8.35		0.35		13.74 /SQFT	65,927
03330 SOG - TM2 BI	UILDING 150 X 15 X 12"	2,250.0 SQFT	5.03	8.35		0.35		13.74 /SQFT	30,905
03345 WALLS		234.8 CYD	620.85	618.97		10.53		1,250.35 /CYD	293,552
03350 ELEVATED S	LAB	8.9 CYD	719.25	420.35		11.13		1,150.73 /CYD	10,229
05120 TM1 - PREFA	B STEEL BUILDING - Conceptual	4,800.0 SQFT	6.64	22.48		1.33		30.44 /SQFT	146,129
05120 TM2 - PREFA	B STEEL BUILDING - Conceptual	2,250.0 SQFT	6.64	22.48		1.33		30.44 /SQFT	68,498
05300 TANK COVER	RS	2,500.0 SQFT	5.28	87.73		0.18		93.19 /SQFT	232,967
22202 66" SRPE		340.0 LNFT	179.63	607.05		13.54		800.22 /LNFT	272,074
22405 TM1 - Buildin	g Plumbing, Conceptual	4,800.0 SQFT	8.37	16.93		0.07		25.37 /SQFT	121,782
22405 TM2 - Buildin	g Plumbing, Conceptual	2,250.0 SQFT	7.46	21.74		0.07		29.27 /SQFT	65,853
26024 TM1 - Buildin	g Electrical Fitout, Conceptual	4,800.0 SQFT	12.11	15.09	0.71	0.05		27.95 /SQFT	134,147
26024 TM2 - Buildin	g Electrical Fitout, Conceptual	2,250.0 SQFT	9.19	10.13	0.71			20.02 /SQFT	45,055
26999 ELECTRICAL	ALLOWANCE	1.0 LSUM			987,063.76			987,063.76 /LSUM	987,064
31315 EXCAVATION	I AND BACKFILL	1,434.2 SYD	49.76			45.45		95.21 /SYD	136,542
33500 66" SRPE TRI	ENCH	1,133.3 LNFT	30.28	15.31	1.65	10.63		57.87 /LNFT	65,580
40120 PIPING		1.0 LSUM	67,504.55	72,504.57				140,009.12 /LSUM	140,009
46999 TERTIARY ME	EMBRANE EQUIPMENT	1.0 LSUM	558,504.53	7,945,048.97		380,070.16	1,326.09	8,884,949.75 /LSUM	8,884,950
022	TERTIARY MEMEBRANE BASINS							/LSUM	11,782,698

Description	Rate	Hours	Amount	Totals
Labor		4,255 hrs	1,210,801	
Material			9,097,881	
Subcontract			993,903	
Equipment		918 hrs	478,787	
Other		_	1,326	
			11,782,698	11,782,698
Contingency	30.000 %	_	3,379,714	
			3,379,714	15,162,412
Esc. To Midpoint 2024	35.240 %	_	2,910,705	
Gross Markups			2,910,705	18,073,117
Total				18,073,117

2/14/2018 7:19 PM

Brown AND Caldwell

BID ITEM 024 - NEW PARKING AREA

Estimate Issue: 4
Due Date: 2/14/2018
Estimator: IAN KRULJAC

Project Number: 150058.200

CITY OF MERIDIAN - FACILITY MASTER PLAN 2024 EXPANSION PROJECTS BID ITEM 024 - NEW PARKING AREA BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 4

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROJECT 024 NEW PARKING AREA

BID ITEM 024 - NEW PARKING AREA

Project Number: 150058.200 Estimate Issue: 4

Due Date: 2/14/2018 Estimator: IAN KRULJAC

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
32740 NEW PARKIN	NG LOT	16,000.0 SQFT	0.86	2.78		0.46		4.09 /SQFT	65,494
024	NEW PARKING AREA							/LSUM	65,494

Totals	Amount	Hours	Rate	Description
	13,714	132 hrs		Labor
	44,481			Material
				Subcontract
	7,299	70 hrs		Equipment
05.404	05.404			Other
65,494	65,494			
	18,786		30.000 %	Contingency
84,280	18,786			
	16,445		35.240 %	Esc. To Midpoint 2024
100,725	16,445			Gross Markups
100,725				Total

2/15/2018 3:57 PM

Project Number: 150058.200 Estimate Issue: 4

Due Date: 2/15/2018
Estimator: IAN KRULJAC

BID ITEM 026 - CENTRIFUGE

CITY OF MERIDIAN FACILITY MASTER PLAN 2024 EXPANSION PROJECTS BID ITEM 026 - CENTRIFUGE BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 4

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROJECT 026 - CENTRIFUGE

BID ITEM 026 - CENTRIFUGE

Estimate Issue: 4
Due Date: 2/15/2018
Estimator: IAN KRULJAC

Project Number: 150058.200

Sub Labor Material **Equip** Other **Total Net** Total Cost/Unit Phase **Estimate Breakdown** Quantity Cost/Unit Cost/Unit Cost/Unit Amount Cost/Unit Cost/Unit 03333 EQUIPMENT PAD 3.7 CYD 288.05 255.46 1.86 2,018 545.37 /CYD 26999 ELECTRICAL ALLOWANCE 1.0 LSUM 168,367.06 168,367.06 /LSUM 168,367 **40120 PIPING** 1.0 LSUM 10,072.94 10,822.94 20,895.88 /LSUM 20,896 46999 CENTRIFUGE 1.0 LSUM 34,888.64 793,682.35 2,415.94 830,986.93 /LSUM 830,987 **026 CENTRIFUGE** /LSUM 1,022,268

Totals	Amount	Hours	Rate	Description
	46,027	310 hrs		Labor
	805,450			Material
	168,367			Subcontract
	2,423	17 hrs		Equipment Other
1,022,267	1,022,267			
	293,224		30.000 %	Contingency
1,315,491	293,224			
	251,774		35.240 %	Esc. To Midpoint 2024
1,567,265	251,774			Gross Markups
1,567,265				Total

2/15/2018 4:13 PM

Project Number: 150058.200 Estimate Issue: 4

Due Date: 2/15/2018
Estimator: IAN KRULJAC

BID ITEM 028 - BOILER

CITY OF MERIDIAN FACILITY MASTER PLAN 2024 EXPANSION PROJECTS BID ITEM 028 - BOILER BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 4

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROJECT 028 - BOILER

BID ITEM 028 - BOILER

Project Number: 150058.200

Estimate Issue: 4

Due Date: 2/15/2018

Estimator: IAN KRULJAC

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
03999 EQUIPMENT	Γ PAD	1.0 LSUM	941.62	553.31		5.21		1,500.14 /LSUM	1,500
22999 BOILER		1.0 LSUM	20,136.13	167,448.88		704.68		188,289.69 /LSUM	188,290
22999 STACK		1.0 LSUM	2,069.12	14,560.76				16,629.88 /LSUM	16,630
26999 ELECTRICA	L ALLOWANCE	1.0 LSUM			14,160.78			14,160.78 /LSUM	14,161
40120 PIPING		1.0 LSUM	10,170.58	10,920.58				21,091.16 /LSUM	21,091
02	8 BOILER							/LSUM	241,672

Totals	Amount	Hours	Rate	Description
	33,317	184 hrs		Labor
	193,484			Material
	14,161			Subcontract
	710	9 hrs		Equipment
				Other
241,672	241,672			
	69,320		30.000 %	Contingency
310,992	69,320			
	59,216		35.240 %	Esc. To Midpoint 2024
370,208	59,216			Gross Markups
370,208				Total

Projects starting in Fiscal Year 2025

5/9/2018 12:09 PM

Brown AND Caldwell

BID ITEM - TWO UV CHANNELS - MODIFY CHANNELS AND REPLACE UV

Estimate Issue: 1
Due Date: 5/9/2018
Estimator: IAN KRULJAC

Project Number: 150058.200

CITY OF MERIDIAN FACILITY MASTER PLAN 2025 EXPANSION PROJECTS BID ITEM - TWO UV CHANNELS - MODIFY CHANNELS AND REPLACE UV BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 1

QA/QC Reviewer BILL AGSTER

Notes PROJECT - TWO UV CHANNELS - MODIFY CHANNELS AND REPLACE UV

5/9/2018 12:09 PM

Project Number: 150058.200 Estimate Issue: 1

mate Issue: 1
Due Date: 5/9/2018
Estimator: IAN KRULJAC

BID ITEM - TWO UV CHANNELS - MODIFY CHANNELS AND REPLACE UV

02228 DEMO/PREP/REFURB 03345 CONCRETE 26999 ELECTRICAL 40120 MECHANICAL 46999 UV EQUIPMENT

Phase

026 UV SYSTEM

Estimate Breakdown

Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
1.0 LSUM	12,996.08	24,861.17		69.10		37,926.35 /LSUM	37,926
14.2 cy	1,527.70	599.60		1.37		2,128.67 /cy	30,227
1.0 LSUM			70,735.98			70,735.98 /LSUM	70,736
1.0 LSUM	13,547.19	14,547.21				28,094.40 /LSUM	28,094
1.0 LSUM	60,962.38	744,816.47				805,778.85 /LSUM	805,779
							972,763

Totals	Amount	Hours	Rate	Description
	109,199	307 hrs		Labor
	792,739			Material
	70,736			Subcontract
	89	6 hrs		Equipment Other
972,763	972,763	_		
	279,024		30.000 %	Contingency
1,251,787	279,024			
	236,589		36.190 %	ESC. TO MIDPOINT 2025
1,488,376	236,589			Gross Markups
1,488,376				Total

Projects starting in Fiscal Year 2030

12/12/2017 2:55 PM

Project Number: 150058.200 Estimate Issue: 2

Due Date: 12/12/2017 Estimator: IAN KRULJAC

FACILTY MASTER PLAN 2030 EXPANSION PROJECTS

CITY OF MERIDIAN FACILTY MASTER PLAN 2030 EXPANSION PROJECTS BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 2

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROCESS LOCATION/AREA INDEX

FACILTY MASTER PLAN 2030 EXPANSION PROJECTS

Project Number: 150058.200

Estimate Issue: 2

Due Date: 12/12/2017

Estimator: IAN KRULJAC

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
030 WASTE GAS	BURNER								
26999 ELECTR	ICAL ALLOWANCE	1.0 LSUM			27,224.42			27,224.42 /LSUM	27,224
46999 WASTE	GAS BURNER	1.0 LSUM	37,603.99			626.26		38,230.25 /LSUM	38,230
	030 WASTE GAS BURNER	1.0 LSUM	37,603.99		27,224.42	626.26		65,454.67 /LSUM	65,455
	03 2030 EXPANSION PROJECTS	1.0 LSUM	37,603.99		27,224.42	626.26		65,454.67 /LSUM	65,455

Description	Rate	Hours	Amount	Totals
Labor Material			37,604	
Subcontract			27,224	
Equipment Other		_	626	
			65,454	65,454
Contingency	30.000 %		18,775	
			18,775	84,229
Ecs to Midpoint 2030	68.480 %		33,859	
Gross Markups			33,859	118,088
Total				118,088

DETAIL REPORT

12/12/2017 2:56 PM

Project Number: 150058.200

Estimate Issue: 2

Due Date: 12/12/2017 Estimator: IAN KRULJAC

FACILTY MASTER PLAN 2030 EXPANSION PROJECTS

CITY OF MERIDIAN FACILTY MASTER PLAN 2030 EXPANSION PROJECTS BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 2

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROCESS LOCATION/AREA INDEX

12/12/2017 2:56 PM

Project Number: 150058.200

Estimate Issue: 2

Due Date: 12/12/2017
Estimator: IAN KRULJAC

FACILTY MASTER PLAN 2030 EXPANSION PROJECTS

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
030 WASTE GAS	BURNER								
26999 ELECTR	RICAL ALLOWANCE								
26-99-99.99	ELECTRICAL ALLOWANCE	1.0 LS	-		20,000.00	-	-	20,000.00 /LS	20,000
	ELECTRICAL ALLOWANCE	1.0 LSUM			20,000.00			20,000.00 /LSUM	20,000
46999 WASTE	GAS BURNER								
46-99-99.99	WASTE GAS BURNER - LC 90 PCT	1.0 LSUM	28,899.00	0.00		544.00	-	29,443.00 /LSUM	29,443
	12-4-15				_				
	WASTE GAS BURNER	1.0 LSUM	28,899.00			544.00		29,443.00 /LSUM	29,443
	030 WASTE GAS BURNER	1.0 LSUM	28,899.00		20,000.00	544.00		49,443.00 /LSUM	49,443
	03 2030 EXPANSION PROJECTS	1.0 LSUM	28,899.00		20,000.00	544.00		49,443.00 /LSUM	49,443

Project Number: 150058.200 Estimate Issue: 2

Due Date: 12/12/2017
Estimator: IAN KRULJAC

FACILTY MASTER PLAN 2030 EXPANSION PROJECTS

Description	Rate	Hours	Amount	Totals
Labor			28,899	
Material Subcontract			20,000	
Equipment			544	
Other				
			49,443	49,443
Labor Mark-up	15.000 %		4,335	
Material Mark-up	15.000 %			
Other - Process Equip Mark-up	8.000 %			
			4,335	53,778
Material Shipping & Handling	2.000 %			
Material Sales Tax	8.000 %			
Other - Process Eqp Sales Tax	8.000 %			
Net Markups				53,778
Contractor General Conditions	10.000 %		3,378	
E&I General Conditions	10.000 %		2,000	
GC Electrical Mark-Up	10.000 %		2,200	
			7,578	
				61,356
Start-Up, Training, O&M	2.000 %		1,227	
			1,227	62,583
Contingency	30.000 %		18,775	ŕ
			18,775	81,358
Bldg Risk, Liability Auto Ins	2.000 %		1,627	
			1,627	82,985
Payment and Performance Bonds	1.500 %		1,245	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			1,245	84,230
Ecs to Midpoint 2030	68.480 %		33,859	- 1,=-0
Gross Markups			33,859	118,089
Total				118,089

Projects starting in Fiscal Year 2037

12/12/2017 2:58 PM

Brown AND Caldwell

FACILTY MASTER PLAN 2038 EXPANSION PROJECTS

Estimate Issue: 2
Due Date: 12/12/2017
Estimator: IAN KRULJAC

Project Number: 150058.200

CITY OF MERIDIAN FACILTY MASTER PLAN 2038 EXPANSION PROJECTS BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 2

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROCESS LOCATION/AREA INDEX

FACILTY MASTER PLAN 2038 EXPANSION PROJECTS

Estimator: IAN KRULJAC

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
040 SECONDARY C	LARIFIER NO. 8								
26999 ELECTRICA	AL ALLOWANCE	1.0 LSUM			191,929.93			191,929.93 /LSUM	191,930
46999 CLARIFIER	NO.8 100' DIA	1.0 LSUM	223,037.32	925,985.65		104,465.13		1,253,488.10 /LSUM	1,253,488
04	40 SECONDARY CLARIFIER NO. 8	1.0 LSUM	223,037.32	925,985.65	191,929.93	104,465.13		1,445,418.03 /LSUM	1,445,418
04	4 2038 EXPANSION PROJECTS	1.0 LSUM	223,037,32	925,985,65	191,929,93	104,465,13		1.445.418.03 /LSUM	1,445,418

Description	Rate	Hours	Amount	Totals
Labor			223,037	
Material			925,986	
Subcontract			191,930	
Equipment Other			104,465	
			1,445,418	1,445,418
Contingency	30.000 %		414,599	
			414,599	1,860,017
Esc. To Midpoint 2038	127.240 %		1,313,906	
Gross Markups			1,313,906	3,173,923
Total				3.173.923

DETAIL REPORT

12/12/2017 2:57 PM

Project Number: 150058.200

Estimate Issue: 2

Due Date: 12/12/2017 Estimator: IAN KRULJAC

FACILTY MASTER PLAN 2038 EXPANSION PROJECTS

CITY OF MERIDIAN FACILTY MASTER PLAN 2038 EXPANSION PROJECTS BODR ESTIMATE - CLASS 5 REVIEW

Engineer BROWN AND CALDWELL

Estimator IAN KRULJAC

BC Project Manager RICK KELLY SALT LAKE

Estimate Issue No. 2

QA/QC Reviewer BILL AGSTER QA/QC Review Date 08/09/2017

Notes PROCESS LOCATION/AREA INDEX

Project Number: 150058.200

Estimate Issue: 2

Due Date: 12/12/2017 Estimator: IAN KRULJAC

FACILTY MASTER PLAN 2038 EXPANSION PROJECTS

Phase	Estimate Breakdown	Quantity	Labor Cost/Unit	Material Cost/Unit	Sub Cost/Unit	Equip Cost/Unit	Other Cost/Unit	Total Cost/Unit	Total Net Amount
040 SECONDAR	Y CLARIFIER NO. 8								
26999 ELECTR	RICAL ALLOWANCE								
26-99-99.99	ELECTRICAL ALLOWANCE - from CL No.	1.0 LS	-	-	136,862.00	-	-	136,862.00 /LS	136,862
	6 90pct est			_					
	ELECTRICAL ALLOWANCE	1.0 LSUM			136,862.00			136,862.00 /LSUM	136,862
46999 CLARIF	IER NO.8 100' DIA								
46-99-99.99	CLARIFIER NO. 6 BARE COST from 90pct	1.0 LSUM	166,153.00	641,993.00		87,612.00	-	895,758.00 /LSUM	895,758
	est				_				
	CLARIFIER NO.8 100' DIA	1.0 LSUM	166,153.00	641,993.00		87,612.00		895,758.00 /LSUM	895,758
	040 SECONDARY CLARIFIER NO. 8	1.0 LSUM	166,153.00	641,993.00	136,862.00	87,612.00		1,032,620.00 /LSUM	1,032,620
	04 2038 EXPANSION PROJECTS	1.0 LSUM	166,153.00	641,993.00	136,862.00	87,612.00		1,032,620.00 /LSUM	1,032,620

Project Number: 150058.200 Estimate Issue: 2

Due Date: 12/12/2017
Estimator: IAN KRULJAC

FACILTY MASTER PLAN 2038 EXPANSION PROJECTS

Description	Rate	Hours	Amount	Totals
Labor			166,153	
Material			641,993	
Subcontract Equipment			136,862 87,612	
Other				
			1,032,620	1,032,620
Labor Mark-up	15.000 %		24,923	
Material Mark-up	15.000 %		96,299	
Other - Process Equip Mark-up	8.000 %			
			121,222	1,153,842
Material Shipping & Handling	2.000 %		12,840	
Material Sales Tax	8.000 %		51,359	
Other - Process Eqp Sales Tax	8.000 %			
Net Markups			64,199	1,218,041
Contractor General Conditions	10.000 %		108,118	
E&I General Conditions	10.000 %		13,686	
GC Electrical Mark-Up	10.000 %		15,055	
			136,859	
				1,354,900
Start-Up, Training, O&M	2.000 %		27,098	
			27,098	1,381,998
Contingency	30.000 %		414,599	, ,
			414,599	1,796,597
Bldg Risk, Liability Auto Ins	2.000 %		35,932	
			35,932	1,832,529
Payment and Performance Bonds	1.500 %		27,488	
			27,488	1,860,017
Esc. To Midpoint 2038	127.240 %		1,313,906	, ,
Gross Markups			1,313,906	3,173,923
-				0.450.000
Total				3,173,923